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FOREWORD 

Those who are obsessed with practice, but have no science, 
are like a pilot out with no tiller or compass. 

—Leonardo da Vinci 

This Proceedings 

This proceedings contains the assembled reports of the various research projects that com- 
prise the DARPA Image Understanding (lU) Program. Submissions from forty academic and 
industrial computer vision research laboratories document progress and lessons learned in re- 
search performed for applications in image registration, target recognition, image exploitation, 
cartography, 3D model reconstruction, video surveillance, activity recognition and content-based 
image retrieval. 

This is the 25th proceedings in the series, which has become known as a comprehensive 
source for the latest research results in image understanding from the nation's leading lU labo- 
ratories. Like its predecessors, this proceedings is not peer-reviewed in the traditional sense of 
a refereed conference or journal. Instead, the principal investigator of each laboratory is re- 
sponsible for selecting the papers that will represent the work carried out in his lab. Because the 
reputation of each lab is at stake, the quality of submissions has remained consistently high. 

The Image Understanding Workshop 

The 1997 Image Understanding Workshop is being held at a pivotal moment in the history 
of the lU Program. The major application projects of the last five years, the RADIUS program 
for research in automated image exploitation, and the Reconnaissance, Surveillance, and Target 
Acquisition (RSTA) Program in support of the DARPA Unmanned Ground Vehicle Program, 
have been completed, and the new battlefield awareness application thrusts for the lU Program 
have just been launched. Accordingly, the lU Workshop, and this proceedings, reports both on 
previous accomplishments as well as plans for the new projects. 

The RADIUS Program has pioneered a new paradigm for performing automated image 
examination - called model supported exploitation (MSE). Rather than attempt to detect changes 
based on pixel differencing or comparison of extracted features, the model-supported exploita- 
tion approach calls for the construction and use of detailed context models that sufficiently 
constrain the computer vision tasks so as to make them tractable. This approach has been used 
effectively within the RADIUS Testbed System, which has been installed at the National Photo- 
graphic Interpretation Center and is undergoing a series of evaluations by image analysts. 
RADIUS has spawned a number of related activities (SIAS, FOCUS, Pinpoint, CrossCut, SMS, 
BCAMS, APGD) that are applying the MSE paradigm to a variety of image interpretation tasks. 
A comprehensive description of the many facets of RADIUS has been published as a book, 
RADIUS: Image Understanding for Imagery Intelligence, available from the Morgan Kaufmann 
publishing company. 

XV 



The RSTA Program has developed several new technologies for the reconnaissance pay- 
load of the DARPA Unmanned Ground Vehicle. Image stabilization, sensor planning, exploita- 
tion of polarized light, and target recognition for infrared, LADAR, and color imagery were 
exhibited in demonstrations and field exercises conducted as part of the Demo II UGV Pro- 
gram. Formal evaluation of target detection and recognition algorithms has been performed at 
the US Army Night Vision Electronic Systems Directorate at Fort Belvoir. Results of these 
evaluations as well as detailed descriptions of the algorithms and lessons learned are now avail- 
able as the book,/Jeconnamance, Surveillance, andTarget Acquisition for the Unmanned Ground 
Vehicle: Providing Surveillance Eyes for an Autonomous Vehicle, also published by Morgan 
Kaufmann. 

The New Image Understanding Program 

The mission of the lU Program is to advance the state-of-the-art in computer vision so as to 
enable new applications of imaging technology in support of the warfighters. Toward this end, 
the lU Program sponsors fundamental research, applications development, and supporting in- 
frastructure. 

Research and Applications 

Research to strengthen the theoretical foundations of image understanding accelerates the 
development of subsequent lU applications. Because there are an infinite variety of promising 
avenues to explore, the lU Program has chosen to investigate those that are both highly promis- 
ing and relevant to battlefield awareness. In particular, lU research is focused on the following 
applications 

IMEX: Image Exploitation, to include automatic target recognition, develops novel 
ways to use high revisit multiple sensor imagery from unmanned aerial vehicles and other re- 
connaissance platforms for change detection, site monitoring, and activity tracking. The Site 
Monitoring System, a component of the Semiautomated Imagery Processing (S AIP) system, is 
a major focus for this research. 

AFGD: Automatic Population of Geospatial Databases seeks to increase the level of 
automation used for constructing geospecific 3D models for simulation, mission rehearsal, and 
intelligence applications. 

VSAM: Video Surveillance and Monitoring develops video understanding technology 
to be used for urban and battlefield surveillance where human observation is too costly, danger- 
ous, or otherwise impractical. 
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Infrastructure 

RCDE: The RADIUS Common Development Environment is in use at many lU labo- 
ratories, and is being used within the RADIUS, SMS, and APGD programs. It has recently been 
ported to Silicon Graphics computers, and provides a high-performance environment for devel- 
opment of 3D image exploitation applications. 

lUE: The Image Understanding Environment continues to advance rapidly, both in 
scope and maturity of its implementation. The lUE, along with its libraries of algorithms con- 
tributed by the lU community, will become a powerful tool enabling the exchange of algorithms 
and results. 

lU Data Server: An image server has been established at the Air Force Wright Labora- 
tories to facilitate the provision of imagery for use on lU contracts. Greatly expanded volumes 
of imagery, now available unclassified and without export restrictions, will stimulate research 
on techniques that are relevant to real-world situations. 

Current descriptions of all activities within the DARPA Image Understanding Program are 
maintained on the World Wide Web: http://www.hokie.bs 1 .prc.com/iu/iuhome.htm 

The Role of Research 

It has become popular within the government nowadays to identify technologies that are 
available for immediate application and to transition them to end users as rapidly as possible. 
This practice, commonly referred to as "panning for gold" or "picking the low-hanging fruit," 
can maximize the payoff of previous investments in research and technology development. 
While valuable as a means to transition current technology, this activity must not come at the 
expense of continued investment in research and development, as doing so would ultimately 
jeopardize the nation's ability to field new technology in the years ahead. 

The DARPA Image Understanding Program has traditionally stimulated the computer vi- 
sion research community - the existence of the fielded applications described at this workshop 
(as well as many others) attest to the wisdom of those earlier investments. The lU Program 
continues to maintain its focus on those high-payoff, high-risk research topics that hold promise 
for enabling future systems development programs. This continued investment in research is 
putting the fruit on the trees for others to pick in the years ahead. 

Thomas M. Strat 
Image Understanding Program Manager 
Defense Advanced Research Projects Agency 
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Abstract 

Carnegie Mellon University (CMU) and the 
David Sarnoff Research Center (Sarnoff) have 
begun a joint, integrated feasibility demonstra- 
tion in the area of Video Surveillance and Mon- 
itoring (VSAM). The objective is to develop 
a cooperative, multi-sensor video surveillance 
system that provides continuous coverage over 
large battlefield areas. Image Understanding 
(lU) technologies will be developed to: 1) coor- 
dinate multiple sensors to seamlessly track mov- 
ing targets over an extended area, 2) actively 
control sensor and platform parameters to track 
multiple moving targets, 3) integrate multi- 
sensor output with collateral data to maintain 
an evolving, scene-level representation of all tar- 
gets and platforms, and 4) monitor the scene for 
unusual "trigger" events and activities. These 
technologies will be integrated into an experi- 
mental testbed to support evaluation, data col- 
lection, and demonstration of other VSAM tech- 
nologies developed within the DARPA lU com- 
munity. 

1    Introduction 

The recent growth in diverse imaging sensors 
and deployment platforms opens exciting new 
possibilities for Video Surveillance and Moni- 
toring (VSAM) systems that provide continu- 
ous battlefield awareness. Future military sce- 
narios will involve multiple sensors mounted on 
maneuverable ground and air vehicles cooperat- 

ing with stationary ground sensors to monitor 
large battlefield areas for enemy troop move- 
ments (Figure 1). 

Air Surveillance Vehicles 

Stationary Ground 

#-* 

•This work is funded under DARPA BAA 96-14. 

Figure 1: Multiple sensors cooperate to pro- 
vide broad battlefield coverage. 

Carnegie Mellon University (CMU) and the 
David Sarnoff Research Center (Sarnoff) have 
begun an integrated feasibility demonstration 
(IFD) to develop image understanding (lU) 
technologies to support this cooperative, multi- 
sensor, battlefield VSAM scenario. This report 
describes the overall objectives of the CMU- 
Sarnoff VSAM IFD project, their relevance to 
battlefield situational awareness, the key scien- 
tific and technology challenges to be addressed, 
and plans for the development, demonstration, 
and evaluation of the new VSAM technologies. 

2    Objectives and Military Relevance 

The major object of the CMU-Sarnoff IFD team 
is to develop a suite of VSAM technologies that 
enable a single human operator at a worksta- 



tion to supervise a network of remote VSAM 
platforms (stationary, moving on the ground, 
or airborne), having multiple, steerable sen- 
sors. Platform surveillance operations will be 
mainly autonomous, notifying the operator only 
of salient information as it occurs, and engaging 
the operator minimally to alter platform oper- 
ations. The network of sensors will cooperate 
to perform broad-area monitoring and contin- 
uous target tracking over large areas that can 
not be viewed continuously by a single sensor 
alone. The IFD team will integrate this technol- 
ogy suite into an experimental testbed system 
that will additionally support evaluation, data 
collection, and demonstration of other VSAM 
technologies developed within the DARPA lU 
community. 

Cooperative multi-sensor surveillance will sig- 
nificantly enhance battlefield awareness, by pro- 
viding the commander with complete and con- 
tinuous coverage of troop movements and tar- 
get activities within a broad area. Examples of 
military scenarios that can use the VSAM tech- 
nologies include: 

• perimeter monitoring, in which a continu- 
ous watch is maintained over a familiar fa- 
cility such as a warehouse, a military base, 
or a sensitive building. The major objec- 
tives of the monitoring task are to be alert 
to potential incursions by enemy troops or 
other suspicious activity, 

• forward observer, in which ground and air- 
based surveillance vehicles are sent ahead 
of the troops to determine potential haz- 
ards for intended troop movements, 

• border patrol, in which border areas 
are monitored for potential drug and/or 
weapon trafficking, 

• point reconnaissance of a location such as a 
bridge, weapon storage site, an entry gate, 
or a suspected terrorist hangout for unusual 
movements and loitering by people or vehi- 
cles, and 

• cantonnement facility monitoring, in which 
video observations of a weapons canton- 
nement facility collected over multiple days 
are analyzed to detect potential weapon 
movements. 

The prototype testbed system that will be de- 
veloped by the CMU-Sarnoff team will facilitate 
growth in the area of VSAM lU by supporting 
development and evaluation of component tech- 
nologies. Potential military users will be able to 
observe field demonstrations, guide the selection 
of problems, and provide feedback on the utility 
of the developed components. In the optional 
out-years of the program, an integrated system 
will be delivered for testing and evaluation by 
military users, enabling the transfer of VSAM 
technologies to the DOD community. 

In addition to the military applications men- 
tioned above, this effort will also spur technol- 
ogy transfer to commercial applications, such 
as building and parking lot security, warehouse 
guard duty, and monitoring restricted access 
areas in airports. Combined ground and air 
surveillance capabilities also have promising ap- 
plications in civilian law-enforcement opera- 
tions. 

3    Scientific and Technical Challenges 

The major scientific and technical challenges of 
the CMU-Sarnoff VSAM approach are to: 1) 
coordinate multiple sensors to seamlessly track 
moving targets over an extended area in a vi- 
sually complex environment, 2) actively control 
sensor and platform parameters to track multi- 
ple moving targets, 3) provide scene-level repre- 
sentations of targets and their environment by 
integrating evolving visual, geometric, and sym- 
bolic sensor observations together with collat- 
eral scene data, and 4) monitor the scene for un- 
usual "trigger" events and activities that should 
cue further processing or operator involvement. 
This section outlines the technical challenges 
that IFD research must address in order to meet 
the above objectives. 

3.1     Coordinating multiple sensors 

Central to the goal of the VSAM IFD program is 
real-time detection and tracking of targets over 
a wide area using multiple distributed sensors. 
To perform this task, the following technical ar- 
eas will be addressed. Note that all of the opera- 
tions described must be performed in real-time. 



Robust   target   detection   and   tracking: 
Targets must be detected and continuously fol- 
lowed as they move through a large cluttered 
area, even when they disappear behind occlud- 
ing surfaces and later reappear, or when they 
stop and later resume moving. Tracking must 
be maintained as the camera pans, tilts, and 
zooms in to obtain a closer look, and in the pres- 
ence of image motion containing 3D parallax in- 
duced by movement of the sensor platform. A 
combination of motion and appearance cues will 
be used to achieve robust target tracking. 

Continuous target following using mul- 
tiple distributed sensors: Targets must be 
continuously followed as they move out of the 
field-of-view of one sensor into that of another. 
This requires establishing the correspondence of 
the fields-of-views of the different cameras to 
achieve target "hand-off". It also requires ap- 
pearance matching of the target as seen by sen- 
sors with significantly different viewpoints. 

Cooperative ground-and-air surveillance: 
Targets detected in airborne views can be used 
to cue local ground sensors, and vice versa. This 
requires geo-registering airborne views with a 
set of ground-based views. In order to achieve 
the geolocation accuracy required for air-to- 
ground (or ground-to-air) hand-off, visual pose 
refinement using cultural landmarks and terrain 
features will be performed to refine initial pose 
estimates based on platform ephemeris data. 

3.2    Active sensor control 

Active camera control will be performed to max- 
imize system performance and maintain target 
pursuit over large areas. This involves con- 
trolling sensing parameters (e.g. view direction, 
zoom, panning speed, vergence angles), pro- 
cessing resources (resolution, focus of attention, 
load balance), and mobile sensor deployment. 

Sensor planning and control: Sensor hand- 
off for cooperative, multi-sensor surveillance 
will be achieved using standard visibility and 
occlusion analysis. This requires using collat- 
eral terrain maps and 3D site models containing 
man-made features to perform visibility analysis 
from each sensor position, to determine, based 

on current estimates of target trajectory, which 
sensor will have the closest, unoccluded view. 
This work will also involve task-based planning 
of new camera views, while imposing physical 
constraints on sensor platform mobility. 

Multi-tasking for multiple target track- 
ing: Occassionally, a single camera resource 
must be used to track multiple moving objects, 
not all of which fit within a single field of view. 
This problem will be addressed by introduc- 
ing sensor multi-tasking, meaning that the cam- 
era field of view will be periodically switched 
between two (or more) targets that are being 
monitored. This requires continuously locat- 
ing and updating the target positions within 
a panoramic reference mosaic image or a map, 
and using a combination of visual and inertial 
information to perform the scans. 

3.3    Scene-level representation 

An important component of the VSAM testbed 
is an interface that allows the human operator 
to visualize all available scene information, and 
to control the sensor suite to achieve mission 
objectives. To do this, information from mul- 
tiple sensors will be integrated with collateral 
site information to provide an evolving scene- 
level representation (Figure 2). 

Multi-sensor information integration: In- 
formation in the form of estimated target lo- 
cations and appearances will be gathered from 
many difference sensors, possibly of different 
sensing modalities, and redundant data must be 
correlated and merged. This will be handled by 
transforming all target and platform locations 
and trajectories into a georeferenced coordinate 
system, either by locating them with respect to 
calibrated reference imagery, or solving for 3D 
position directly using known constraints such 
as terrain elevation. 

Dynamic scene visualization: Comprehend- 
ing a vast flow of incoming information from 
multiple sensors, regarding multiple targets, is 
a challenging task for any human operator. To 
make the task easier, a comprehensive, graph- 
ical visualization of the dynamic scene will be 
presented to the user that combines elements of 
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Figure 2: Components of an evolving, dynamic, scene-level representation. 

visual sensor imagery, prior geometric models of 
the scene and targets, other collateral informa- 
tion such as maps, and symbolic depictions of 
activities of interest. 

Collateral data integration and update: 
Prior collateral information about the scene will 
be maintained in the form of annotated maps, 
digital elevation models, reference imagery (e.g. 
satellite photos) and symbolic 3D site models. 
These will all be tied to the common geospatial 
scene coordinate frame. Incoming imagery will 
be used to not only update the positions of dy- 
namic targets in the evolving scene model, but 
also to refine these prior models based on close- 
range views from the deployed sensor platforms. 

3.4    Activity Monitoring 

By broadening the scope of VSAM technol- 
ogy beyond simple 2D image-level tracking into 
dynamic, scene-level descriptions co-registered 
with 3D collateral data, the CMU-Sarnoff ap- 
proach will enable research into high-level ac- 
tivity and event monitoring. For example, the 
system could be tasked to monitor sensitive ar- 
eas for such "suspicious" activities as: 

• vehicles going the wrong way down a one- 
way street. 

• vehicles (or people) entering a restricted ac- 
cess area, 

• vehicles that repeatedly circle the block 
around a sensitive building, 

• people coming and going from the front 
door of a suspected drug hideout, 

• pedestrians who loiter in front of a building 
for a long time, 

• pedestrians trying to look over a fence, or 
peer through windows. 

Many of these tasks would be difficult, if not im- 
possible, to perform with 2D visual image data 
alone, but are enabled by having co-registered 
scene models to provide regions of interest and 
expected patterns of motion. 

4    The VSAM testbed 

The CMU-Sarnoff team is developing a testbed 
architecture that will support the design, evalu- 
ation, and demonstration of VSAM lU technolo- 
gies developed by the IFD team and the rest of 
the DARPA VSAM community. The testbed 
architecture consists of multiple sensor process- 
ing units (SPUs) in the field, communicating 
with an operator control unit (OCU) connected 
to an operator console (see Figure 3). The goal 
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Figure 3: The VSAM testbed architecture 

has been to design a testbed that is both rich 
enough (in terms of equipment and computa- 
tional power) and flexible enough (in terms of 
functionality) to support a wide range of VSAM 
research. 

Sensor processing units. 

Multiple sensor processing units (SPUs) are 
mounted in fixed locations on hills or rooftops to 
provide distributed coverage over a wide area. 
At least two sensors will be mounted on mobile 
platforms - one ground vehicle (NavLab), and 
one airborne vehicle (autonomous helicopter or 
chartered flight). 

The specification of what constitutes an SPU is 
intentionally left open-ended within the testbed 
architecture, in order to encompass a wide va- 
riety of sensor types such as monocular visible 
light and IR cameras, stereo heads, LADAR, 
and acoustic sensors. However, a typical SPU 
will consist of a color CCD camera with a 
motorized zoom lens, mounted on a control- 
lable pan-tilt head. An onboard controller (e.g. 
Pentium PC) is responsible for collecting and 
managing sensor data, communicating with the 
OCU and generating the appropriate signals to 
control sensor hardware. Sensors mounted on 
mobile platforms will have access to real-time 
video processing hardware (Sensar VFE) for 
frame-rate video stabilization, and to onboard 
pose sensors for providing estimates of SPU lo- 
cation and orientation. 

Operator Control Unit. 

The operator control unit (OCU) is responsible 

for integrating the results produced from mul- 
tiple sensors with a database of collateral scene 
information, in order to form and maintain an 
evolving, dynamic scene representation. The 
core of the OCU consists of two workstations 
(SGI and/or Sun), one dedicated primarily to 
the graphical user interface and the other han- 
dling information fusion and tasking control. 
Input from sensors in the field comes in via com- 
munication links ranging from radio ethernet 
and cell phone for discrete packets of symbolic 
information, to microwave links and coax ca- 
ble for higher-bandwidth transmission of video 
streams. A Sensar VFE real-time video pro- 
cessor controlled by a PC host is provided to 
stabilize video streams from sensors that don't 
have enough onboard processing power. A local 
area network (LAN) connects all components to 
each other, and to an external internet connec- 
tion, protected by a firewall. 

Graphical User Interface. 

One of the technical goals of the VSAM project 
is to demonstrate that a single human operator 
can effectively monitor a large battlefield area. 
Towards this end, the test system will have a 
graphical user interface for battlefied visualiza- 
tion and sensor suite tasking. Through the in- 
erface, the operator can task individual sensor 
units, as well as the entire testbed sensor suite, 
to perform surveillance operations such as gen- 
erating a quick summary of all target activities 
in the area. The operator may choose to see a 
map of the area, with all target and sensor plat- 
form locations overlaid on it. Alternatively, the 
operator may select a more immersive display 



(with a more limited field of view) by interacting 
with a texture-mapped 3D model of terrain and 
cultural features (buildings and roads), within 
which dynamically updated sensor and target 
locations are displayed (Figure 4). 

Figure 4: Sample user interface visualization. 

The user interface will minimize operator typ- 
ing by employing a graphical screen interface 
with "hot" areas that can be selected with a 
mouse or touch screen. For example, pointing 
to a sensor icon on the screen could bring up 
an overlay window showing the stabilized video 
output from that sensor viewpoint. 

5    Demonstration Plan 

Technology developed under the VSAM pro- 
gram will be demonstrated to the user commu- 
nity and the DARPA lU community through 
annual demonstrations. The Year 1 demon- 
strations will emphasize individual ground and 
air-based surveillance capabilities, whereas the 
Year 2 demonstration will emphasize combined 
ground and air surveillance. The Year 1 demon- 
strations are described in more detail below. 

5.1    The Bushy-Run Site 

The CMU "Bushy Run" site is a decommis- 
sioned chemical and nuclear research facility 
that sits on 140 acres of land in Penn town- 
ship, Westmoreland county (Figure 5). The 
site is currently unoccupied, and ideal for re- 
search experiments and realistic demonstrations 
of the VSAM IFD testbed system, using both 

ground-based and airborne sensors to coopera- 
tively track vehicles and people moving through 
an outdoor environment. 

Bushy Run is 30 minutes from the CMU cam- 
pus, and has expansive open spaces, tree lined 
fields with varying degrees of ground vegeta- 
tion, and two empty two-story buildings along 
paved roads. The buildings, roadways, and nat- 
ural terrain at the site, combined with the facil- 
ity's limited access to the public, make it an 
ideal location for controlled experiments and 
demonstrations involving moving object detec- 
tion and tracking, as well as for conducting po- 
tentially dangerous flight tests involving exper- 
imental aerial platforms without endangering 
human bystanders. 

Treeline 

Figure 5: The CMU Bushy Run demo site. 

5.2    Year 1 Demonstrations 

Two lU capabilities will be highlighted during 
the first year: cooperative ground-based surveil- 
lance, and multi-target tracking by an airborne 
sensor. Below is a brief description of the ob- 
jectives of each, coupled with tentative mili- 
tary scenarios that set the stage for the demon- 
strated lU capabilities. 

Cooperative Ground-Based Surveillance 

Consider a facility monitoring scenario, which 
involves continuous surveillance and monitoring 
of a military facility such as a base or warehouse 
complex. The site is assumed to be familiar, 
and detailed site-specific information (e.g.  site 
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models) are available. The site is also assumed 
to be too large to monitor with a single camera. 

Several ground-based stationary sensors are 
mounted throughout the facility, and along its 
perimeter. A central operator control unit al- 
lows security personnel to analyze information 
gathered by the sensors. The operator is alerted 
if vehicles or pedestrians attempt to breach the 
perimeter in a location other than a normal fa- 
cility entrance. The system also monitors for 
suspicious activity within the compound, pre- 
senting video clips of interesting events to the 
operator for review. The operator may des- 
ignate targets of interest, and the system au- 
tomatically tracks them through the course of 
their movements. The key lU capability to be 
demonstrated occurs as the system hands-off 
control from one stationary sensor to another, 
following the target as it enters and exits the 
fields-of-view of the different sensors. The goal 
is to maintain a continuous visual lock on the 
target, as it travels through the compound. 

Multi-Target Tracking by a Single Sensor 

Consider the need to provide instantaneous situ- 
ational awareness on the battlefield, where mul- 
tiple friendly and enemy forces are simultane- 
ously engaged over a large area. A single un- 
manned air vehicle (UAV) is deployed to circle 
the battlefield in order to send back timely in- 
formation on the locations of the combatants. 
The battlefield is too large to fit in a single field 
of view when the sensor is focussed at a reso- 
lution high enough to distinguish friendly from 
enemy forces. Nonetheless, it is desired to de- 
tect and track as many moving objects as pos- 
sible, given the limited resources available. 

To handle this situation, the UAV VSAM sys- 
tem is instructed to operate in multi-tasking 
mode, and the sensor begins to scan the scene. 
As the field of view passes each moving tar- 
get, it's location is noted with respect to a ref- 
erence mosaic in which pixel locations are di- 
rectly related to geographic coordinates (using 
known transformations calibrated previously). 
The sensor continously pans and tilts around 
the scene, noting new targets as they become 
visibile for the first time. After a quick scan 
to summarize the positions of moving objects 

in the scene, the positions of targets of interest 
are continuously updated by switching the sen- 
sor field of view between each of them in turn, 
using a combination of visual and inertial infor- 
mation to determine where to scan. When re- 
turning to update the position of an object, the 
search begins from its expected new location, 
given its last known position and trajectory. 

6    Evaluation Plan 

Key features of the IFD VSAM research pro- 
gram are 1) cooperative use of multiple sensors 
and 2) moving platforms to provide 3) broad 
area surveillance and 4) real-time tracking in 
5) cluttered and urban environments. We will 
evaluate the IFD testbed architecture and com- 
ponent lU technologies along several dimensions 
to measure system competence with respect to 
each of these features. 

False alarm rates for target detection and cue- 
ing will be measured with respect to a number 
of varying factors such as size and distance of 
the target from the sensor, speed and direction 
of target trajectory, amount of scene clutter, 
and number of targets that are simultaneously 
in view. The sensitivity of moving object detec- 
tion and tracking processes to ego-motion of the 
sensor platform will be evaluated for both pan- 
tilt systems and general vehicular (ground and 
air) motion. The effectiveness of multi-sensor 
VSAM integration will be measured by quan- 
tifying spatial and temporal discontinuity in- 
duced in perceived object trajectories as track- 
ing control is passed between adjacent sensors. 
We will experimentally determine how large an 
area can be reliably monitored by a given num- 
ber of fixed and moving sensor platforms, and 
how each sensor should be deployed to maxi- 
mize VSAM performance. The accuracy with 
which sensor occlusion can be predicted using 
static scene models and dynamic target models 
will also be addressed. 

The main use of multi-sensor integration in this 
system is to accurately localize targets within 
the 3D scene. Geolocations of observed tar- 
gets will be computed in a number of ways: 
by multi-image triangulation if the target is 



viewed simultaneously by multiple sensors, by 
range-from-size computations or backprojection 
of target center of mass onto a collateral ter- 
rain map if the target is viewed by a single 
sensor only, and by extrapolating from the last 
known trajectory if the target is currently oc- 
cluded from all sensor viewpoints. In each case, 
accuracy for the computed target location and 
trajectory will be evaluated by measuring the 
deviation between estimated and actual loca- 
tions of ground truth targets with respect to the 
number and configuration of sensor platforms. 

Beyond these systematic tests of system capa- 
bilities, the IFD testbed will also be exercised 
under a variety of weather conditions and at 
night (using infrared and laser ranging sensors) 
in order to assess how these environmental ele- 
ments and sensor modalities affect system per- 
formance. 

7    Conclusion 

Carnegie Mellon University and the David 
Sarnoff Research Center are developing a co- 
operative, multi-sensor video surveillance and 
monitoring system. Multiple sensors on station- 
ary and moving platforms will cooperate to con- 
tinuously track moving targets through large, 
cluttered environments. Extracted target and 
ephemeris data is collected at an operator con- 
trol station, and combined with prior collateral 
information to build and maintain an evolving, 
dynamic representation of the scene. A single 
human operator will be able to interact with 
this scene representation through a graphical 
user interface, allowing him or her to effectively 
task the multiple sensors and monitor targets 
over a large area. An experimental testbed sys- 
tem is being built to support evaluation and 
demonstration of these and other VSAM tech- 
nologies being developed within the DARPA lU 
community. 
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Abstract 
A major focus of Image Understanding (lU) re- 
search activity at tlie David Sarnoff Research 
Center is video processing for security, surveil- 
lance and monitoring. We have been developing 
vision technologies for surveillance video pro- 
cessing to enhance battlefield situational aware- 
ness, and for a number of Government and com- 
mercial vision-based security applications. Our 
work derives significantly on our strengths in 
real-time video processing, especially in the ar- 
eas of video stabilization and mosaicking, regis- 
tration of video sequences to geocalibrated ref- 
erence imagery, moving target and intruder de- 
tection, multi-sensor image ahgnment, multi- 
sensor image fusion, stereo vision, and active 
multi-resolution pattern recognition and loca- 
tion. This report provides an overview of our 
research activities in these and other related ar- 
eas of Image Understanding over the past year. 

1    Introduction 

The Image Understanding Research (lU) activ- 
ity at the David Sarnoff Research Center fo- 
cuses on developing fundamental solutions to 
real-world applications. We have been develop- 

*The work described here was supported in part by 
DARPA/ISO under contract No. DAAA15-93-C-0061, 
the National Information Display Laboratory, US Army 
Physical Security Equipment Management Office under 
contract no. DAAK 70-93-C-0066, DARPA/ETO under 
contract No.DABT63-95-C-0057, NASA Ames Research 
Center under contract no. NAS2-14301, Sensar Inc., NJ., 
and PEEK Transyt, Fl. 

ing theory, algorithms, and systems in the area 
of image and video processing. A major com- 
ponent of our lU research focuses on vision for 
security, surveillance and monitoring. These in- 
clude military applications, particularly aimed 
at video processing to enhance the battlefield 
situational awareness of the war-fighter, as well 
as Government and commercial vision-based se- 
curity applications. 

In the area of surveillance video processing, 
our core technical components include real-time 
video mosaicking, developing compact repre- 
sentations of the spatial and temporal compo- 
nents of surveillance video information, using 
these compact representations for efficient video 
indexing, registering the video sequences and 
mosaics to calibrated reference imagery, multi- 
sensor image alignment and fusion Sarnoff's 
work in the area of security includes vision 
for physical security (e.g., intruder detection in 
outdoor warehouse environments), and vision- 
based acquisition and verification of human iris 
images. 

Recently a number of other applications have 
emerged as off-shoots of Sarnoff's work in the 
area of video mosaicking. A particular applica- 
tion with significant commercial potential is a 
technology called "Video Brush" which enables 
fast mosaic construction on a PC from video 
acquired by a hand-held camera. 

In addition to these aforementioned areas, 
Sarnoff has also developed and fielded commer- 
cial vision systems for monitoring highway traf- 
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fie and for traffic signal control. Finally, we 
have also been conducting basic research in the 
area of physics based modeling and analysis of 
fluid flow. This work is aimed at the measure- 
ment of flow in a variety of real world fluidic 
devices, especially, fluidic micro-electrical me- 
chanical systems (MEMS). Last but not least, 
Sarnoff has also continued the development of 
advanced architectures and hardware systems 
for video processing for all of the types of appli- 
cations described above. 

2    Video Processing for Battlefield 
Situational Awareness 

The ease and flexibility of video collection has 
resulted in the emergence of video as an im- 
portant source of data for providing battle- 
field situational awareness. Cameras mounted 
on airborne platforms, such as the Predator 
Unmanned Aerial Vehicle or the manned P3 
aircrafts are routinely collecting video data 
over important regions of the world, including 
Bosnia and Zaire. While the video data col- 
lected by these platforms contains a wealth of 
timely information, it is poorly calibrated, and 
is hard to use for analytic purposes. Important 
and interesting data is often buried within the 
video, hidden among vast amount of irrelevant 
data. The standard sequential methods of orga- 
nizing the data, and the standard movie mode 
of visualization are inadequate for the timely 
access and processing of that information. 

Sarnoff has been developing a comprehensive so- 
lution to the problem of video processing for 
battlefield situational awareness. Our approach 
is based on transforming video sequence from 
"frames" to "scenes" using what we refer to as 
a "Mosaic-based Video Representation" [Irani 
et al, 1996]. Such a representation is con- 
structed by aligning the frames of the sequence 
to each other and creating a panoramic view of 
the static scene, and separating moving objects 
from the background and representing them as 
visual events. The individual source frames and 
the mosaics are registered to calibrated refer- 
ence imagery in order to fuse the video with 
other types of geospatial data. The mosaics and 
the video clips are organized according to time. 

date, and geolocation. Various modes of access 
and visualization of the data are provided. Be- 
low we briefly review some of the major steps 
in processing the video. 

2.1 Real-time Mosaic Construction 

Sarnoff has previously demonstrated the capa- 
bility for real-time mosaicking of surveillance 
video using a real-time image processing hard- 
ware system called the Vision Front End (VFE- 
100) processor. This was developed in part un- 
der its previous DARPA contract, as part of the 
DARPA UGV Demo II project. [Hansen et al., 
1996]. More recently, we have developed a real- 
time mosaicking system called the Video Ex- 
ploitation Workstation Software (VIEWS), un- 
der the sponsorship of the National Information 
Display Laboratory (NIDL). VIEWS consists of 
a VFE-100 system connected to a Sun Sparc- 
station. The VFE hardware system performs 
real-time frame-to-frame alignment at about 8- 
10 frames/sec. The digital imagery and the 
alignment parameters are transmitted to the 
Sun host, which is used to build and store the 
mosaic image files. A Graphical User Interface 
(GUI) on the host allows the user to control the 
alignment and mosaic construction process. 

The VIEWS system is currently being used at a 
number of military locations in Europe in con- 
nection with the ongoing US military opera- 
tions in Bosnia. These systems routinely pro- 
cess video acquired by the Predator UAV. In 
addition, one system is deployed in Zaire, and 
processes video acquired by sensors mounted on 
a manned P3 aircraft. 

2.2 Mosaic-based Video 
Representation 

Once the frames are aligned to each other (as 
in the VIEWS system) the video data is di- 
vided into (1) a panoramic mosaic that captures 
the background scene, (2) the geometric trans- 
formation that relates each frame to the mo- 
saic coordinate system, and (3) residual infor- 
mation that captures moving objects and other 
changes. This representations provides revolu- 
tionary ways of accessing frames inside a video: 
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Figure 1: Mosaic-based Video Representation 

by pointing to a desired location or a desired ob- 
ject, tlie relevant video segment can be selected. 
Other indices such as color/texture features and 
motion information allow indexing based on ap- 
pearance of scenes in the imagery and simple 
image events. A graphical illustration of this ap- 
proach for representing video surveillance data 
is provided in Figure 1. The details of the con- 
struction of the mosaic-based video representa- 
tion are described in [Irani et al, 1996]. Fig- 
ure 2 provides an example of such a representa- 
tion applied to a real video sequence obtained 
from the Predator UAV. 

2.3    Video Georegistration 

Video acquired by surveillance platforms such 
as the Predator UAV, is typically poorly cal- 
ibrated. Although GPS and inertial data can 
be used to derive an approximate "footprint" of 
the video frames on the ground, their errors can 
range up to several 100s of meters. In the case 
of the high resolution sensors (e.g., 1 m/pixel), 
this translates into misalignment of hundreds of 
pixels. 

We have been developing techniques for auto- 
matically registering video and mosaics to cal- 
ibrated reference imagery (e.g., orthophotos), 
together with 3D terrain elevation data. This 
work was done, in part, under the sponsorship 
of the National Information Display Laboratory 
(NIDL). The georegistration technique is de- 

scribed in greater detail in [Kumar et ai, 1997]. 
We are currently developing a real-time sys- 
tem for performing georegistration and updat- 
ing a geospatial database using the registered 
imagery. 

There are two important reasons to attempt to 
geolocate the video data to greater degree of 
accuracy. The first is precision targeting, espe- 
cially of moving ground targets. The second is 
in order to update geospatial databases, which 
are used a variety of applications such as mis- 
sion planning, flight mission pre-rehearsal, and 
target identification and annotation. A typi- 
cal example of this latter type of usage arises 
in the case of mission pre-rehearsal. Currently, 
the pilots use archival National imagery and as- 
sociated 3D terrain elevation data to generate 
synthetic fly-throughs. However, these imagery 
while being geographically accurate are dated; 
the image information often do not correspond 
to the current scene details (e.g., due to seasonal 
differences, changes in the environmental con- 
ditions, and changes in cultural features). Geo- 
registered video offers an ideal alternative for 
these applications. 

2.4    Multi-sensor image alignment 
and fusion 

In order enhance target detection, especially un- 
der conditions of poor visibility (e.g, at night), 
most surveillance platform contain multiple sen- 
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Figure 2: An example of mosaic-based video representation. Sample frames from the 
input video sequence are shown surrounding the synopsis mosaic constructed from 
that sequence, which is shown in the middle. Visual and symbolic depictions of 
the trajectories of an airplane and three parachutes are also shown on the mosaic 

image. 
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sors of different sensor modalities. The full ex- 
ploitation of the information provided by such a 
sensor suite requires aligning these multi-sensor 
images. Also, often these sensors capture com- 
plimentary types of visual information. A single 
fused display of the visual imagery is useful to 
provide a human operator with a clear and im- 
mediate sense of the observed data. 

Under a NASA sponsored project, Sarnoff has 
developed a technique for registering multi- 
sensor images that performs global parametric 
alignment using a locally invariant match mea- 
sure. Our approach is based on the observation 
that the physical structure of the scene gives 
rise to correlated information in the images, but 
such information is only locally correlated. Also, 
in order to recover large displacements between 
the two images, the overall estimation process 
is couched within a coarse-to-fine refinement 
strategy using multi-resolution image informa- 
tion. However, in order to capture the distri- 
bution of the physical structures over various 
spatial scales, a special type of multi-resolution 
representation known as the integrated feature 
pyramid is used instead of the standard pyra- 
mid representations, such as Gaussian or Lapla- 
cian pyramids and other wavelet based repre- 
sentations. This work is described in [Irani and 
Anandan, 1997]. 

Sarnoff has also made a significant advance 
in its fusion algorithms, under the same 
NASA project. Sarnoff had previously intro- 
duced a technique called "pattern selective im- 
age fusion" that is implemented using pyra- 
mid/wavelet image transform. This has proven 
effective in a remarkable range of applications, 
from combining IR and visible surveillance im- 
agery to combining CT and MR medical im- 
agery. Sarnoff built real time hardware to per- 
form image alignment and fusion several years 
ago. During the past year Sarnoff undertook 
a detailed analysis of sampling and aliasing in 
pyramid/wavelet transforms. This has led to 
important advances in multiresolution analysis 
that both improve and simplify the fusion algo- 
rithms. These advances should improved per- 
formance of many other pyramid/wavelet based 
image processing functions as well, such as mo- 
tion detection and stereo. 

3    Vision for Security Applications 

Sarnoff's work in the area of security focuses 
both on Government applications and Com- 
mercial security applications. Our Government 
sponsored work is aimed towards physical secu- 
rity, whereas the commercial application focuses 
on non-intrusive human iris acquisition and ver- 
iiication. 

As part of the Exterior Mobile Assessment, De- 
tection and Response System (MDARS-E) pro- 
gram sponsored by the US Army Physical Secu- 
rity Equipment Management Office, Sarnoff has 
developed a system for the real-time detection 
of intruders a a large outdoor storage facility. 
Our approach is based on making a comparison 
of the "current" visual image of the scene with a 
previously stored "reference" image containing 
only the background scene. Irrelevant changes 
due to noise, image misalignments, brightness 
changes, wind-blow clouds and vegetation are 
eliminated using a variety of spatio-temporal 
image analysis techniques. In order to be adap- 
tive to slowly varying daylight, weather, and 
illumination conditions, the reference image is 
continually updated. The result is a system that 
achieves high probability of detection of targets 
such as vehicles, humans, and animals, while 
maintaining a low false-alarm rate. 

Sarnoff's work on iris acquisition and verifica- 
tion was developed under the sponsorship of 
Sensar, Inc. This system uses active vision tech- 
niques for the acquisition of the iris images. The 
user simply stands in front of the system, an im- 
age of their iris is acquired, and their identity is 
verified or refuted. The user is not required to 
make physical contact with the system or to as- 
sume any particular pose except that he stand 
with his head within a designated calibrated 
volume. This system consists of a stereo pair 
of wide field-of-view cameras (WFOV), a nar- 
row field-of-view camera (NFOV), and a pan- 
tilt mirror allowing the NFOV to be moved rel- 
ative to the WFOV (see Figure 3. Stereo anal- 
ysis of the WFOV camera images is used to de- 
tect locate the person's head within the 3D cal- 
ibrated volume, and template methods are used 
to precisely locate the right eye. This informa- 
tion is fed to the NFOV camera system, which is 
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Figure 3:   The overall configuration of the 
IRIS recognition system. 

actively controlled to obtain a close-up view of 
the eye, and the high resolution image obtained 
by that camera is fed to Daugman's IRISCAN 
system [Daugman, 1993] to verify or refute the 
identity of the user. An typical example of an 
input image captured by the WFOV camera is 
shown in Figure 4. A typical example of the 
output provided by the NFOV camera after lo- 
calizing the eye is shown in Figure 5. For a 
detailed description of this work, see [Hanna et 

al, 1996]. 

Figure 4: Iris system input. A typical ex- 
ample of the input image to the sys- 
tem captured by the WFOV camera. 
The inset in the upper right corner 
shows at reduced resolution the area 
selected by the head-finding stereo 
system. 

4    Other Ongoing lU Activity 

This section briefly summarizes several other 
components of Sarnoff's lU research, besides the 
security, surveillance, and monitoring activities 
that were described above. 

Panoramic    Mosaics   with   VideoBrush: 
As an offshoot of our work on image align- 
ment and video mosaicking, we have developed 
a system called the "VideoBrush", which allows 
fast mosaicking on a PC without any special 
purposed hardware. This system uses an idea 
called "Manifold Projection", which refers to 
the sweeping of the scene using a one dimen- 
sional sensor array. The key steps in this pro- 
cess are 2D frame-to-frame alignment to com- 
pensate for image plane translations and ro- 
tations, cutting and assembling central strips 

Figure 5:    Iris system NFOV output.    A 
typical example of the output image 
provided by the NFOV system after 

localizing the eye. 
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from the aligned images to form a mosaic image, 
and blending using a multi-resolution spline ap- 
proach to remove seams. This system is imple- 
mented on a Pentium PC platform and can be 
used to make color mosaic images using a hand- 
held camera. A convenient interface allows the 
user to preview the mosaicking process in real- 
time as the hand-held camera is used to scan 
the scene, and then to construct a color mosaic 
image within a few minutes. More details on 
this work can be found in [Peleg and Herman, 
1997]. 

In order to allow the greatest flexibility in the 
use of our registration techniques, we make no 
assumptions about the camera lenses or camera 
calibration. Often the camera focal length, and 
the image center may be unknown, and the cam- 
era lens will often introduce spatial distortions 
to the image. When multiple images are aligned 
to form a single mosaic, it is also desirable to vi- 
sualize the mosaic in a coordinate system which 
is free of distortion. This means that the refer- 
ence coordinate system must be different from 
that of any of the input images. To meet these 
requirements, we have developed a registration 
technique which automatically corrects for lens 
distortion and automatically selects a reference 
coordinate system for the mosaic, which is free 
of distortions. This work is described in greater 
detail in [Sawhney and Kumar, 1997]. 

Traffic Monitoring: Under the sponsorship 
of PEEK Transyt, Sarnoff has been develop- 
ing a system called the PVS traffic monitoring 
system for use on highways and at road inter- 
sections. The highway apphcation involves col- 
lecting vehicle statistics such as number of cars 
per a given time, and the distances between the 
cars. The intersection application involves de- 
tecting the presence of vehicles at a traffic inter- 
section in order to control the operation of the 
signal lights. Both systems operate in real-time 
(30Hz), with the ability to multi-task between 
upto 4 cameras. The system consists of three 
double-sided 3U VME boards and is compact 
enough for field operation, and can be manu- 
factured at minimal cost. The PVS system op- 
erates by maintaining an evolving reference im- 

age of the scene as it would appear if no vehicles 
were present, and by comparing incoming image 
frames to the reference frames in order to detect 
vehicle presence. Details of the system can be 
found in [Wixson, 1996]. Over 200 systems have 
been fielded to date in various parts of the US 
and in Europe. 

Physics based modeling of fluid flow: Un- 
der the sponsorship of DARPA/ETO, Sarnoff 
has been addressing the problem of recovering 
quantitative measurements of fluid flow from 
corresponding image sequences. Sarnoff's work 
is aimed at augmenting the arsenal of tools that 
are available for the measurement of flow in ex- 
perimental fluid mechanics using visual analysis 
of the motion of tracer particles. We are par- 
ticularly motivated by applications in microflu- 
idics; however, the methods that we have de- 
veloped are equally applicable to macroscopic 
flows. Based on physical principles derived from 
fluid mechanics, we have developed a novel mo- 
tion recovery algorithm. This has led to two 
classes of constraints on imaged flows. The first 
class of constraints are differential constraints 
that arise from conservation principles (e.g., 
conservation of mass, conservation of momen- 
tum) as applied to fluid mechanics. The sec- 
ond class of constraints come about as boundary 
conditions on the permissible flows. These con- 
straints have been further bolstered by consider- 
ation of smoothness constraints on the flow that 
serve to ameliorate the effects of noise. These 
constraints are combined using a calculus-of- 
variations formulation to yield a pair of partial 
differential equations that relate measurements 
of image intensity to flow field components. A 
numerical solution has been derived via dis- 
cretization; a corresponding algorithm has been 
instantiated in software. This implementation 
has been evaluated using synthetic and natu- 
ral image sequences that depict fluid flow. For 
the synthetic imagery as well as natural im- 
agery where the expected flow can be predicted 
analytically, the recovered flow has shown very 
small root mean square error. Currently, we are 
applying the algorithm to the measurement of 
flow in a variety of real world fluidic devices, es- 
pecially, fluidic micro-electrical mechanical sys- 
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tems (MEMS). This work is described in greater 
detail in [Wildes et ai, 1997], which is also pub- 
lished in these proceedings. 

Real-time Hardware: A significant compo- 
nent of Sarnoff's vision research program has 
been in the development of advanced architec- 
tures and hardware for real time vision ap- 
plications. Sarnoff has developed a sequence 
of processing chips and platforms for research 
and commercial products. Over the past year, 
Sarnoff has completed a second generation pyra- 
mid image processing chip that runs at 60 MHz, 
and has completed commercial processing mod- 
ules for traffic monitoring and iris recognition. 
Sarnoff's current development is focused on the 
VFE 200 (vision front end) system, to be com- 
pleted in mid 1997. This development is sup- 
ported by the Army MDARS program and will 
result in a highly modular and flexible family 
of processing boards designed to support real 
time autonomous driving and surveillance ap- 
plications. 

5    Conclusion 

During the past year Sarnoff has continued its 
advanced research and development of lU tech- 
nologies. A major focus of effort has been vision 
technologies for security, surveillance, and mon- 
itoring. In addition, we have also continued our 
work in other areas of Image Understanding. 
This report provided an overview of Sarnoff's 
lU activities during the past year. 
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Abstract 

This report describes research on visual 
surveillance of human and vehicular activ- 
ity in urban battlefield sites to be con- 
ducted under the VSAM component of 
DARPA's Image Understanding Program. 
We first give a brief introduction to our 
research program, emphasizing its goals, 
technical approaches and relevance to bat- 
tlefield awareness, and then illustrate the 
approaches we are pursuing through three 
examples. The first involves a low-level 
detection and tracking system that can, 
in real time, track people and their parts 
through video imagery; the second is a 
high-level system for recognition of multi- 
person actions and goal-directed control of 
low- and intermediate-level vision compo- 
nents; and the third is a real-time image 
stabilization algorithm to support surveil- 
lance from a moving platform. 

1    Introduction 

We are exploring fundamental research problems re- 
lated to the analysis of visual (monochromatic video 
and IR) sensory sources for visual surveillance of hu- 
man and vehicular activity in urban areas for mili- 
tary or law enforcement purposes. 

Our vision of an autonomous urban battlefield 
surveillance system, illustrated in Figure 1, involves 
a distributed suite of heterogeneous and relocat- 
able sensors—in our proposed research, infrared and 
video cameras—monitoring a large geographic area, 
in the context of a site model, for the entrances, ex- 
its, and activities of people and vehicles.   The site 

This project wiU be supported by the Defense Ad- 
vanced Research Projects Agency  (ARPA Order No. 
E653) and the U.S. Army Research Laboratory. For fur- 
ther information see 
http://www.umiacs.umd.edu/users/lsd/vsam.html. 

Surveillance System Structure 

High level control system 

Reasoning about observability 
Site model control of surveillance 
Communication with human operatoi 

Wide area surveillance 

site-model based siubilizaiton 
site-model based detection of people 
site-model based detectionof vehicles 

Narrow area surveillance 

entering/exiting actions 
suspicious activity of individuals 
people carrying objecLs 
people exchanging objects 

Cotor video        IR 

Figure 1: Organization of surveillance system 

model contains knowledge used by the surveillance 
system to focus its attention and constrain its image 
analysis to detect people, vehicles and their interac- 
tions. The site model could include representations 
for buildings, roadways and structures such as lamp- 
posts which might occlude actions being observed 
from different vantage points. Scarce human oper- 
ators must monitor the outputs of the surveillance 
system, under constraints of limited bandwidth and 
possibly severe psychological pressure. 

We specifically envision a surveillance system for 
monitoring the urban battlefield, where the move- 
ments and actions of even a small number of indi- 
viduals and a small amount of equipment can lead 
to a great loss of life, and in which one must rely on 
incomplete and qualitative site modeling to control 
and focus perception systems. It is critical that such 
battlefields be monitored for snipers, introduction of 
offensive weapons such as hand-held missile systems, 
formation of crowds that might lead to riots, move- 
ments of transport vehicles, etc. 

It is the responsibility of the surveillance system to 
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Figure 2: IR handshaking sequence 

screen the wide area being monitored, and to com- 
municate with a human expert when situations arise 
that demand his or her attention (say to allocate re- 
sources for additional surveillance, or to make deci- 
sions that would lead to military action). In order 
for the surveillance system to monitor an area of any 
significant geographic extent, it must employ a suite 
of sensor platforms which, generally, must be relo- 
catable to bring more surveillance power to bear on 
potentially interesting situations or simply to pro- 
vide adequate coverage of a large surveillance site. 
However, to control the cost and complexity of the 
surveillance system, the number of sensor platforms 
must be limited. This suggests that the surveillance 
system should employ multiple levels of analysis of 
the area. In our project we consider two levels—a 
coarse level (wide-area surveillance) in which a sig- 
nificant portion of the area is monitored at low res- 
olution, and a fine level (narrow area surveillance) 
in which a much smaller area is monitored either at 
much higher resolution, or with much more detailed 
analysis of and reasoning about the movements and 
actions of people and vehicles. 

"Wide-area" surveillance employs sensors with large 
fields of view to detect potential activities of in- 
terest, invoking "narrow-angle" surveillance subsys- 
tems that perform more detailed analyses of hu- 
man and vehicle motion to recognize specific activi- 
ties requiring operator intervention. Wide-area site 
surveillance detects, in real time, when vehicles and 
people enter the surveillance area, and must track 
their motions while in the surveillance area. Figure 
2 shows three frames of an IR sequence in which two 
people approach one another and shake hands. The 
results of a segmentation-based motion detection al- 
gorithm is outlined on the original IR imagery. This 
algorithm, which can process up to 15 frames per 
second of IR imagery on a dual processor Pentium, 
is discussed in Section 2. 

Narrow-area surveillance will be focused on 
person-vehicle interactions (people entering/ 
leaving   vehicles,   placing  objects   under   vehicles) 

and person-object-person interactions (picking up, 
putting down, carrying and exchanging of objects). 
Figure 3 shows several frames in a video sequence in 
which one person approaches a second, takes an ob- 
ject away from the second person, and then runs off, 
an example of a "mugging" action. In Section 3 we 
explain how this type of action can be recognized 
by a high-level system that maintains and applies 
temporal activity models to video sequences. 

Since, in many real surveillance scenarios, relocat- 
able sensors must be moved to obtain adequate site 
coverage, our research will also consider problems 
related to the analysis and integration of visual in- 
formation from a moving sensor. In particular, we 
will develop new algorithms for image stabilization 
using 3-D site model information, and for detection 
of independently moving people and objects using 
site-model-based video data processing. Section 4 
reviews some of our prior work on real-time algo- 
rithms for image stabilization and discusses our re- 
search plans on 3-D site-model-based image stabi- 

lization. 

2     Detection and tracking of humans 
and vehicles 

Here, we briefly discuss preliminary results obtained 
on the development of real-time algorithms for de- 
tecting and tracking of moving objects, specifically 
people and vehicles, from a stationary sensor. A 
variety of algorithms have been developed recently 
for detecting people (and their parts) and tracking 
them through time. For example, the Pfinder sys- 
tem [1] from M.I.T.'s Media Laboratory uses color 
stereo cameras to track a person's head and hands 
in real time. Other systems - for example, [9] and 
[16] - also employ color, adapting prior models for 
human skin to detect and track faces in real time. 

In outdoor and low-light conditions, these strong 
color cues will not be available to support detection 
and tracking. Instead, cues based on how objects 
move, where they occur in the context of available 
site information, and their shapes and sizes will have 
to be employed for both detection and tracking. Ad- 
ditionally, in outdoor environments there are many 
other sources of "nuisance" motion, including small- 
magnitude motions due to vegetation and the pres- 
ence of small ground and air animals whose appear- 
ances and motions are probably not known to the 
vision system. 

A common approach to moving object detection in- 
volves a combination of background subtraction, im- 
age morphology to remove isolated noise detections 
and connect the inevitable fragments of objects pro- 
duced by the pixel-based detection decisions, and 
then (optionally) feature extraction applied to the 
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Figure 3: Four key frames in the recognition of a "mugging" action 

connected components of the resulting binary image. 
A good example of such a system is [6]. A poten- 
tial drawback of applying this approach to outdoor 
and low-light scenes is that the morphology pro- 
duces highly inaccurate representations of the mov- 
ing objects - one must ordinarily employ several di- 
lation steps to connect the fragments created by the 
noise-reducing erosion and the unreliable pixel-based 
background subtraction. 

As an alternative, we have been studying the use 
of a segmentation-based approach to moving object 
detection. The basic steps involved are: 

1. Creation of a background model, similar to 
the method employed in the Pfinder system, 
in which we associate a gray-scale distribution 
with each image pixel based on several seconds 
of observations. Robust estimation of this dis- 
tribution allows us to overcome the effects of 
moving objects in the scene. 

2. Pixel-based background subtraction, followed 
by morphological operations to remove small 
noise components. 

3. Regions containing the foreground components 
are then segmented using a hierarchical segmen- 
tation algorithm, described in [11]. A segment 
is assigned to the foreground if a sufficient per- 
centage of its area is composed of foreground 
pixels from the preceding step. 

Basing the detection of foreground objects on the 
segmentation results in more accurate delineation of 

moving objects; more importantly, the hierarchical 
graph structure describing the connected sets of fore- 
ground regions can be employed to track the fore- 
ground objects. 

This algorithm has been implemented on a dual- 
processor Pentium PC and can process up to 15 
frames per second (each frame containing approx- 
imately 160 X 120 pixels) of either IR imagery or 
subsampled monochromatic video. 

3     Action recognition 

Most prior research on recognition of human actions 
has focused on gestures and other stylized actions, 
for which techniques such as hidden Markov mod- 
els are appropriate. Examples include reading ASL 
(Starner and Pentland [15]), and our own work on 
head gesture recognition (Morimoto, Yacoob and 
Davis [8]). Researchers have also attempted to take 
advantage of the periodicity of continuous human 
motions like walking, running, etc. to recognize 
them, either from preferred viewing directions, as 
in Rohr [12], or from general perspectives using in- 
variant signatures (Seitz and Dyer [13]). Campbell 
and Bobick [2] use phase space techniques (related 
to work in [14]) to recognize dance steps. 

Our research, in contrast, is focused on the repre- 
sentation and recognition of less stylized interactions 
among people and vehicles, and will make strong use 
of site knowledge to constrain and focus image anal- 
ysis algorithms. 

The system we are constructing builds on ideas de- 
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veloped in [3], [4], [5], and [10]. It uses logic pro- 
gramming to represent and apply temporal logic pro- 
grams to the analysis of surveillance video. The logic 
programs, through the use of a site model, control 
where and how to apply image analysis algorithms 
to detect and track people and vehicles. 

An example is provided in Figure 3. Here we show 
four frames from a 30-second sequence in which one 
person "mugs" another. A temporal logic program 
defines a mugging activity as one that includes three 
intervals, corresponding intuitively to the mugger 
overtaking the victim, coming into physical contact 
with the victim, and fleeing. The system knows that 
the action is taking place on a ground plane, roughly 
calibrated in the frame of the camera. The ground 
plane model is used to scale templates of the partic- 
ipants of the mugging (initialized when the partici- 
pants enter the field of view) as they move away from 
the camera, and also to estimate the 3-D velocities of 
the participants, and whether they are close enough 
in the world to allow physical contact. Sun angle 
information is used to predict rough shadow size for 
a person of nominal height, and also the direction 
in which the shadow is cast on the ground plane. 
Shadows can be (and in this example are) used to 
assist in the tracking of a person or a vehicle. The 
four frames in the Figure show the initialization of 
the tracking, and representative frames during the 
detected intervals of overtaking, contact and fleeing. 

4     Site-model based stabilization 

Image stabilization is the process of generating a 
compensated video sequence where unwanted mo- 
tion of the camera is removed from the original 
input. It can be used as a front-end system for 
many tasks that require dynamic image analysis, 
such as scene change detection, tracking of inde- 
pendently moving objects, surveillance, and mon- 
itoring. We have implemented [7] a fast and ro- 
bust electronic digital image stabilization system 
that can handle large image displacements based 
on a multi-resolution motion estimation technique. 
The method tracks a small set of features and fits 
a similarity or affine motion model to the feature 
displacements using least-squares. Stabilization is 
achieved by combining all motion from a reference 
frame and warping the current frame back to the 
reference. The system was implemented in a real- 
time parallel pipeline image processing platform (a 
Datacube MaxVideo 200 board connected to a SUN 
SPARCstation 20/612 via a VME bus adaptor), and 
is able to stabilize images of resolution 128x128x8 
bits at approximately 10 frames/second. 

Figure 4 shows stabihzation results for an outdoor 
sequence with very large panning and zooming, us- 

ing the similarity model. The top-left and top-right 
images show an arbitrary input frame fi and the 
corresponding stabilized frame respectively. The 
bottom-left image shows the difference image be- 
tween frames /j_i and fi. The bottom-right image 
shows the difference between /i_i and fi stabilized 
to /j_ 1. Since after stabilization fi is aligned to /i_i, 
the residue is minimized. 
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Figure 4: Stabilization results 

For better visualization, the motion estimates can be 
used to align the input image frames and compose 
a panoramic view of the scene, also known as mo- 
saicking. An example of a mosaic image is shown in 
Figure 5. This mosaic is composed of 90 frames from 
the same panning/zooming sequence, which starts 
zooming out and panning from right to left. The 
zoom ends after approximately 30 frames. The top 
image of Figure 5 shows the mosaic after 90 frames, 
and the bottom row shows frames 90, 45 and 1. Ob- 
serve the scale change between frames 1 and 45, and 
how they appear in the mosaic. 
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Abstract 

This report details some initial results and future 
directions of our research into the machine percep- 
tion of action. We note that motion understanding 
can reflect three levels of interpretation — move- 
ment, activity, and action. We divide our work into 
these three areas and also list relevant applications 
addressed by the respective technologies. 

1    Introduction: Action in Video 

The recent shift from the processing of static images 
to the manipulation of video sequences is causing 
a profound change in the expectations of informa- 
tion consumers. In particular, the ability to exploit 
"moving" images has generated demand for the di- 
rect distillation of descriptions as to what is happen- 
ing in a given situation. Previously, with only static 
images available, the assumption was that image 
processing or computer vision could only possibly 
characterize what was (or was not) in a picture; the 
assertion as to what was happening in a scene was 
considered a secondary, higher level operation. Now, 
however, actions may be directly observed. From an 
information consumer perspective the labeling of a 
particular space-time region of a video sequence as a 
"tank platoon re-fueling" should be no different than 
labeling a region of a static image as a "parking lot." 

From the perspective of computer vision, however, 
the two labeling tasks are fundamentally quite dis- 
tinct. Whereas we have numerous methods for rep- 
resenting both image and geometric-scene proper- 
ties, we have many fewer tools for consideration of 
action. The goal of this project is to develop new 
representations of action and of the appearance of 
action, and embed those representations within ap- 
propriate recognition paradigms. 

The need for such technology on the part of de- 
fense and intelligence agencies is clear. An ever 
increasing amount of video imagery available along 
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with the concurrent pressure to perform tasks with 
fewer human assets demands the (semi-) automa- 
tion of surveillance tasks. Monitoring a room to dis- 
tinguish between normal versus unusual activities, 
monitoring a port to determine any unusual actions 
on the part of a fleet, tracking a non-cooperative en- 
tity in a battlefield environment — all these tasks 
require powerful and flexible representations of ac- 
tion. While the achievement of these tasks still re- 
quires extensive basic research, the increased compu- 
tational capabilities of machines and devices makes 
it feasible to begin developing the necessary core 
technologies. 

As our project is only just beginning, we have struc- 
tured this paper to outline the broad technological 
areas that will be considered, and to place them in 
context with respect to the applications and scenar- 
ios to which they are relevant. For each of the techni- 
cal sections — Human Movement, Activity Under- 
standing, Context-sensitive Action Recognition — 
we will briefly mention the recent technical achieve- 
ments, preview the next research steps to be taken, 
and enumerate the defense and intelligence applica- 
tions that will be impacted by the technology. 

2     Movement, activity, and action 

As work has begun on interpreting video sequences, 
confusion has arisen over exactly what constitutes 
"action recognition." From our own research under- 
standing action has ranged from the simple recogni- 
tion of gross body motions [Bobick and Davis, 1996b] 
to the interpretation of American Sign Language 
[Starner and Pentland, 1995] to an automated cam- 
era system to monitor action in a highly constrained 
environment [Bobick and Pinhanez, 1997]. Each of 
these technologies considers action understanding at 
a fundamentally different level. 

To characterize the different approaches it is useful 
to construct a taxonomy of motion understanding 
problems. Each paradigm differ along two funda- 
mental dimensions: time and knowledge. Following 
the taxonomy recently introduced by Bobick [1997] 
we define the three levels as movement, activity, 
and action. Movement refers to simple, atomic mo- 
tion: opening a door, executing a particular assem- 
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bly step, throwing an object. Because the moves are 
atomic, manipulating time reduces to only a sim- 
ple variation in speed. Activities include those tem- 
poral events that require sequences of steps, often 
themselves movements. Examples include gestures 
or simple behaviors, such as making a left turn in 
an automobile. The understanding of time is more 
complex, often requiring significant time warping. 
Finally, actions refer to activity placed in context, 
and often making semantic or causal reference. 

In the sections that follow we divide our efforts into 
these three areas of understanding motion, and we 
list relevant applications. 

3    Human movement 

Our work in the perception of human movement has 
focused on detection, tracking, and recognition, with 
the latter recently focused primarily on appearance- 
based techniques. 

3.1 Detection of people 

Although the goal of this project is the understand- 
ing of action, an important problem is the detection 
of people in imagery. We have recently developed 
a trainable system for detecting people in static im- 
agery. The method is based on a wavelet representa- 
tion of the image and the definition of an object class 
in terms of constraints on a subset of the wavelet 
coefficients [Oren, et. al., 1997]. It is invariant to 
changes in color and texture, and can be used to 
robustly define a rich and complex calls of objects 
such as people. 

3.2 Body tracking 

We have developed technologies for both the initial 
acquisition and subsequent tracking of significant 
body features. Pfinder [Wren, et. al., 1995] is a sys- 
tem that uses a multi-class statistical model of color 
and shape to segment a person from the background 
scene, and then to find and track people's heads and 
hands in a wide variety of viewing conditions. With 
either multiple cameras or a structured environment, 
three-dimensional information can be provided as 
well. Recently, [Azarbayejani and Pentland, 1996] 
we incorporated stereo imagery into the real-time 
3-dimensional tracking of skin-colored hand regions. 

3.3 Appearance-based movement 
recognition 

If one takes a video sequence of someone performing 
an movement (say, sitting down) and blurs it merci- 
lessly (each frame to 15 by 20 pixels) the movement 
is still immediately apparent when the frames are 
put in motion.^ This is the case even though there 
are no discernible features in each individual frame. 
This simple demonstration indicates that geometric 
modeling is not necessary to recognize action. And 

' See demonstration at 
http://www- 
white.media.mit.edu/jdavis/Actions.action.html 

given the difficulties present in computing the 3D 
structure, it might not even be desirable. 

Recently, we have begun to develop appearance- 
based methods of recognizing movement. The ba- 
sic idea is to separate where motion is happening in 
the image (i.e. the shape of the motion field) from 
how the motion is moving (i.e. the movement of the 
motion field). By performing temporal integration 
over simple image diflTerences we create a temporal 
template [Bobick and Davis, 1996b]. Statistical mo- 
ments describing these templates are used as an in- 
dex into stored models of movements. The proce- 
dure is fast, amenable to multi-camera input, and 
robust. 

An alternative appearance-based approach to dy- 
namical models involves a linear combination of pro- 
totype images, each easily "learned." The approach 
is at least partially motivated by biological insights 
in how the human visual system recognizes motions 
and how neurons in IT cortex code for object views 
and sequences of views. Our past work has focused 
on the modeling of static objects. A deformable 
model is created for a class of objects as the lin- 
ear combination of prototype images and their affine 
deformations. An object is said to be a member of 
some class if the deformation from a base example 
is consistent with examples of that class. This new 
type of hierarchical flexible model can be used as a 
generative model to synthesize novel images of the 
same class. This model can also be used for image 
analysis by fitting the model parameters to an im- 
age via an optimization procedure (Jones and Poggio 
1995, Beymer and Poggio 1996). 

A particular extension of linear combinations of pro- 
totypes appears eminently suitable for use in the do- 
main of dynamic 3D objects such as humans engaged 
in different activities. Recent psychophysical exper- 
iments - extending the famous Johansen's results - 
strongly suggest that the 2D traces of the 3D trajec- 
tories of dynamic objects contain almost all of the 
perceptually important information for recognition 
purposes. These results suggest that we can rep- 
resent motion sequences of (possibly non-rigid) 3D 
objects as 2D images of the trajectories of a few of 
their salient feature points. These "trajectory im- 
ages" (T-images) can then be manipulated in exactly 
the same fashion as 2D images of static objects. In a 
learning by examples setting, a few of the T-images 
can be acquired as the model prototypes. Their lin- 
ear combinations can then be used to account for a 
novel T-image. The novel T-image is recognized as 
belonging to that class of prototype T-images that 
best explain it. 

3.4     Applications of movement 
recognition 

Applications of movement recognition technologies 
include: 

• Perimeter monitoring. If an area has 
deemed clear of personnel, one would like to 
be able to monitor for intrusion. To avoid 
falsely detecting the motion of stray objects 
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(wind-blown or animals) a movement recogni- 
tion system could detect walking and other sus- 
pect movements. 

• Security surveillance. Movement recognition 
is capable of distinguishing between allowed mo- 
tions (e.g. placing letters in an "inbox") and 
prohibited activities (e.g. opening file cabinets). 

4    Activity parsing 

Activities involve sequences and their recognition re- 
quires a more comprehensive manipulation of time 
than interpreting movements. Much of our work 
in recognizing activities has considered gestures but 
has recently extended to temporal behaviors such as 
driving. 

4.1 Gesture recognition 

Our initial work on gesture recognition modeled ges- 
tures as a sequence of explicit states in some feature 
space. The states are defined in training data, and 
testing reduces to a dynamic programming search 
to find the most similar gesture. The method em- 
ployed the idea of a prototype and thus learned 
more quickly than many statistically oriented meth- 
ods [Bobick and Wilson, 1995]. 

The natural progression from this work was to ex- 
plore the use of Hidden Markov Models for describ- 
ing gesture. One innovative technique we introduced 
allowed for different features to be measured for each 
state: the basic idea is that no single representa- 
tion may be valid for an entire activity and the 
"right" features to measure may be different at dif- 
ferent phases of a gesture [Wilson and Bobick, 1995]. 
HMMs are also employed in our work on recogniz- 
ing American Sign Language [Starner and Pentland, 
1995]. Although this may not be considered natu- 
ral gesture, it is a grammar controlled activity, much 
like the assembly of a device or the unloading of par- 
ticular type of object: Part A must be raised before 
Part B can be extracted. 

Our most recent work in gesture has once again 
moved away from HMMs and back to explicit (or 
visible) states. The main idea is that for gesture it 
is often the case that the temporal characteristics of 
the semantically significant gestures' are known and 
that one would like to devise a parsing mechanism 
capable of segmenting such gestures from incoming 
video. We have demonstrated an approach which al- 
lows us to parse natural gestures generated by some- 
one telling a story. The system is able to identify im- 
portant or meaningful gesture based upon the tem- 
poral structure [Wilson, et al., 1996] and permits the 
automatic selection of significant video subsequences 
in tele-communication situations. 

4.2 Coupled activities 

When employing HMMs, the system being modeled 
must be considered as a single process whose useful 
history can be summed up in the value of a single 
discrete variable. Many interesting systems, particu- 
larly those associated with human activity, are com- 
posed of multiple interacting processes.    We have 

recently developed a method for coupling HMMs to 
model these interactions, and demonstrated their su- 
periority to conventional HMMs in a vision task clas- 
sifying two-handed actions [Oliver, et. al., 1997]. 

4.3 Temporal behaviors: driving 

Automobile drivers' intended action (e.g., to turn, 
change lanes, brake, etc.) can be inferred by ob- 
serving their control inputs (steering and accelera- 
tion) as they prepare to execute the action. Actions 
are modeled as a sequence of internal mental states, 
each with a characteristic pattern of driver control 
behavior; this is similar to the hidden Markov mod- 
eling discussed above. By observing the temporal 
pattern of the drivers' control inputs and comparing 
to the action models, we can determine which action 
the drivers are beginning to execute. In the case of 
driving the actions are events like turning left, stop- 
ping, or changing lanes. The internal states are the 
individual steps that make up the action, and the 
observed behaviors will be changes in steering angle 
and acceleration/braking of the car. 

Even apparently simple driving actions can be bro- 
ken down into a long chain of simpler sub-actions. 
A lane change, for instance, may consist of the fol- 
lowing steps (1) a preparatory centering the car in 
the current lane, (2) looking around to make sure 
the adjacent lane is clear, (3) steering to initiate the 
lane change, (4) the change itself, (5) steering to ter- 
minate the lane change, and (6) a final recentering 
of the car in the new lane. We have begun to sta- 
tistically characterize the sequence of steps within 
each action, and use the first few preparatory steps 
to identify which action is being initiated. Initial pi- 
lot studies [Boer, et. al., 1996] indicate that driver's 
patterns are quite predictable and it is possible to 
both know almost instantly when a drive is going 
to turn in a particular direction, and to know if the 
control is following normal statistical patterns. 

4.4 Applications of activity 
understanding 

Applications of activity understanding technologies 
include: 

• Advanced command and control inter- 
faces. One method to increase the efficiency 
of personnel in command and control settings 
is to increase the bandwidth of communication 
between man and machine. Gesture is well 
suited to noisy or cluttered environments, and 
can model additional attributes such as where 
an operator's attention is focused and his input 
intended. 

• Surveillance. Coupled with movement recog- 
nition, activity detection can be used to spot 
suspect sequences of behavior, such as a van op- 
erator that drives a van to the front of a building 
but then walks away from the van. 

• Predictive behavior vi^arning and antici- 
pation. Operator failure incidents can be re- 
duced if potential accidents  can be detected 
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before their occurrence, such as reducing con- 
voy collisions. Alternatively, behavior predic- 
tion should be able to predict the course of eva- 
sive maneuvers quickly. 

• Behavior anomalies. Identify vehicles mov- 
ing in an unusual manner, e.g., drivers who are 
lost (don't know where they are going), under 
the influence of drugs, or vehicles that are un- 
usually loaded. 

5    Action recognition and the use of 
context 

5.1     Approximate models 

Perhaps the most difficult aspect of understanding 
action from video is that the action defines the vi- 
sual context. For example, if someone is manipu- 
lating an object, then the best method to find his 
hands in the imagery might be quite different than 
the appropriate technique for a conversational situ- 
ation. The difficulty, of course, is that the action 
defines the context, but that the context established 
the best way to see during the action. 

Our recent work on approximate world modeling is 
designed to address this problem [Bobick and Pin- 
hanez, 1997]. The basic idea is to use some poten- 
tially inaccurate but widely applicable general pur- 
pose vision routines to try to establish an approxi- 
mate model of the world. This model, in turn is then 
used to establish the context and select the best vi- 
sion routine to perform a given task. A fundamental 
innovation of this work is that approximate models 
can be augmented by extra-visual, contextual infor- 
mation. For example, a linguistic description might 
be available indicating an approximate position for 
an object. Because we assume a potentially inaccu- 
rate world model, that information can be incorpo- 
rated directly. 

Our initial system employed a simple inference 
mechanism that draws implications about visual fea- 
tures that might be present during a given action in 
a given context. Our current focus is to extend this 
work by deriving a "Past-Now-Future" constraint 
satisfaction paradigm (derived from Allen's tempo- 
ral interval algebra) that would allow the system to 
reason about sequences of events that constitute an 
action [Pinhanez and Bobick, 1997]. 

5.2     Context-sensitive tracking 

Finally, we have also been developing context- 
sensitive tracking methods [Intille and Bobick, 1995]. 
These methods are particularly useful for domains in 
which the relevant features for tracking vary depend- 
ing upon locale or situation. The use of spatially 
and temporally local context greatly improves the 
robustness of object tracking procedures. For ex- 
ample, tracking a truck might be best accomplished 
using a heat signature when in a forest, but a shape 
desorption when n the open highway. 

5.3     Applications of context-sensitive 
action 

Applications of context-sensitive action recognition 
technique include: 

• Site monitoring. For example, the activity of 
a fleet (say re-fueling) is determined by a partic- 
ular temporal ordering of events, not the precise 
duration appearance of most of the components. 

• Battlefield surveillance. Tracking possi- 
bly non-cooperative entities requires a tracking 
mechanism that can exploit knowledge about 
the items being tracked and the background or 
distractors which are not. 

6 Conclusion 

The project reported here is a Focused Research Ef- 
fort and, accordingly, most of work performed com- 
prises fundamental research. However, the robust- 
ness of some of the technologies developed — such as 
limited environment action recognition or the driver 
behavior interpretation — can be easily improved by 
limiting the tasks. The application scenarios need to 
be carefully specified and the demand requirements 
made realistic with respect to the stage of develop- 
ment of the technologies for them to be integrated 
into operational systems. However, many such re- 
stricted domains exist (e.g. monitoring a port or 
depot) making the action recognition technologies 
presented viable either today or in the near future. 
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Abstract 

We present a methodology to perform the analysis 
of a video stream, as generated by an Unmanned 
Air Vehicle observing a theater of operation. The 
goal of this analysis is to provide an alert mecha- 
nism to a human operator. We propose to first detect 
independently moving objects, then to track and 
classify them, and to infer behaviors using context. 
We propose to use, as context, the information con- 
tained in a site model, which we will register with 
the image. We present a technical approach, togeth- 
er with a demonstration plan and an evaluation pro- 
cedure. 

1 Introduction 

Continuous surveillance and monitoring in battle- 
field and urban environments is becoming feasible 
due to the easy availabihty and lowered costs of vid- 
eo sensors. Such sensors may be deployed on sta- 
tionary platforms, be mounted on mobile ground 
vehicle, or be airbome on board Unmanned Air Ve- 
hicles (UAVs). While the multiplicity of such sen- 
sors would permit close surveillance and monitor- 
ing, it is difficuh to do so by relying on purely man- 
ual, human resources. Not only would the cost of 
humans observing sequences from these multiple 
sensors be prohibitive, but unaided humans may 
have difficulty remaining focused on the tasks. Typ- 
ically, long periods may pass before any event of in- 
terest takes place; it is easy for human attention to 
wander in such a situation, and significant events 
may be missed. Even partial automation of the pro- 

* This research is supported in part by the Advanced Research 
Projects Agency of the Department of Defense and is moni- 
tored by U. S. Army. 

cess to indicate possibly significant events to a hu- 
man will considerably improve the efficiency of the 
process. Note that the automatic analysis need not 
completely define the threat, but enough evaluation 
must be done so that false alarms can be kept within 
acceptable limits. 

The key task of video surveillance and monitoring 
(VSAM) is to observe moving vehicles and hu- 
mans, and to infer whether their actions pose a 
threat that should be signalled to the human moni- 
tor. This is a complex task and, in general, requires 
integration of information from multiple sensors. 
Further, the deployment of, and control of the sen- 
sors, may depend on the perceived events. We plan 
to focus on data fi-om a single UAV (though infor- 
mation from muhiple UAVs could be integrated). 

The UAV video introduces several constraints. The 
UAVs fly at fairly high altimdes, so the resolution 
and the field of view are limited. This Umits the 
kinds of judgements that can be made, nonetheless, 
we believe that several significant events of interest 
can be detected and used to cue a human monitor, 
vastly reducing the amount of data that the human 
needs to observe. 

The most important information that can be extract- 
ed from a video sequence is that of moving vehicles 
in the scene. We should be able to detect these mov- 
ing vehicles, estimate their speeds and trajectories, 
and observe their behavior (within the constraints of 
available resolution and time). Motion detection is 
made difficuh as both the observer and some ele- 
ments of the scene may be moving. It may be hard 
to estimate 3-D trajectories due to lack of resolu- 
tion. 
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Motion by itself, however, is not a sufficient indica- 
tion of a threatening or otherwise interesting activi- 
ty. In most natural scenes, there is significant 
amount of normal vehicle motion. It is unusual mo- 
tion patterns that are of interest. We believe that the 
use of a site model, and context, can help us sepa- 
rate the mundane from the unusual. For example, 
normal traffic flow on a highway should not be sig- 
nalled, but abnormal speeds or a certain aggregation 
of vehicles may represent a significant event. Even 
more complex behaviors may consist of a number 
of vehicles or humans acting cooperatively, and of 
the pattern of these activities. The actual behaviours 
of interest will be decided upon by consultation 
with the user community. 

Our approach requires us to have at least crude 
models of the site being observed; for the monitor- 
ing system to also have an ability to recognize fea- 
tures such as roads and buildings generically is be- 
yond the scope of this effort. In addition, we will 
need models of what is normal and unusual behav- 
ior, and how it depends on context. 

Our approach consists of three major steps. The 
first is the detection and tracking of moving objects, 
the second serves to relate these vehicles to features 
known in a map or site model, and the last is used to 
infer the behaviors. 

As we must deal with moving objects and moving 
observer, we plan to first detect egomotion, which is 
manifested globally. Egomotion is then used to reg- 
ister frames to detect independently moving ob- 
jects, and to track them. Image to model correspon- 
dence will help in relating the observed motion to 
relevant features on the ground. We expect tech- 
niques using low level features such as lines and 
curves to suffice for matching in this task. As video 
images come continuously, tracking from frame to 
frame is a much easier task than looking at isolated 
frames. Finally, behavior analysis will be based on 
the interaction between vehicle trajectories and the 
features around them. Certain speeds and trajecto- 
ries in certain contexts indicate a threatening behav- 
ior. More complex behaviors will be analyzed by 
observing actions of groups of vehicles, rather than 
just single vehicles. 

Each of these steps poses significant image under- 
standing (lU) challenges. While there is much 
knowledge in the field, that is relevant to solving 

such problems, the techniques have not been put to- 
gether to yield complete systems. 

As a means of background, we start by describing 
the elements of such a complete system, the EPSIS 
Billboard Replacement System, which shares some 
common characteristics with our scenario, then pro- 
ceed with the details of our technical approach. 

2 The EPSIS Billboard Replacing System 

2.1 Background 
It is a common practice to place billboards advertis- 
ing various products and services during sports 
events. These billboards target not only the specta- 
tors at the stadium, but also (and mostly) the view- 
ers of the TV broadcast of the event. This fixed 
advertising is therefore limited, as the billboards 
might be advertising products out of context for the 
TV audience, especially for international events. 

We are presenting a system to automatically substi- 
tute, in real-time, one billboard by another, synthet- 
ically created, billboard. It aims at replacing the 
billboards in the scene in such a way that it should 
be transparent to the viewer. It allows a local TV 
station to plant its own advertisement billboards 
regardless of the original billboard, thus increasing 
the overall effectiveness of the advertising. 

The process by which we accomplish this goal is 
therefore the composition of a video stream and a 
still image, to create a new, smoothly blended and 
photo-realistic video stream. 

Editing of images or image streams is fast becom- 
ing a normal part of the production process[l]. 
Many recent movies, such as Terminator 2, Forrest 
Gump, Casper, ID4 seamlessly blend live images 
with Computer Generated Imagery. The mixing of 
multiple elements is performed primarily by screen 
matting, in which the background is of almost con- 
stant color, generally blue or green. This approach 
requires a very controlled studio environment and 
operator intervention for optimal results. 

Our system must instead function without active 
cooperation, in real-time (therefore automatically, 
without operator intervention), and in a non con- 
trolled environment. Furthermore, it must also 
adapt the model to fit the observed billboard. It 
involves the "inteUigent," automatic manipulation 
of images and image streams, based on their con- 
tents. 

32 



The system receives as input a TV broadcast signal, 
must identify a given billboard in the image flow, 
track it precisely, and replace it with another pattem 
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(fixed or animated), broadcasting the replaced sig- 
nal, in real-time, with only a short, constant delay. 
Figure 1 presents an example frame of billboard 

F/gure 7 Two examples of billboard replacement in a Video Sequence 

replacement. 
2.2 Requirements and challenges 
The fundamental requirement that the system per- 
form on-line in real-time, imposes major con- 
straints on the design and implementation: 

• No human intervention is possible. 
• No on-screen errors are permitted. The system 
has to include self quality control mechanisms to 
detect problems and revert to the original signal 
when they occur. 
• Complex high level algorithms are limited due 
to the need for implementation in real time. 
• No cooperation from the field is expected, in or- 
der to allow the system to operate independently 
from the imaging process (e.g. at the down link). 

The contribution of such a system, for which a 
patent was issued[2], thus resides both in the design 
and implementation of the individual modules 
(finder, tracker, replacer), and in the management of 
failure and uncertainty for each of these modules, at 
the system level, resulting in reliable replacement. 
2.3 Implemented Solution 
2.3.1 Overall System Design 
The task of the system is to locate a planar, rectan- 
gular target billboard in the scene, detect camera 
switches, track the billboard throughout the 
sequence (between camera switches), and replace it 
with a new billboard. The direct naive approach 
would be to inspect the incoming frames, search for 
the billboard and replace it. Unfortunately, this 
approach is not sufficient, as it may be impossible to 

locate the billboard in the current frame: This may 
be due to large focus or motion blur, or to the bill- 
board being occluded, or to the fact that only a small 
part of it may be in the field of view. The billboard 
may therefore be found only in a later frame of the 
sequence, and it is not advisable to start replacing 
then, as this would be offensive to the viewer. 
Instead, replacement should be performed on the 
whole sequence to avoid billboard switches on 
screen. 
Our system relies on modular design, and on a pipe- 
line architecture, in which the search and track 
modules propagate their symbolic, low-bandwidth 
results throughout the pipe, and the replacement is 
performed at the exit of the pipe only, therefore 
relying on accumulated information. This allows 
the system to make replacement decisions based on 
complete sequences, thus avoiding mid-sequence 
on-screen billboard changes. 
The Finder module searches for the target billboard 
in the entering frames and passes its results to the 
Updater, which propagates them throughout the 
buffer. It first extracts "interesting" points (comers, 
or other "busy" formations) in the image, then 
selects the interest points which are most likely to 
come from the target billboard based on color infor- 
mation. It then finds a set of corresponding points 
between model points and image points, using an 
affine-invariant matching technique proposed by 
Lamdan and Wolfson[5], and uses these correspon- 
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dences to find the precise (to a sub-pixel resolution) 
location of the billboard. 

The Global Motion Tracker (GMT) module esti- 
mates the motion between the previous and current 
frames, regardless of whether the billboard was 
found or not. This is used as a mechanism for pre- 
dicting the billboard location in the frames in which 
it was not found. The prediction is necessary to 
ensure continuity of replacement, since we do not 
want the billboards to switch back and forth 
between the original and the new one in front of the 
viewer. The GMT also performs the task of camera 
switch detector. 
Since we are interested in the motion of the camera 
and not in a per pixel motion, we take a global ap- 
proach, and use an iterative least squares technique 
on all pixels of the image[3]. The images are first 
smoothed and the spatial and temporal derivatives 
computed. Using this information, estimates of the 
motion parameters are computed. Using these esti- 
mates. Frame t+l is warped towards Frame /, and 
the process is repeated. Since Frame t+l gets closer 
to Frame t at every iteration, the motion parameters 
should converge. The accumulated parameters are 
then reported to the Updater. We have implemented 
the algorithm at multiple levels of resolution. A 
Gaussian pyramid is created from each frame[4]. At 
the beginning of a sequence, the algorithm is ap- 
plied to the lowest resolution level. The resuhs from 
this level are propagated as initial estimates for the 
next level up, up to the highest level. This allows for 
recovery of large motions. 

An improvement to the global motion algorithm al- 
lows for accurate and stable resuhs, even in the 
presence of independently moving obstacles in the 
scene. This is achieved by scaling the coefficients of 
the motion equations inversely proportional to the 
temporal derivatives. Moving obstacles do not 
match when the images are warped according to the 
camera motion. Therefore, pixels corresponding to 
obstacles produce high temporal derivatives, and 
consequently contribute less. The improved results 
allow for long propagation of estimates along the 
sequence. 

The Replacer performs the graphic insertion of the 
new billboard, taking into account variations from 
the model due to lighting, blur and motion. 
Given the coordinates of the billboard comers in the 
current image, the Replacer module replaces the 
image contents within these comers (the billboard) 

with the new desired contents (usually a new bill- 
board). Because the human eye is quite sensitive to 
sharp changes in colors, we correct the gain and off- 
set of the replaced billboard to make it appear close 
to the average intensity of the image. Note that we 
currently assume that the original billboard is un- 
occluded. Mechanisms which allow for detection of 
obstacles in front of the billboard are currently un- 
der development with promising resuhs. 

The Updater handles communication within the 
buffer and also manages the Measure Of Belief 
(MOB) associated with the information passed 
along, due to the MOB of each of the modules, and 
a decay related to the length of the propagation. The 
information about scene changes is also used so that 
the Updater does not propagate the predictions 
beyond the scene change markers. 
It collects data from all the other modules, and cor- 
rects missing or inaccurate information within a 
processed sequence. We can visually think of the 
system as a circular buffer, holding a frame and a 
frame attribute in each of its cell. The Updater ma- 
nipulates these attribute records only, which are 
composed of a small number of parameters, and 
processes all attribute records in the buffer in one 
frame time. 

Figure 2 presents the overall system architecture. 
As the frame at time t comes in from the video 
source on the right, the Finder searches for the bill- 
board. At the same time, the Global Motion Tracker 
(GMT) computes the camera motion between the 
previous and current frames, and stores it in an 
attribute record. If the billboard is found, its four 
comers are recorded in the attributes record, and the 
Updater unit predicts the location of the billboard in 
all the (previous) frames from the first frame of the 
sequence to frame t-1, based on the computed 
motion, and updates the attribute records accord- 
ingly. As the frame is about to be displayed, the 
Replacer performs the insertion. 
Let us consider the difficuh case where the bill- 
board is slowly entering into view, as a result of a 
pan or zoom. In this case, the billboard cannot be 
found initially by the Finder. As the frames con- 
tinue to come in, the Global Motion Tracker com- 
putes the camera motion between frames, regard- 
less of whether the billboard was found or not. The 
camera motion parameters found are stored in the 
frame attribute record to be accessed by the 
Updater. When the billboard is reUably found in 
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some frame, t, of the sequence, the Updater module 
uses the motion parameters computed earlier, to 
predict the location of the billboard in all the frames 
from the first frame of the current sequence up to 
frame t-1. Since this is a very simple computation 
(not image based), involving low bandwidth com- 
munication, it can be performed for the whole 
buffer in one frame time. As the images reach the 
end of the buffer, we know the location of the bill- 
board, either directly form the Finder, if it was 
found in this frame initially, or via a prediction from 
the Updater, using the motion information. 

The combined use of the Global Motion Tracker, 
the delay buffer and the Updater mechanism, allow 
the system to, in essence, go back in time without 
having to process the image again, and to use infor- 
mation from the current frame to locate the bill- 
board in earlier frames. This enables the system to 
perform well under varied conditions, such as 
occlusion and entering billboards. The system is 
also very robust to failure of specific modules, as it 
can overcome failure in some frames by using 
information from the other frames of the sequence. 
It is important to note that each image is processed 
once only, and that each module works at frame 
rate, thus the system works in real-time, introducing 
only a constant delay. 
This design can guarantee that no offensive substi- 
tution will take place, as long as a whole sequence 

fits in the buffer. Otherwise, in case of a problem 
occurring after replacement is started, a smooth 
fade back to the original billboard is used. In prac- 
tice, a buffer of the order of 3 seconds (180 fields in 
NTSC), covers a large percentage of sequences in 
which the billboard is present. 
2.3.2 The Machine 
A design somewhat simpler than the one described 
here has been made operational by Matra CAP 
Systdmes using off-the-shelf components, and used 
by Symah Vision for live broadcasts. 

This successful aggregation of computer vision and 
computer graphics techniques should open up a 
wide avenue for other applications, which are either 
performed manually currently, or simply aban- 
doned as too difficult. 

On a different note, it is interesting to note that such 
a system also casts some doubts as to the authentic- 
ity of video documents, as predicted in fiction such 
as Rising Sun. It shows that digital video documents 
can be edited, just like audio and photo documents. 

3 Research Issues and Approach 

We plan to develop a system for analysis of video 
image sequences from a single Uimianned Air Ve- 
hicle (UAV) with the objective of detecting impor- 
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tant events that present a threat or are significant in 
other ways and alert a human monitor to them. Our 
goal is not complete automation but reliable opera- 
tion while minimizing false alarms for the human, 
resulting in a great reduction on the time that the hu- 
man must devote to monitoring such video streams. 

The most relevant information that can be extracted 
from a video sequence is that of moving objects in 
the scene. We therefore propose to process the vid- 
eo stream to: 

• estimate image motion due to the observer (ego- 
motion), and compensate for it, 
• detect regions in the image whose motion differ 
from the above, 
• track these tokens over time, 
• infer behaviors from this analysis. 

The overall approach to the problem is depicted in 
schematic form on Figure 3. The modules corre- 
spond to the major tasks mentioned above. 

Note that these tasks require different time frames: 
while it is possible to estimate egomotion from only 
2 frames, reliable tracking of independent objects 
requires several frames, and behavior inference de- 
mands an even longer aggregation of frames. 

We now describe our technical approach in some 
detail.. 

3.1 Motion estimation and segmentation 
We need to detect motion that is independent from 
the flow induced by the sensor (egomotion) in the 
image stream. To accomplish this, we propose to 
first estimate the egomotion, use it to register 
frames and detect independently moving objects 
and then to track them to compute their frajectories. 
We describe these steps below. 

3.1.1  Egomotion estimation 
Since we are interested in the motion induced by 

the camera, and not in a per pixel motion, we take a 
global approach, and use an iterative least squares 
technique on all pixels of the image [1, 7, 14]. The 
method, therefore performs the task of image stabi- 
lization, assuming the sensor motion is limited to 
pan, zoom and tilt. 

However, the motion model may not be able to take 
reflect the variations of displacements of the object 
features due to its 3-D geometry. In our scenario. 
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the sensor is relatively far from the object. There- 
fore the deviation of the point-of-view, which pro- 
duces these displacements, is small. Furthermore, 
even these small deviations can be corrected with 
coarse knowledge of the terrain, as obtained from 
the site model, if necessary. 

We have also adapted the basic algorithm to func- 
tion in the presence of independently moving ob- 
jects in the scene. This is obtained by scaling the co- 
efficients of the motion equations inversely propor- 
tional to the temporal derivatives. Moving objects 
are not registered when the images are warped ac- 
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cording to the camera motion. Therefore, the pixels 
corresponding to objects have high temporal deriv- 
atives, and consequently less weight in the coeffi- 
cients. A by-product of the algorithm is the identifi- 
cation of independently moving pixels. 

3.1.2 Tracking 
Pixels identified by the egomotion module as not 
coherent with the induced displacement are marked 
as belonging to mobile objects. Given the resolu- 
tion we can expect from the sensor, we anticipate 
these mobile objects to consist of only a few pix- 
els in the image. It is therefore unreasonable to ex- 
pect to try and perform 3-D structure estimation for 
these objects[16]. We propose instead to represent 
them only as 2-D regions, and track these regions in 
time [8,15]. For vehicles moving on the ground, the 
image displacement between two frames will be 
small, but temporally coherent. We will therefore 
perform a muhiframe analysis of the motion, for ro- 
bustness and accuracy, using a 2-D translational 
motion model for the image features. 

When airborne vehicles, such as helicopters and 
fixed wing airplanes are observed, the image in- 
duced displacement is much larger. The regions 
corresponding to these objects will also be larger, 
since they are closer to the sensor. In such a case, we 
will use the structure of the region contour to disam- 
biguate the tracking process. 

3.2 Image to Site Correspondence 
To interpret the motion of the observed vehicles, it 
is useful to geolocate them in reference to the 
known features of the site. It is important to know if 
the vehicles are on a road or in the vicinity of certain 
important buildings. We consider the problem of 
actually detecting features such as roads from the 
image sequence itself without prior models to be 
beyond the scope of this effort. Instead, we propose 
to make correspondences with prior maps or site 
models. Approximate locations may be determined 
just from the knowledge of the observer vehicle pa- 
rameters. We can expect to obtain highly accurate 
estimates of the observer location from the GPS 
navigation system; orientation parameters may 
have somewhat less precision. However, we cannot 
expect the navigational parameters to be accurate 
enough to predict exactly where a feature of inter- 
est, such as a road, might be, but we believe that 
simple image to map (model) matching techniques 
[6, 11] can suffice to bring them into accurate cor- 

respondence. 

We will need to continually update the correspon- 
dences between the observed features and the map/ 
model features. Since the data is available to us in a 
continuous stream, the updating process can be 
much simpler than one of initial correspondence. At 
each step, we can predict the amount of displace- 
ment and can correct by using only a small number 
of features. 

3-D site models, even if they are not very accurate 
or complete, would help in the process of corre- 
spondence. However, it may be possible to make do 
with 2-D maps if the terrain is relatively flat and the 
flight of the vehicle is level. 

3.3 Behavior Inference 
After various vehicle and human motions have been 
detected and tracked, and some correspondence es- 
tabUshed between the images and the site features, 
we still need to interpret the motion to decide if a 
significant event has taken place. A first step in this 
process is that of motion interpretation itself. We 
should be able to tell whether the moving object is 
on the ground or is airborne as ground objects have 
some constraints on their motion. We can also esti- 
mate the vehicle speed which may provide some 
constraints on the class it belongs to {e.g. tanks 
don't travel at 100 km/h). 

The next step is to try to determine if a significant 
event is taking place. We will study the kinds of 
events human monitors detect and the cues they use 
to detect them. Some examples are: abnormal 
speeds or trajectories, activity in forbidden areas, 
and certain kinds of group activities. 

We believe that these kinds of activities can be de- 
tected by representing the expected behaviors in a 
symbolic template representation and verifying if 
the template criteria are satisfied. 

4 Evaluation Plan 

We describe some proposed metrics and an evalua- 
tion methodology below. 
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4.1 Metrics 
We propose the following metrics: 

1) Detection rate: What is the percentage of cor- 
rectly recognized events? Obviously, only 
events that are visible, have sufficient resolu- 
tion and duration can be detected. 

2) False Alarm rate: This measures the frequen- 
cy of mistaken detection. 

4.2 Testing 
We intend to develop and test our algorithms direct- 
ly on data from operational UAVs. We expect that 
such data will become available to the VSAM re- 
search community. To make evaluations, we will 
need some ground-truth to compare with. For UAV 
data, we may not be able to get the actual ground 
truth, instead, we may need to rely on the judge- 
ment of human observers to see what events they 
are able to perceive and what their interpretation of 
the behaviors is. 

4.3 Demonstration Plan 
Our proposed research is to analyze image sequenc- 
es observed from a UAV. As we are not likely to 
have access to UAVs in the field, we will need to 
demonstrate on stored images in our laboratory. We 
expect that sample imagery will be available from 
on-going UAV projects and from the IFD platform. 
For the early parts of our development, we should 
be able to use video images available from helicop- 
ter flights and other sources that are commonly used 
in motion analysis experiments. 

Given suitable image (and other data), we expect to 
show the capabilities of detecting vehicles, tracking 
them through the sequence and indicating when the 
system believes the behavior to be abnormal. The 
output of the system can be displayed graphically 
and also tabulated for comparison with human as- 
sessments. 

Our processing may not be necessarily at real-time 
speeds though computational efficiency will be a 
major concern. In later phases of the project, we can 
use the IFD platforms, if available, for real-time 
demonstrations. 
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Abstract 
The objective of this Video Surveillance And 
Monitoring (VSAM) Focused Research Effort 
(FRE) project is to develop a set of portable 
(the size of a baseball), inexpensive (less than 
$500 in production), self-contained (sensors, 
processing, radio, and battery) Small Sentry 
Modules (SSMs) that can autonomously de- 
tect, characterize, classify, and report moving 
objects, such as people, animals, and vehicles. 
These sensors will be small enough so that a 
warfighter could carry several of them and de- 
ploy them as extra sets of eyes, instead of using 
people, to monitor key areas for possible ap- 
proaching threats. When a module detects a 
significant event, such as a person running along 
a path, it radios a description of the event to the 
warfighter and/or combat unit, providing them 
with advanced warning of possible danger. Nu- 
merous modules could be used to establish a 
sentry network in which the sensors cooperate 
to verify detections and estimate the 3D loca- 
tions and velocities of moving objects. 

1    Introduction 

The nature of war has changed in several ways. 
First, many of the 'conflicts' are "missions other 
than war" or Military Operations in Urban Ter- 
rain (MOUT), as opposed to conventional war- 
fare. Second, the number of warfighters in 
the U.S. armed forces has been reduced sig- 
nificantly, increasing the tactical importance of 
each one. And third, the death of a warfighter, 

although never 'acceptable,' is less tolerable to- 
day than in the past. Two consequences of 
these changes are an increased need to protect 
each warfighter and a renewed interest in force 
multiphcation. In this project, we propose to 
develop a sequence of increasingly competent 
SSMs that can help fulfill both needs ~ protect 
the warfighter and enhance his effectiveness. 

Our vision is to develop SSMs that are suffi- 
ciently competent to be used by a warfigther 
as an extra pair of eyes to watch his backside, 
while he continues with his primary mission. If 
a warfighter is clearing a building in a MOUT 
scenario, she can leave one device at the en- 
trance to warn her if someone enters the build- 
ing. If she's on a trail, she set up one on a tree 
to warn her of someone approaching from the 
rear. In addition, a warfighter can use one of the 
modules as a periscope to look around a corner 
and into a tunnel without exposing herself to 
enemy fire. For this application, the warfighter 
attaches her head-mounted display to the mod- 
ule's high-definition video output and visually 
explores the hidden area by physically moving 
the module to scan it. The ultimate modules 
will have sensors that combine infrared (IR) and 
image-intensified data to provide an excellent 
night-vision capability. 

We expect the deployed modules to incorpo- 
rate multiple sensor modalities, such as stereo, 
motion, radar, and acoustic, in order to maxi- 
mize their applicabihty and minimize their er- 
rors. For example, a combination of a radar sen- 
sor to detect movement and a stereo sensor to 
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construct 3D descriptions of the moving object 
will be one of the first devices to be considered. 
For some applications, a combination of acous- 
tic and visual sensors is appropriate. For other 
applications, inclusion of chemical and biologi- 
cal sensors would add a critical new dimension. 

SRI has already developed the critical stereo 
sensor that makes this project feasible - the 
parts cost is approximately $200, in large quan- 
tities, and this price can be reduced further if 
special chips are fabricated. Within the first six 
months of the project, we plan to construct 20 
copies of an initial stereo-based SSM, implement 
a development environment for it, and then dis- 

tribute sets of the SSMs and the environment to 
the Integrated Feasibility Demonstration (IFD) 

contractor and the other FREs as a common 

experimental device. 

An enhanced version of the SSM will include 
techniques for multiple modules to cooperate, 
setting up communication channels, a common 
coordinate system, and a procedure for operat- 
ing together to verify detections and estimate 
their 3D locations. And our vision of the ulti- 
mate SSM is a mobile sensor package that can 
be used either to explore ahead of a warfighter 
or to trail behind, checking for potential danger 

signals. 

2    Research Questions 

Key scientific questions occur at two levels in 
this project. First, there are questions related 
to an individual SSM, such as how it detects and 
tracks moving objects. And second, there are 
questions related to networks of sensors cooper- 
ating to perform a single task, such as guarding 
a compound. For an individual sensor, the ba- 
sic research questions focus on the following five 

topics: 

Tasking - How does a military person spec- 
ify what the SSM should "look for?" Is it 
"built-in?" Or are there on-site specifica- 
tions required? How does the sensor know 
where it is relative to key functional items, 
such as the ground plane, roads, or hall- 

ways; 

Detection - How does an SSM detect sig- 
nificant motion - directly (through mo- 
tion analysis or doppler radar) or indirectly 
(through differential changes in location)? 
Key to a successful system is an archi- 
tecture that supports cross-sensor fusion 
to minimize false positives and false neg- 
atives. Although many researchers have 
talked about strategies for such fusion, this 
version of the problem is unique in that the 
sensors must be inexpensive and operate in 
a complex, close-in 3D environment. 

Tracking - How does an SSM continuously 
track and model a detected object. A key 

aspect of our approach is an analysis of 
sequences of detections for building "min- 

imum description" models of the tracked 

objects. 

Characterization - How does an SSM describe 
a tracked object in terms of its 3D size, 3D 
velocity, and articulation. These charac- 
terizations are critical for classification and 
recognition, which provide the warfighter 
with information at the level he can under- 
stand. 

Classification - How does an SSM classify 
tracked a object into categories, such as 
person, animal, or vehicle. {Note that the 
SSMs do not have to distinguish civilians 
from warfighters to be useful.} 

Communication - Once a significant event has 
been detected, how does the SSM commu- 
nicate the information? Should send and 
alarm followed by a snapshot of the de- 
tected object? 

For networks of cooperating SSMs, the following 
topics are of particular interest: 

Cooperation - Can two, three, or ten SSMs 
working together dramatically simplify the 
segmentation problem in dynamic worlds? 
Can multiple SSMs produce significantly 
more complete characterizations of objects 
than traditional techniques? If so, at what 
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level do the cooperating SSMs have to com- 
municate? Do they need to produce a sin- 
gle consistent model or can they each main- 
tain partial models, share their results, 
and compute more comprehensive object 
descriptors than current single-sensor ap- 
proaches? Can a set of SSMs simplify the 
detection and description of articulations, 
which are key to object classification, par- 
ticularly for classes such as animals, people, 
and military vehicles? 

Tasking - Can a set of SSMs figure out their 
relative positions automatically by watch- 
ing people and vehicles moving in their 
fields of view? Or does someone have 
to specify their approximate locations and 
fields of view? 

Communication - To what extent do the SSMs 
need to communicate among themselves. 
For some applications, it may be possible to 
directly connect them to a network. How 
would that change the approach to cooper- 
ation? 

3    Approach 

We have designed a four-staged approach for de- 
veloping, testing, evaluating, and demonstrat- 
ing SSMs. The stages are: 

Develop and Deliver Small Stereo and Mo- 
tion Sensors - In the first 6 months of 
the project, we plan to implement a small 
stereo and motion sensor, document it, and 
distribute 15 to 20 copies of it to other 
VSAM contractors for evaluation. SRI has 
already developed a creditcard-sized stereo 
system, called the Small Vision Module 
(SVM). We plan to add motion analysis to 
this device and then distribute copies of it. 

Develop a Basic SSM - We will develop al- 
gorithms for detecting, tracking, character- 
izing, and classifying moving objects ob- 
served by an SSM. 

Develop an Enhanced SSM - We will ex- 
plore techniques for adding additional sen- 

sor modalities, such as sonar, acoustic, in- 
frared, or radar to an SSM. 

Explore Cooperating SSMs - We will explore 
techniques for using several SSMs to coop- 
eratively perform a task, such as monitor a 
perimeter around a compound. 

In the optional years of this project, we plan to 
continue research to enhance the quality, relia- 
bility, and transferability (into an IFD or other 
DoD programs) of our results. At the end of 
three years, we plan to demonstrate an SSM de- 
signed for a specific user. Our intent is develop 
and deliver an initial prototype that a user can 
experiment with and provide feedback to guide 
future development. At the end of four years, 
we will demonstrate a second version of a user- 
specific SSM. At the end of five years, we will 
demonstrate a network of cooperating SSMs. 

4    Plans for Evaluation 

As described above, we plan to demonstrate, 
test, and evaluate a sequence of increasingly 
competent SSMs. In the first six months of the 
project, we plan to distribute a set of SSMs to 
the IFD contractor and the FREs for evalua- 
tion. Feedback from these experiments will help 
shape the next version of the module, which 
we will demonstrate at the end of a year and 
a half. At the end of two years, we will demon- 
strate techniques for using multiple SSMs coop- 
eratively to increase the reliability and robust- 
ness of detections and to increase the accuracy 
of the computed properties of detected objects. 

For each version of the module, we plan to char- 
acterize its effectiveness along five dimensions: 

Types of Applications - What types of tasks 
can the SSM perform? Under what con- 
ditions (lighting, weather, scene content, 
etc.) does the SSM operate effectively? 

Time for Tasking - What is involved in de- 
ploying an SSM? Does the person have to 
specify parameters of its task or indicate 
regions of interest? 

Range of Objects Detected and Classified - 
What types of objects can  be detected, 
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tracked, characterized, and classified? For 
example, can the SSM identify people, ve- 
hicles, and moving shadows? Can it distin- 
guish people walking from people running? 

Detection and Classification Statistics ~ How 
frequently does the SSM miss a key object? 
How often does it generate false alarms? 

Potential Cost - What is a predicted produc- 
tion cost for the SSM? 

5    Summary 

We believe that the SSMs will save lives by dra- 
matically increasing the "safety zone" around 
a warfighter and reducing his exposure to hos- 
tile fire. The modules, when deployed as sen- 
tries, automatically detect, track, characterize, 
and warn the warfighter of approaching people 
or vehicles, while ignoring blowing leaves, shad- 
ows, and small animals. When deployed as a 
periscope, these modules provide night-vision 
capabilities to the warfighter without exposing 
him to potential harm. In summary, these de- 
vices can multiply the effectiveness of a force 
by providing the eyes (and ears and noses) for 
critical tasks, and thus freeing the warfighters 
to concentrate on their primary tasks. 
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Abstract 

This project focuses on utilizing large sets of inex- 
pensive sensors to monitor activities within a site. 
This forest of sensors will self-calibrate, build ap- 
proximate site models and classify and monitor ac- 
tivities within the site. 

This PI Report describes work that will be con- 
ducted under a newly issued grant as part of DARPA 
lU's VSAM project. 

1     Top Level Objectives 

The rate of advances in low power micro-electronics 
suggest that soon cameras, processors, and power 
supplies will be cheap, reliable and plentiful. We 
want to be ready for a time when it will be possi- 
ble to build a complete, autonomous, vision module 
(AVM) using only a few chips. Such a device will be 
able to function autonomously for days or weeks at 
a time, sending information over low bandwidth ra- 
dio connections. With the addition of a small solar 
array, an AVM might operate indefinitely. 

Integrated with a steerable platform, AVM's can 
perform autonomous surveillance and make critical 
visual observations from locations which are sim- 
ply too dangerous for personnel. But there is an- 
other, perhaps more speculative, niche for extremely 
cheap AVM's. A disposable AVM (dAVM) would be 
entirely solid-state and have no moving parts. It 
would be the size of a grenade, a good deal lighter, 
and just as tough. Dozens if not hundreds could be 
dropped from planes, scattered throughout a field, 
or mounted on the rear of every vehicle. A dAVM 
could act anywhere that an extra pair of eyes might 
be useful: protecting a perimeter; in surveillance op- 
erations; or directing fire. We envision such a collec- 
tion of dAVMs as a FOREST OF SENSORS, and 

This report describes research supported in part 
by ARPA under ONR contract N00014-94-01-0994, and 
by DARPA contract TDB. Pis may be contacted at 
welg@ai.mit.edu, viola@ai.mit.edu, faugeras@ai.mit.edu, 
tp@ai.mit.edu, seth@ai.mit.edu. URL for project avail- 
able at 
http://www.ai.mit.edu/proj ects/darpa/vsam/ 

we believe that developing the capabilities to deploy 
and most importantly to process the data from such 
a forest of sensors will revolutionize existing surveil- 
lance and monitoring methods. 

While we are interested in designing dAVMs, we be- 
lieve that one can focus on their utilization largely 
independently of their design and instantiation. 
Thus, one can posit the existence of such dAVMs, 
and ask what activities are made possible by their 
availabihty. Many scenarios involving surveillance 
require monitoring of large amounts of imagery from 
many vantage points. In short, significant man- 
power must be expended. Imagine instead, a sce- 
nario where 100 dAVM's could be rapidly affixed to 
trees, rocks, or other elements in an environment. 
Alternatively, imagine a suite of dAVMs mounted 
on small drone aircraft. The dAVM's would work 
in concert, dividing the task of observation auto- 
matically among themselves. Together they would 
immediately identify gaps in the area that can be ob- 
served and suggest placement of additional devices. 
The forest could detect failures of individual units, 
and use the inherent redundancy of multiple sensors 
to avoid failure of the ensemble. The forest could use 
change detection in combination with focus of atten- 
tion methods to allocate resources to components 
most able to use them. Given such a forest of small, 
cheap, robust sensors, a large number of important 
surveillance tasks becomes feasible, including: 

Perimeter Patrol: Protecting a temporary camp's 
perimeter is a difficult enterprise. Patrols must 
be organized and a perimeter established. If in- 
stead, we have a forest of sensors that have been at- 
tached by troops to points on the perimeter, then the 
surveillance and patrol can be heavily automated. 
Equipped with low light sensors, each dAVM would 
detect motion and classify it (e.g. animal vs. vehi- 
cle). If animal, further analysis about location and 
type could be performed. When enemy incursion is 
detected, sentries would be immediately advised of 
the situation. The dAVM's would be so inexpensive 
that they need not be retrieved, but can continue to 
observe and report activity. 

Visual Mines: Modern mines are unfortunately 
non-discriminatory.   They will explode when trig- 
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gered by enemy forces, by civilians and by friendly 
forces. Imagine replacing explosive mines with "vi- 
sual mines". dAVM's could be placed along key lines 
of passage, and equipped to trigger a burst of com- 
munication to remote observer sites when human ac- 
tivity or vehicle activity is recorded in the vicinity 
of the mine. This would enable a remote operator 
to identify friend or foe based on the visual data re- 
layed by the visual mine, to alert nearby troops to 
investigate, or to coordinate with nearby fire con- 
trol centers. This is not just a case of placing mo- 
tion detectors, since such simple systems are likely 
to overwhelm the operator with tons of false posi- 
tives. Visual mines should have some "intelligence" 
so that they only alert the operator when they detect 
instances of likely activity, based either on training 
from the operator or on generic models of activity. 

Urban Security: In urban surveillance and mon- 
itoring, a forest of sensors will: i) register different 
viewpoints and create virtual displays of the facility 
or area; ii) track and classify objects (people, cars, 
trucks, bags, etc.); iii) overlay tracking information 
on a virtual display constructed from the observa- 
tions of multiple cameras; iv) learn standard be- 
haviors of objects; v) selectively store video. Low 
bandwidth tracking information could be continu- 
ally stored allowing the observer to query the system 
about activities: "What did the person who left this 
bag do from 2 minutes before until 2 minutes after 
leaving it?" "Where is that person now?" "Show me 
a video of that person." Tracking information could 
be used to tag activities such as cars speeding to- 
wards the facility, people climbing perimeter walls, 
and unusual loitering near a facility. 

In all these cases, it will be difficult to carefully place 
and calibrate each dAVM. A dAVM must discover 
its position and its relationship to other dAVM's. 
Executing geometric self-calibration will enable co- 
ordination of the dAVMs to build approximate site 
models. But the dAVMs must also cooperate in 
their observations of moving objects. Some version 
of GPS will be helpful here, but it will not solve the 
entire problem. In order to work in concert, dAVM's 
will need more than simple camera calibration, they 
will need a notion of activity calibration. 

Even with coordination between dAVMs, the job 
of monitoring activity is not complete. Imagine 
dAVMs observing two diff'erent villages: in one op- 
posing forces march through a square; in another 
civilians congregate. Detecting the difference is crit- 
ical in modern engagements, where losses and civil- 
ian casualties must be kept to an absolute minimum. 
Many features differentiate these scenarios: the uni- 
forms, the weapons, the activity patterns. The lat- 
ter points to a critical missing component in surveil- 

lance, the ability not just to detect basic units of ac- 
tivity but to automatically interpret them. This is a 
difficult task which is very different from the tasks of 
change detection and target identification. Much of 
the success of target recognition has been based on 
the elegant use of geometric models. Unfortunately, 
there can be no static geometric model of a platoon 
walking through a wood, the construction of a revet- 
ment, or the passing of a military convoy. In fact, 
the fundamental question has been changed: tar- 
get recognition finds objects; what we need is activ- 
ity recognition. Such recognition should complement 
and enhance static analysis with dynamic analysis. 

2    Technical Challenges 

Two major technological advances are necessary to 

enable the widespread deployment of dAVM's: - 
we need techniques for fusing visual information ob- 
served at different times and from different locations; 
- we need a framework in which to construct activ- 

ity models so activity can be reliably and efficiently 

detected and interpreted. 

Processing the information generated by many 
AVM's as they observe a locale will be quite differ- 
ent from the processing performed on a single image. 
For AVM surveillance, we would like to detect some 
activity occurring in the real world at real-time. Not 
only do we need to coherently gather observations 
from multiple sensors, we also need to extract the 
salient information about an activity from a stream 
of imagery. Experience in recognition of geometric 
targets has shown that to ensure success we must 
build detailed predictive object models, which are 
used to reject clutter, resist noise and defeat occlu- 
sion. Models allow for the pooling of a large num- 
ber of weak and noisy measurements into a coherent 
reliable estimate. Similarly, detailed activity mod- 
els will be necessary for the recognition of activi- 
ties. Unfortunately, activities are often more com- 
plex than single objects, involving a number of am- 
biguous objects, moving in distinctly non-rigid ways. 

Take for example a platoon moving through a wood. 
One model of this activity is that 10 to 20 human 
figures must be moving in roughly the same direc- 
tion for some period of time. Movement and heat^ 
would help identify each of the primitive elements 
of the activity (the people). Each figure must be 
tracked and some attempt must be made to recog- 
nize it as human or animal. While it may be difficult 
to conclude with high confidence that all of the fig- 
ures are human, models of group activity will allow 

^ While our methods should extend to sensors such as 
IR, we will focus only on video sensors. 
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us to propagate the label from one primitive object 
to others. A good estimate of force count can then 
be reported. 

In this framework, recognition is a two way process. 
Activity models are used to coordinate and disam- 
biguate information at lower levels. At the same 
time, lower level primitive information is used to 
select hypothetical models. This is similar to the 
alignment approach in computer vision, where a few 
edges taken together can be used to select a model. 
This model can then be rapidly verified by looking 
for evidence in the image. 

3    Specific Research issues 

Our goal is to use AVMs as a basis for monitor- 
ing activities; to support perimeter patrol, visual 
mines, urban security or other surveillance situa- 
tions in which a set of distributed monitors must 
cooperate to detect and follow activities. The main 
components needed are: techniques for seamlessly 
fusing visual information observed at different times 
from different locations; and a framework in which 
to construct activity models so that activity can be 
reliably and efficiently detected. Below we sketch 
our intended approach to these problems. 

Inexpensive, Robust AVMs: Our primary focus 
will be on activity recognition and activity calibra- 
tion, and initially we will work with conventional 
cameras and workstations. We will also leverage ear- 
lier work on on small, active, eye-head systems. Of 
particular relevance to AVMs is our Cheap Vision 
Machine (CVM), an inexpensive, robust, compact 
vision module based on a C32 Digital Signal Process- 
ing chip[7, 6, 5]. The CVM in its typical configura- 
tion is coupled with a small camera, and in many in- 
stances also can pan and/or tilt the camera. Such a 
basic system is very useful for controlled observation 
and monitoring. In addition, we have implemented 
a suite of software modules that run in real-time on 
this platform, including simple edge detection, op- 
tical flow, motion tracking, and stereo vision. We 
have fabricated 15 CVMs, and have incorporated 
some of them into small mobile robots, executing 
real-time obstacle detection and avoidance[10], and 
map construction and navigation, among other com- 
putations. We have also used a CVM as a central 
component of an active eye/head system which can 
detect motion, foveate it and then track the detected 
object in real time (see Figure 1)[18]. Separately we 
have produced an inexpensive real-time trinocular 
stereo, system, and which can be incorporated with 
the CVM into a prototype AVM. 

Given an AVM testbed, we can design and imple- 

Figure 1: (top) A small, robust inexpensive tracking 
system, (middle) The system automatically detects mo- 
tion and foveates. (bottom) Salient features are ex- 
tracted and automatically tracked at video rates. 

ment a distributed system for activity detection and 
monitoring. We envision several components: Cal- 
ibration of the forest - both geometric and ac- 
tivity calibration; Primitive detection - spatial 
detection of primitives, e.g. people, hands, faces, 
vehicles, and temporal detection of patterns of ac- 
tivity involving such spatial primitives; Site models 
- for establishing context to aid in interpretation of 
activities; Hierarchical models of activity - in- 
volving coordinated activities of multiple primitives, 
patterns of activity across temporal sequences. 

Calibration of the forest: To intelligently inter- 
pret data acquired from a distributed set of sensors, 
it is essential that we estimate their geometry. This 
means we need to know the location and orientation 
of each sensor, relative to a world coordinate frame, 
or relative to one another, to do this, we can use 
several sources of information[12, 11, 13, 14, 2, 3]: 
views from the cameras during placement, GPS for 
rough location, correspondence between static fea- 
tures, dynamic feature correspondences (i.e. those 
arising from moving objects), recovery of the affine, 
Euclidean and porjective geomotry of the forest of 
sensors using: 3D parallel lines in the scene pro- 
vide information about the affine structure of the 
scene; 3D translational motions of rigid objects such 
as vehicles also provide the same sort of information; 
known distances, heights, angles or ratios of lengths 
provide information about the Euclidean geometry 
of the scene; 3D nontranslational motions (i.e. with 
a rotation component). 

We will develop a complete system that combines 
some or all of the above features to obtain the best 
calibration possible, together with an estimate of 
its level (projective, affine, Euclidean, intermediate) 
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and of its quality. The system will have to decide 
which information it needs, which information it can 
use, and which information it is lacking. It should 
have a model of its current state to report to the user 
and should be able to send requests to this user for 
information that would allow it to improve its state. 
Such a calibration system will enable us to relate the 
geometry of different sensors to one another and to 
a common whole, a key precursor to detecting and 
classifying activities. 

Primitives detection: To detect moving objects 
reliably, especially in a coordinated manner from 
multiple sensors, we need to bring several fundamen- 
tal tools to bear on this problem. 

First, normal optical flow, (along the image inten- 
sity gradient, will be utilized. Here we gain a great 
deal in simplicity of computation, although the in- 
formation we collect from the images is less rich than 
with full optical flow. This, however, is where we 
can use the fact that the forest of sensors is actually 
a multi-camera stereo system. By having the sen- 
sors collaborate (or in vision terms by exploiting the 
redundancy between motion and stereo) we can ac- 
tually use only the normal flow to derive interesting 
3D properties of the moving object. 

Second, tracking using optical flow and analysis of 
active contours will be used. Currently, such meth- 
ods are used to track single non-overlapping objects, 
while we require the capability to track multiple, 
sometimes occluding or self-occluding objects. A re- 
cent advance in the implementation of the theory 
of nonlinear PDEs is the Osher-Sethian algorithms 
which can deal with evolving planar curves or sur- 
faces whose topology may change over time. This is 
one of the aspects we need in order to solve the dif- 
ficult task of tracking groups of people and vehicles. 
We propose to extend the recent concept of geodesic 
snakes[l] which have been developed for static im- 
ages to the case of dynamic multiple images in order 
to track simultaneously in several views and to be 
able to cope with arbitrary changes of the topol- 
ogy of the tracked silhouettes. The fact that several 
images are available is of immediate benefit since 
tracking can use transfer techniques between images 
(possible due to calibration), thereby simplifying the 
underlying PDEs that drive the active contours. 

Once we have extracted basic primitives of moving 
objects, we can turn to extracting useful information 
about those objects. This will involve both extract- 
ing information directly from the object (i.e. static 
and dynamic models of moving objects) and using 
general information about the scene (i.e. static mod- 
els of the site to be monitored). 

Site Modeling: While some interpretation of ac- 

Figure 2: Given a current adaptive background image 
(UL) we can automatically do change detection (UR) 
and estimate the height of the objects (LL). This allows 
us to accumulate a depth image. 

tivities can occur by simply combining observations 

from multiple views of moving objects, static site 
models can also support activity detection and clas- 

sification. 

We believe that site models at different resolutions 
and accuracy can all contribute to this process: hav- 
ing very detailed, accurate models will clearly be 
of aid, but having approximate models can also be 
useful. In the latter category, we plan to develop a 
qualitative system that determines the rough spa- 
tial relationships of objects present in the scene. 
This system is entirely passive, and will rely on the 
tracking of moving objects to determine occlusion 
boundaries and relative depths. Models can be built 
from a video sequence recorded from a single sta- 
tionary camera, or by combining views from multi- 
ple, roughly calibrated cameras. These models can 
thus be constructed to be consistent from multiple 
views. An example of this is shown in Figure 2 and 

Figure 3. 

More detailed site models can be built by relying 
on the calibration of the forest of sensors[2, 3, 4, 

Figure 3: By tracking moving objects over time we can 
build up depth maps so that current views can then be 
mapped into a coarse 3D model. 
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15]. Depending on the level at which the calibration 
has been achieved, projective, affine or Euclidean 
reconstructions can be obtained. 

A variety of potentially useful 3D reconstructions 
may then be produced ranging from sets of raw 
3D data points reconstructed by intersecting opti- 
cal rays from the sensors, to polyhedral or higher- 
order spline approximations of these points. These 
approximations can be built in several ways depend- 
ing upon the context. A bottom-up approach would 
look for planar faces in the environment and then try 
to connect them into polyhedra using edge informa- 
tion. The planar faces can be detected in the im- 
ages by using the fact that they induce collineations 
(linear projective transformations between those im- 
ages; they can usually be well approximated by 
affine transformations). A top-down approach would 
use some parametric models of buildings, or parts 
thereof and would match them either directly on the 
raw 3D reconstruction or, preferably, onto the im- 
ages themselves. A combination of the bottom-up 
and top-down approaches would probably increase 
speed and robustness. The 3D site model could then 
be labeled as, e.g., buildings, roads, trees. 

Moving object modeling: In conjunction with 
the site models, the results of tracking can be used to 
derive detailed descriptions of moving objects. We 
will use the dynamics of the detected motion to dis- 
tinguish vehicles from people from animals. This 
will be achieved in part by projecting parameter- 
ized models (which can be thought of as a paramet- 
ric 3D snake) into the images where objects have 
been detected, and matching to the outlines of the 
hypothesized object simultaneously in all those im- 
ages. Convergence of the 3D snake will provide ac- 
ceptance or rejection of the hypothesis and, in the 
case of acceptance, information about the 3D shape, 
size and velocity of the the object. Vehicles will in- 
volve rigid motions and simples models. People will 
involve non-rigid, hierarchical, biomechanical mod- 
els. 

Activity calibration: An important issue related 
to the extraction of object models is the calibration 
of observations between sensors. Knowing the geo- 
metric relationship between sensors is an important 
first step, but we need to extend this to deal with ob- 
servations of simultaneous activities, which will act 
to further refine these models. While this approach 
is related to camera calibration, it will be necessary 
to know more than the geometric relationship be- 
tween the cameras. We propose to learn, through 
experience, how the activities in one image appear 
in another. We call this Activity Calibration. It is 
closely related to the Bayesian fusion of information 
from different noisy sensors. Activity calibration is a 

process by which the sensors learn to agree on their 
classifications. 

There are multiple levels of detail in which activity 
calibration can occur. The simplest level involves 
coordination of simple motion between multiple sen- 
sors - relating the position and direction of a single 
moving object between views. The next level of de- 
tail is to use that simple calibration to reinforce the 
interpretation of actions between views. Our system 
will learn, through experience, how to use such mul- 
tiple views to optimize classification of actions by 
utilizing the most salient views, and by combining 
information from multiple views to increase confi- 
dence in the classification. A related issue is to use 
the dynamical signatures themselves, as extracted 
from each sensor, to help establish correspondence 
of people/animals in multiple views. The Mutual 
Information method [17] is a strong candidate for es- 
tablishing and testing these correspondences. Fur- 
ther up the hierarchy of actions would be those in- 
volving multiple moving objects, in which the same 
issue of coordinating interpretation of the multiply 
observed actions between the views will occur. 

Learned Activity Models: 

Given the ability to coordinate and calibrate both 
multiple sensors and the activities recorded by them, 
we can then consider the problem of modeling and 
classifying activities. We propose to construct dy- 
namical models for the activities of interest. Mod- 
els include primitive elements, and relationships be- 
tween them in space, and more importantly in time. 
These models will be initialized by hand, but are 
then adjusted automatically to accurately match 
real situations. We believe that learning through 
repeated observation will be a critical component of 
model building. Learning will tune initially rough 
models so that they are accurate and predictive in 
their domain of application. 

To create such models, we must first detect primi- 
tive elements. Every activity is a temporal sequence 
of actions performed by a number of primitive ele- 
ments: soldiers, jeeps, tanks, etc. These must be de- 
tected and provisionally labeled by class. They must 
also be tracked. These primitives will play the same 
role as an edge does when recognizing a geometric 
object. Primitives need not be detected nor labeled 
with complete accuracy. The activity model will be 
used to correct or discard incorrect primitives. 

To detect the primitive elements, we must consider 
both spatial and temporal detection. For example, 
we need generic methods that can detect people, 
largely independent of position and view; and sim- 
ilarly, we need generic methods that can detect ve- 
hicles, independent of position, view and type of ve- 
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hide. We plan to investigate two approaches: one 
using flexible templates [16, 9], and the other us- 
ing linear combinations of models[8]. Both methods 
will need extensions to deal with temporal coher- 
ence, and model deformations that evolve over time. 

Thus, two of the approaches that we intend to ex- 
plore are: (1) Encoding the ordinal photometric 
structure at different image regions at discrete time 
instants. This, in essence, would represent how the 
qualitative neighborhoods of diff"erent image regions 
are changing over time. (2) Qualitatively encoding 
the trajectories of different image regions. Inter- 
frame matching may be accomplished with an or- 
dinal correlation technique (say, rank-order correla- 
tion). Furthermore, rather than storing precise op- 
tical flow maps, the flow vectors are assigned cate- 

gorical attributes. 

In summary, our goal is to use a forest of AVMs as a 
basis for monitoring activities; to support perimeter 
patrol, visual mines, urban security or other surveil- 
lance situations in which a set of distributed moni- 
tors must cooperate to detect and follow activities. 
We will attack this problem with several key compo- 
nents : Calibration of the forest - both geomet- 
ric and activity calibration; Primitive detection 
- spatial detection of primitives, e.g. people, hands, 
faces, vehicles, etc., and temporal detection of pat- 
terns of activity involving such spatial primitives; 
Site models - for establishing context to aid in in- 
terpretation of activities; Hierarchical models of 
activity - involving coordinated activities of multi- 
ple primitives, patterns of activity across temporal 

sequences, etc. 
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Abstract 

This report summarizes recent progress in video 
event recognition technology for automatically 
monitoring scenes, and outlines objectives of new 
research to improve reliability and extend the func- 
tionality. TI has demonstrated an event recognition 
capability that automatically processes video data 
at 10-20 frames per second and reports the events 
as they occur during long periods of observation. 
For example, as people, vehicles and objects move 
in the field of view, the system recognizes when 
entities enter and exit the scene, when a person de- 
posits an object, when overall imaging conditions 
change, and when someone loiters in a specified 
area. The system has been demonstrated using an 
infrared video camera in darkness and CCD camer- 
as in hghted areas. Ongoing research is enhancing 
the reliability of video motion analysis methods for 
robust performance in outdoor environments, and 
extending event recognition functionality for new 
kinds of events. This research will enable net- 
worked smart cameras for autonomous situational 
awareness of site perimeters, battlefields and other 
urban and rural areas where physical security and 
safety are primary concerns. 

1 Research Objectives 

The overall objective of this research is to develop 
and demonstrate new video processing methods for 
automatically monitoring scenes. Whereas cameras 
of today deliver images and video data, smart cam- 

eras of the future will deliver information derived 
from video data. These smart cameras will commu- 
nicate via local and wide area networks to enable 
many new capabilities. For defense needs, smart 
cameras will autonomously deliver information 
about live events to distributed information sys- 
tems that support battlefield awareness in urban 
and rural environments. Smart cameras will effec- 
tively extend the sight of commanders to remote 
areas by accurately drawing attention to important 
events in progress. 

Specific goals are to develop video surveillance 
and monitoring methods to recognize new kinds of 
events, to improve the reliability of the moving ob- 
ject analysis process, and to demonstrate effective- 
ness of the new methods in performing important 
tasks. New event recognition methods will classify 
motions and interactions of objects into custom 
categories that are important for mission-specific 
tasks. Robust moving object detection and tracking 
is needed to interpret significant changes in video 
sequences as entities move in the field of view, es- 
pecially amidst video changes caused by variations 
in illumination, temperature, wind, and occlusions. 

2 Demonstration and Evaluation 

Proof-of-concept demonstrations will emphasize 
physical security monitoring tasks in and around 
urban area buildings. The outdoor experiments will 
be of particular importance for battlefield aware- 
ness. For example, the infrared image of Figure 1 

The research described in this report is sponsored in part by 
the DARPA Image Understanding Program. 

More information about this research is available at: 
http://www.ti.com/research/docs/iuba/index.html 
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shows a rural monitoring scenario in which a per- 
son has emerged from behind a tree and is walking 
across a grassy area. Exemplary tasks in this sce- 
nario are to reliably determine when a person is in 
the field of view, and to count the number of people 
who cross the field. To achieve practical demon- 
stration goals, a variety of open-ended research is- 
sues must be resolved to some extent. What kinds 
of events can be recognized using a single video 
camera? What contextual information is needed for 
reliable video monitoring in a given situation? This 
research will contribute new insight while develop- 
ing new functionality for smart cameras of the fu- 
ture. 

Realistic video monitoring tasks will be used to 
test new techniques for robust moving object de- 
tection and event recognition, with two kinds of 
metrics for evaluating progress. Physical security 
monitoring experts will be consulted to select 
worthwhile new events to recognize, and to provide 
feedback about the quality of system performance 
compared to current practice. This evaluation will 
identify operational advantages of autonomous 
video event recognition systems. The primary 
quantitative metrics for characterizing performance 
are the error rates of event recognition reports. For 
example, if the task is to capture a single frontal 
view image of each person who loiters in a speci- 
fied area, then non-frontal images, extra frontal im- 
ages, and no frontal image of a loitering person 
would contribute to the error rate. 

Figure 1. Autonomous video monitoring of remote 
areas draws attention to important events in 
progress. 

3 Autonomous Video Surveillance Progress 

In previous TI research [Flinchbaugh and Olson, 
1996], several video monitoring techniques were 
devised to demonstrate feasibility of tracking peo- 
ple and marking their positions on a map display 
[Flinchbaugh and Bannon 1994], recognizing 
whether a person is holding a box [Rao and Sarwal, 
1996], and recognizing some basic actions or 
events (enter, exit, deposit, remove, move, rest) of 
people and objects in the field of view [Courtney, 
1997]. 

During the past year, an Autonomous Video Sur- 
veillance (AVS) system [Olson and Brill, 1997] has 
been developed that integrates the previous tech- 
niques for the first time, and provides several new 
integrated capabilities to monitor TV and infrared 
video cameras: 

Calibration-Free    Image-to-World    Mapping: 
After an operator specifies approximate correspon- 
dences between selected image regions and map 
regions, the system estimates 3D locations of ob- 
jects in the field of view without solving for the 
camera projection matrix or internal calibration pa- 
rameters. 

User Interface for Multiple Cameras: The map- 
based user interface has been extended to operate 
as a server for multiple video processors, allowing 
the operator to visually monitor tracks and event 
reports from multiple cameras, as positions of peo- 
ple and objects are dynamically plotted on a map. 

Object Analysis: The system classifies objects 
that have been deposited in a scene as one of sever- 
al known object types (e.g., box, briefcase, and 
notebook) or as an unknown object. 

Contextual Alarms: The alarm monitoring sys- 
tem allows alarms to be conditioned on type of 
event, location, time of day, and the type of object 
involved in the event. 

Best-View Selection: This method assesses the 
relative quality of two views of a person in a video 
sequence. This allows a video monitoring system 
to select and save a single high-quality digital 
snapshot of each person that enters the field of 
view. 
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Real-Time Operation Without Special Hard- 
ware: All of the above capabilities except object 
analysis run at 10-20 frames per second on a con- 
ventional workstation. This capability enables 
long-term experiments that were previously not 
feasible, and improves tracking and event recogni- 
tion reliability. 

The AVS system has been used to demonstrate fea- 
sibility of generating real-time alarms for specified 
events in three security monitoring scenarios. 
These demonstrations illustrate how physical secu- 
rity can be partially automated to monitor hallway, 
office, and building perimeter areas. In each area, a 
camera provides live video data of scenes in the 
field of view, while the AVS system monitors the 
video to analyze events and signal alarms. 

Hallway Monitoring: Consider the scenario illus- 
trated in Figure 2. The AVS system detects and 
tracks people as they walk in office building hall- 
ways. Alarms are interactively defined for condi- 
tions such as when someone loiters in a specified 
area or enters a particular office. Autonomous visu- 
al assessment provides information to augment 
other information, such as biometric access control 
information at building entrance points. 

Figure 2. In a hallway monitoring demonstration, 
the AVS system tracks people and signals an alarm 
when someone loiters in a specified area. 

Room Monitoring: For the room monitoring sce- 
nario shown in Figure 3, the AVS system maintains 
a situational awareness record of events and signals 
alarms for a variety of specified conditions. For ex- 
ample, an alarm may be specified for events in 
which a person places a briefcase on a table, but 

not if the person leaves a box on the floor. Using 
contextual information such as time of day and ac- 
cess control identification, the system can report 
other alarm conditions that are functions of who is 
in the room and when. 

Perimeter Monitoring: For perimeter monitor- 
ing scenarios, an infrared camera is used in a dark 
area to provide video data to AVS, illustrating the 
ability to monitor areas outside buildings at night. 
For example, the AVS system could monitor a 
building entrance and signal an alarm if someone 
walks by and leaves an object outside the door, as 
illustrated in Figure 4), but not if someone loiters 
without placing an object on the ground. 

J 

Figure 3. Automatic room monitoring provides 
concise reports of activities in the field of view 

■^. ,.M^.r. 

Figure 4. An outdoor site perimeter surveillance 
scenario involves an infrared video camera to 
recognize events in darkness 
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Abstract 
Traditional video surveillance and monitoring 
(VSAM) systems rely on off-the-shelf lenses and 
video cameras that provide Umited fields of view. 
This research program is geared towards the de- 
velopment and appUcation of catadioptric video 
cameras that have unusually large fields of view. 
Our recent work has demonstrated the use of 
catadioptric image formation to achieve a truly 
omnidirectional video camera. In this report, we 
begin by summarizing our results and then pro- 
ceed to outhne our plan for future work. 

1    Introduction 

Today's video surveillance and monitoring 
(VSAM) platforms rely heavily on conventional 
imaging systems as sources of visual information. 
Any conventional imaging system is Umited in 
its field of view. It is only capable of acquir- 
ing visual information through a relatively small 
solid angle subtended in front of the image de- 
tector. It might appear that this field of view 
problem can be resolved by simply using a large 
number of conventional cameras that are packed 
close together, each pointing in a different di- 
rection. This is better than not seeing in some 
directions, but such an approach has two funda- 
mental problems. First, it cannot be compact in 
hardware and processing. Second, and more seri- 
ously, the cameras cannot share the same center 
of projection (viewpoint) which is a geometrical 
requirement that serves as the basis for a large 
body of work in image understanding. 

Imagine that we had at our disposal an image 
sensor that could "see" in all directions from its 
location (single viewpoint) in space, i.e. the en- 
tire "sphere of view". We refer to such a sensor 
as being omnidirectional. It is easy to see that 
this hypothetical device would have a profound 
impact on the nature of VSAM systems and their 

*The prior work summarized in this report was sup- 
ported in parts by the DARPA/ONR MURI Grant 
N00014-95-1-0601, an NSF National Young Investigator 
Award, and a David and LucUe Packard Fellowship. The 
planned research wiU be supported by a DARPA contract 
awarded in response to BAA 96-14. 

capabihties. (a) An omnidirectional sensor would 
aUow the VSAM system to be, at all times, aware 
of its complete surrounding, (b) Tracking a mov- 
ing object would be feasible in software, without 
the need for any moving parts (i.e. no panning, 
tilting, and rotating), (c) UnUke physically di- 
rected cameras, the omnidirectional sensor would 
have no problem simultaneously detecting multi- 
ple objects (or intruders) in distinctly different 
parts of its environment. 

Is it feasible then to turn our hypothetical om- 
nidirectional sensor into reaHty? The answer is 
indeed in the affirmative. This claim is based 
on our very recent result [Nayar, 1997] on the 
use of reflecting surfaces (mirrors) to enhance 
the field of view of conventional imaging systems. 
We have shown that none of the existing wide- 
angle image sensors are omnidirectional in the 
true sense of the word. Our analysis has led to an 
omnidirectional sensor that has a hemispherical 
field of view while maintaining a single viewpoint 
[Nayar, 1997]. Two such sensors can be placed 
back-to-back to acquire the entire sphere of view. 
In addition, our theoretical analysis has revealed 
the entire class of omnidirectional cameras that 
can be reahzed using mirrors [Nayar and Baker, 
1997]. Finally, we have developed a real-time 
software system that can generate scores of per- 
spective video streams (for user selected viewing 
parameters) from a single omnidirectional video 
stream, using no more than a PC [Peri and Na- 
yar, 1997]. 

In this report, we summarize our research re- 
sults on omnidirectional image sensing and de- 
tail our plans for future work. The intended 
goals of this research program are: (a) com- 
pact, low-cost, omnidirectional sensors that can 
serve as the basis for future VSAM platforms, (b) 
real-time software systems that map sections of 
an omnidirectional image to high-resolution per- 
spective, or panoramic views, (c) algorithms to 
fuse image stream data (either omnidirectional 
or traditional) to yield super-resolution data, (d) 
fast algorithms for object detection and activ- 
ity recognition, (e) omnidirectional approaches 
to egomotion estimation and image stabihzation, 
(f) strategies for developing a cooperating net- 
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work of distributed omnidirectional sensors, (g) 
collaboration with the VSAM IFD team to ex- 
plore novel applications of omnidirectional sen- 
sors to real-time surveillance, monitoring, track- 
ing, and recognition, (h) an extension of the lUE 
sensor hierarchy to handle conventional and om- 
nidirectional image streams, and (i) an extension 
of (parts of) the lUE to be CORBA compliant 
and support distributed VSAM algorithms. 

Approaches 
Imaging 

to   Wide-Angle 

We first review the state of the art in wide field- 
of-view image sensing. Detailed surveys can be 
found in [Nalwa, 1996] and [Nayar, 1997]. Exist- 
ing wide-angle imaging systems can be broadly 
classified into the following three categories. 

Rotating Imaging Systems: An obvious so- 
lution is to rotate a traditional imaging system 
about its center of projection. The sequence of 
images acquired by rotation are "stitched" to- 
gether to obtain a panoramic view of the scene. 
Such an approach has been recently proposed by 
a few investigators (see [Chen, 1995], [McMillan 
and Bishop, 1995], [Krishnan and Ahuja, 1993]). 
The first disadvantage of this approach is that 
it requires the use of moving parts and precise 
positioning. The more serious drawback lies in 
the total time required to obtain an image with 
enhanced field of view; this makes the approach 
impractical for real-time applications. 

Fish-Eye Lenses: An interesting approach to 
wide-angle imaging is based on the fish-eye lens 
(see [Oh and Hall, 1987]). Such a lens is used 
in place of a conventional camera lens and has a 
very short focal length that enables the camera 
to view objects within as much as a hemisphere. 
While this works reasonably well, fish-eye lens 
do not ensures that the viewpoint of the imaging 
system is fixed for aU points in the scene, thus 
precluding their use in many traditional lU algo- 
rithms. Further, to view an entire hemisphere, 
the fish-eye lens must be quite large and hence 
expensive. 

Reflecting Surfaces: This class of imaging sys- 
tems use reflecting surfaces (mirrors) to enhance 
the field of view. The shape, position, and orien- 
tation of the reflecting surface are related to the 
viewpoint and field of view in a complex man- 
ner. While it is easy to construct a configuration 
which includes one or more mirrors that dramat- 
ically increases the field of view of the imaging 
system, it is hard to keep the effective viewpoint 
fixed in space. A few diflFerent mirror shapes 
and configurations have been suggested in the 

past [Yagi and Kawato, 1990] [Hong, 1991] [Ya- 
mazawa et ai, 1995] [Nalwa, 1996]. Two features 
of existing implementations are worth noting, (a) 
Those based on planar mirrors require multiple 
imaging devices and digitizers [Nalwa, 1996]. (b) 
Those based on curved mirrors (except for the 
one in [Yamazawa et ai, 1995]) violate the fixed 
viewpoint constraint; the acquired image cannot 
be used to compute perspective images that are 
geometrically consistent. 

3    Summary   of  Research   Re- 
sults 

Our approach to wide-angle imaging lies in the 
last of the abovementioned categories; we in- 
corporate reflecting surfaces (mirrors) into con- 
ventional imaging systems. This is what we 
refer to as catadioptric^ image formation. As 
recently noted in [Yamazawa et al, 1995] and 
[Nalwa, 1996], the resulting imaging system must 
have a single center of projection (viewpoint). 
We show that under orthographic projection the 
curved mirror that produces a single viewpoint 
is parabolic [Nayar, 1997]. Precise orthographic 
projection is indeed feasible [Watanabe and Na- 
yar, 1996] and makes the mapping from the ac- 
quired omnidirectional image to perspective im- 
ages straightforward from a computational per- 
spective. Our analysis has led us to what we 
view as a practical omnidirectional video camera 
[Nayar, 1997]. 

We have implemented several prototypes of 
the proposed camera, each one designed to meet 
the requirements of a specific application. The 
single viewpoint constraint allows us to com- 
pute, distortion-free (perspective) images of the 
scene for any user-selected viewing direction, fo- 
cal length and image size [Nayar, 1997] (see Fig- 
ure 1). In [Peri and Nayar, 1997], a software 
system is described that generates a large num- 
ber of perspective and panoramic video streams 
from a single omnidirectional video input. In ad- 
dition, we have derived a complete class of so- 
lutions for catadioptric image formation [Nayar 
and Baker, 1997] that satisfy the single view- 
point constraints. This general solution allows 
us to evaluate the merits and drawbacks of spe- 
cific mirror shapes, including ones proposed in 
the past. 

^Dioptrics is the optics of refracting elements (say, 
lenses) whereas catoptrics is the optics of reflecting sur- 
faces (mirrors) [Hecht and Zajac, 1974]. The combina- 
tion of refracting and reflecting elements is referred to as 
catadioptrics. 
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4    Research Plan 

liilMflHIil:: 

Figure 1: Software generation of perspective images 
(bottom) from an omnidirectional image (top). Each 
perspective image is generated using user-selected pa- 
rameters, including, vievcing direction (line of sight 
from the viewpoint to the center of the desired im- 
age), effective focal length (distance of the perspec- 
tive image plane from the viewpoint of the sensor), 
and image size (number of desired pixels in each of the 
two dimensions). It can be seen that the computed 
images are indeed perspective; for instance, straight 
lines are seen to appear as straight lines though they 
appear as curved lines in the omnidirectional image. 

We now outline our future work and describe 
the enabling technologies that will be delivered. 
We have partitioned our work into several tasks. 
Multiple tasks will be executed simultaneously. 

4.1 Theoretical Model for  Catadiop- 
tric Image Formation 

As stated earlier, we have completed the devel- 
opment of a few different prototypes of the om- 
nidirectional camera [Nayar, 1997]. In order to 
best exploit the images produced by such a sen- 
sor, an advanced model of image formation is 
needed. Unlike the linear perspective lenses that 
are commonly used, our omnidirectional cameras 
are catadioptric systems that use a combination 
of reflecting elements (mirrors) and refracting el- 
ements (lenses). Such a system can be viewed as 
a cascaded (relayed) optical system, where the 
mirror plays the role of a somewhat unconven- 
tional lens. Using such a modeling procedure, 
we will characterize the following parameters of 
the system: focal length, depth of field, and opti- 
cal resolution in the image plane. In particular, 
optical resolution poses an interesting problem. 
Since the mirror is curved, the effects of coma, 
astigmatism and chromatic aberration need to 
be studied [Born and Wolf, 1965]. The end result 
of this analysis will be a sophisticated, modular 
image formation model. The components of this 
model will serve as the basis for accurate gener- 
ation and analysis of computed perspective and 
panoramic images. 

4.2 Generation of High-Quality Novel 
Views 

We already have a working implementation of a 
software system that creates several perspective 
and panoramic images at video-rate from a single 
omnidirectional video stream [Peri and Nayar, 
1997]. The system called OmniVideo uses several 
advanced software design techniques to generate 
multiple perspective and panoramic video ports 
using no more than a digitizer and a Pentium 
Pro PC. The viewing parameters (viewing direc- 
tion, magnification and image size) are selected 
interactively by the user via an input device such 
as a joystick. The present implementation sim- 
ply maps points in the omnidirectional image to 
points in any desired perspective or panoramic 
image (see [Peri and Nayar, 1997]). 

Our goal is to use the image formation model 
described in section 4.1 to significantly enhance 
the quality of the computed perspective images. 
This win be done in three stages, (a) We will use 
interpolation schemes that exploit the spatially 
varying mapping between omnidirectional and 
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perspective images. This is different from the 
traditional approach of linear shift-invariant in- 
terpolation [Mintzer and Braudaway, 1995]. (b) 
We will use our model for coma and astigmatism 
to deblur the images. This will require the devel- 
opment of a linear shift-variant filter [Sawchuck, 
1974] that will sharpen the images without in- 
troducing aliasing artifacts, (c) The computed 
images will be further processed to enhance crit- 
ical features using extensions to the techniques 
developed in [Boult and Wolberg, 1993]. Since 
our goal is real-time surveillance and monitoring, 
novel data structures will be employed to achieve 
the desired efficiency in image generation. This 
technology will enable the VSAM system to use 
high-quaUty pure perspective images of areas of 
activity. The tradeoffs between computational 
speed and image quafity will be evaluated. 

4.3    Evaluation     of     Omnidirectional 
Video Processing 

The performance evaluation of the sensor and the 
supporting software system wiU be conducted at 
two sites, Columbia University and Lehigh Uni- 
versity. In the first phase, we will evaluate the 
quality of computed perspective images by study- 
ing the image quality of known features such as 
lines and corners. One objective here is to de- 
termine the quality of the geometric mapping 
and its adherence to finear perspective projec- 
tion. This wiU be done by computing lines in 
the perspective images and evaluating their lin- 
earity. In addition, features such as corners will 
be examined to estimate the quality of the inter- 
polation and enhancement schemes outlined in 
section 4.2. The image structure in the area of 
the feature will reveal the accuracy of the com- 
puted images as well as the presence/absence of 
undesirable effects such as afiasing and blurring. 

The second phase of our evaluation will be 
conducted at a vision task level. Here, the pur- 
pose is to estimate the performance of a high 
level vision task in the context of omnidirectional 
sensing. This evaluation wiU use the appearance- 
based matching system, SLAM[Nene et al, 1994] 
(probably the lUE port thereof), in an off-fine 
mode. A preprocessing step will extract regions 
of interest, defined as large regions moving with 
respect to the background. The system wiU be 
trained for static "recognition" using the per- 
spective projection computed from the regions 
of activity. To keep the experiments reasonable 
in time/labor demands, the recognition database 
wiU be kept small (10-20 objects) but will include 
objects closely related to our intended appUca- 
tions, e.g. various (plastic models of) ground/air 
vehicles. Errors in both recognition rate and pose 
estimation will serve as our performance metrics. 

4.4 Demonstration of the Omnidirec- 
tional System to the VSAM IFD 
Team 

Subsequent to performance evaluation, we plan 
to demonstrate a complete system (prototype 
sensor and supporting software) to the VSAM 
IFD team to obtain feedback that we can use 
to maximize the appficabifity of our results. The 
process of interacting with the IFD team wiU con- 
tinue throughout the proposed research. 

4.5 Algorithms for Omnidirectional 
Flow Fields 

Our goal is to address VSAM appfications where 
the sensor is static as well as dynamic. In both 
cases, detection of motion is of utmost impor- 
tance. To this end, we will study in detail the 
computation of optical flow fields from omni- 
directional image sequences. At first thought, 
it may appear that standard flow computation 
methods may be directly appficable. Though 
rough estimates of flow are indeed obtainable us- 
ing standard methods, accurate flow fields would 
require a more careful analysis. For instance, 
the optical flow constraint equation [Horn and 
Schunck, 1981] that is in wide use needs to be re- 
visited in the context of omnidirectional imagery. 
This is because, under translation or rotation, a 
scene point not only shifts in the omnidirectional 
image but also distorts. The extent and type of 
distortion is solely dependent on the location of 
the point in the image. 

Using our catadioptric image formation model, 
we will derive a new set of optical flow constraint 
equations. These equations will be applicable not 
only to the particular sensor we have developed 
but also others that seek to capture omnidirec- 
tional images, such as, fish-eye lenses and hy- 
perboloidal mirrors. We expect our analysis to 
result in a novel framework for the computation 
of flow fields using unconventional sensors. Using 
this framework, we wiU develop algorithms for ro- 
bust and precise optical flow estimation as well 
as more efficient ones for computation of normal 
flow fields. 

4.6 Novel Algorithms for Egomotion 

Of particular interest to mobile VSAM applica- 
tions is the computation of egomotion and the 
detection of local object motions. All egomotion 
algorithms in use today rely on the data collected 
from small fields of view. In such cases, all of 
the 3D motion vectors lie "in front" of the sen- 
sor. This greatly fimits the motion information 
contained in the acquired image sequences and 
hence restricts what can be computed from the 
sequences. Omnidirectional image sequences are 
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expected to have a profound impact on the way 
we view motion estimation. Since a single sensor 
is capable of capturing a hemispherical field of 
view, translation and rotation can be calculated 
with much higher robustness. Novel algorithms 
wiU be developed for egomotion based on the 
spherical representation of flow fields [FermuUer 
and Aloimonos, 1995], [Nelson and Aloimonos, 
1988], [Yen and Huang, 1983]. Of particular in- 
terest to us is an algorithm that will estimate 
egomotion from normal flow rather than actual 
flow, since normal flow can be determined more 
efficiently. 

4.7 Omnidirectional Image Stabiliza- 
tion 

Present algorithms for motion detection [Irani 
and Anandan, 1996] and image stabilization [Yao 
et a/., 1996] are all based on the perspective pro- 
jection model. Using our catadioptric models for 
omnidirectional image formation, we will pursue 
significant modifications to existing algorithms. 
Of particular interest will be stabilization algo- 
rithms that use horizon features; algorithms for 
which the omnidirectional sensors are particu- 
larly wen suited. These algorithms are known to 
have theoretical advantages but have had limited 
utihzation in the past because small field of view 
cameras are not guaranteed to see the horizon. 

The developed optical flow, egomotion and im- 
age stabilization algorithms will enable a mobile 
VSAM system to automatically detect areas of 
activity (regions of interest) in the omnidirec- 
tional image. Each region of activity will then 
be mapped to a perspective image, scaled to a 
size suitable for visual analysis and enhanced us- 
ing our interpolation and deblurring techniques. 
These algorithms wiU allow an omnidirectional 
VSAM system to detect and track multiple re- 
gions of interest that are in distinctly different 
parts of its large field of view. 

4.8 Super-Resolution Techniques 
Based on Temporal Sequences 

In the context of VSAM, there is an inherent 
tradeoff: field-of-view of the omnidirectional sen- 
sor versus resolution. We propose the develop- 
ment of advanced algorithms that extract high 
spatial and intensity resolution from multiple 
omnidirectional images. We propose fusing mul- 
tiple frames with direct robust estimation tech- 
niques, such as, averaging the central quintile of 
image data or reweighted least squares. Vari- 
ous robust estimation techniques wiU be evalu- 
ated and compared with the previous approach. 
We also use more sophisticated image reconstruc- 
tion techniques that include a model of sensor 
blur.   The issue of sub-pixel registration, while 

well studied in the general context [Boult and 
Wolberg, 1993], also needs refinement for omni- 
directional sensors. 

A second version of the super-resolution al- 
gorithm will be developed with more explicit 
modeling of matching, sensing, and imaging "as- 
sumptions" and desired feature characteristics. 
It will fit the data using robust estimation (non- 
linear M-estimation with dynamic reweighting). 
We will also develop a super-resolution approach 
which is less sensitive to view and lighting varia- 
tions. 

4.9 Omnidirectional VSAM Systems 

Our super-resolution imaging, stabilization and 
tracking algorithms will allow us to robustly de- 
tect moving objects. Each time such an object 
is detected, it will be clipped out of the omni- 
directional image, mapped into its pure perspec- 
tive version, compressed and stored with a time 
stamp. A remote observer will be automatically 
notified when one or more regions of change are 
detected. This would permit a remote observer 
or an image analyst to focus attention on the 
regions of change. A graphical user interface 
will be developed that allows the user to inter- 
act with the omnidirectional image and regions of 
change. For instance, a stored region of interest 
can be zoomed into using the proposed perspec- 
tive image generation software and enhanced in 
quality using the proposed super-resolution tech- 
niques. In addition, we wish to explore the ap- 
plication of appearance-based recognition algo- 
rithms [Murase and Nayar, 1995] [Nayar et al., 
1996] for identification of prestored objects, mo- 
tions, and activities. We have already begun the 
development of algorithms for temporal appear- 
ance matching [Nayar et al., 1996] that we expect 
will be more broadly applicable to activity detec- 
tion than previous ones. The above algorithms 
will be developed with feedback from the VSAM 
IFD team. 

4.10 Omnidirectional   Platform   with 
Active Head 

Though our image enhancement and super- 
resolution algorithms will improve the quality of 
the detected images, we are bound to face VSAM 
applications where it is desirable to image regions 
of activity with very high resolution. For such 
cases, we propose a platform configuration that 
includes an omnidirectional sensor as well as a 
very fast active head. The active head will in- 
clude a single high-resolution camera attached to 
a motorized zoom lens. The sole purpose of the 
head is to point and zoom into regions of activ- 
ity detected by the omnidirectional sensor. The 
control scheme used to drive the platform will 
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be a master-slave one where the active camera 
is driven by commands from the omnidirectional 
one. This configuration is expected to have sig- 
nificant advantages. The omnidirectional sensor 
will ensure that the VSAM system is devoid of 
blind-spots. At the same time, the active camera 
captures regions of activity with the highest pos- 
sible resolution and focus. The super-resolution 
algorithms will also be available to the active 
camera. 

4.11 "Live"  Image  Sequences  in  the 
lUE 

To make our sensors and algorithms readily ac- 
cessible to users, we wish to use the lUE [Dolan 
et G/., 1996] [Mundy et ai, 1992] as the sup- 
porting environment. A significant problem to 
be addressed to support VSAM in the lUE is 
an extension to support "continuous" image se- 
quences, bounded only by the amount of mem- 
ory the programmer wants to allocate to them. 
We propose to extend the lUE sensor hierarchy, 
and then to implement a new class: streaming- 
sensors which will support both polling for new 
image and event-driven processing. The latter 
wiU require adding multi-threading to the lUE (a 
non-trivial extension). Because of current differ- 
ences in operating support for multi-threading, 
the proposed work wiU take place only for the 
Solaris version of the lUE, with ports to other 
systems optional, depending on demand, fund- 
ing and the OS support for lightweight threads. 

4.12 Cooperating Distributed Sensors 
in the lUE 

Distributed processing/communication among 
VSAM applications is going to be a neces- 
sary requirement for tomorrows battlefields and 
CORBA is emerging as a central component in 
distributed object-oriented applications. We will 
extend the lUE to have a CORBA interface and 
support the distributed computations need for 
the later years of our project. We wiU initially de- 
sign and implement the CORBA interface needed 
for our omnidirectional sensor and VSAM ap- 
plications. We win also design the interface for 
other lUE objects and, if resources permit, wiU 
implement them as well. 

4.13 Infra-red   Omnidirectional   Sen- 
sors 

An interesting problem we wish to explore is the 
development of omnidirectional sensors that use 
IR image detectors. Such a sensor would en- 
able omnidirectional VSAM at low-light levels 
and during the night. The design of such a sen- 
sor poses several challenges, (a) The thermal en- 

ergy needs to be reflected by the reflecting sur- 
face into the imaging device. This problem can 
be approached by using a reflecting surface whose 
temperature is held constant, (b) The more seri- 
ous problem involves the effective focal length of 
existing thermal sensors. The optical parameters 
of IR sensors differ significantly from those of vis- 
ible light sensors. We would like to investigate 
these differences and come up with the design 
of an IR omnidirectional sensor. If the design 
proves feasible, an IR sensor will be developed 
and evaluated. 

5     Conclusion 

This research project is geared towards the de- 
velopment of VSAM systems that are based on 
omnidirectional video cameras. Our initial re- 
sults indicate that the our sensors can have a 
far-reaching impact on VSAM. Though our pri- 
mary objective here is to advance the state-of- 
the-art in VSAM technology, our sensors can be 
exploited in almost any imaging application, in- 
cluding, automatic target recognition, real-time 
collection of wide-angle world maps, and au- 
tonomous navigation. As in our past work, tech- 
nology transfer is of key interest to us. In the 
current project, this will be realized through the 
incorporation of our sensor models and temporal 
processing algorithms into the lUE. 
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Abstract 
This report summarizes the research effort at 
the University of Wisconsin in support of the 
VSAM Program. Our primary goal is to develop 
technologies so a user can interactively visualize 
and virtually modify a 3D environment from a 
set of images. Current approaches are described 
for image-based scene rendering, scene manipu- 
lation, and appearance modeling. 

1    Introduction 

The ultimate goal of this project is to develop 
image-based methods that will enable a user 
to control the motion of a virtual camera so 
as to visualize a real 3D environment for ap- 
plications such as facility monitoring and mis- 
sion rehearsal. This technology will enable the 
rapid creation of an interactive visualization ca- 
pability in which new views are synthesized by 
adaptively combining or "steering" a set of in- 
put images of the environment. 

Our approach is image-based in the sense that 
all input and output about the scene is via im- 
ages. Since the desired results are images this 
means that techniques should focus on produc- 
ing realistic images, not feature space descrip- 
tions for classification, 3D model building, or 
other traditional computer vision goals. 

The major challenge of this formulation is to 

*The support of the Defense Advanced Research 
Projects Agency, and the National Science Founda- 
tion under Grant No. IRI-9530985 is gratefully 
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create ways of combining a set of images, ob- 
tained from a fixed set of viewpoints, so that a 
user can interactively survey the real environ- 
ment by controlling a virtual camera. To create 
a compelling sense of visual presence, the fol- 
lowing user capabilities are key: (1) can interac- 
tively change viewpoint with respect to the 3D 
environment, (2) can render the environment 
photorealistically at high resolution, frame rate 
and quantization rate, and (3) can effect virtual 
changes in the acquired environment. 

Our research activities are directed towards ac- 
complishing these three capabilities of interac- 
tive virtual camera control, photorealistic ren- 
dering, and virtual scene modification opera- 
tions. This report summarizes current activ- 
ities related to these issues, emphasizing two 
new approaches to view synthesis. The first 
is called view morphing and treats primar- 
ily the two-input-view case. That is, given a 
pair of images of a static 3D scene, interpolate 
in-between views. The second approach treats 
the general case of synthesizing views over a 
wide range given an arbitrary number of input 
views, widely distributed around the environ- 
ment. This voxel coloring approach recon- 
structs a photometrically-consistent volumetric 
representation of the scene, which is then used 
to render new views. The construction of this 
representation also allows the user to interac- 
tively modify the scene through image editing 
operations, and this capability, called plenop- 
tic image editing (joint work with the Univer- 
sity of Rochester), is also briefly summarized. 

63 



Figure 1: View morphing in three steps. Two original images (bottom left and right) of a bus are 
first prewarped (top left and right) to make the cameras parallel, and then morphed 
to create an in-between view (top middle). The desired gaze direction of the morphed 
view is established with a postwarp operation (bottom middle). 

2    View Synthesis from Two Views 

Recently, a number of methods have been de- 
veloped by researchers in computer vision and 
computer graphics for synthesizing new views 
from one or more images. Our approach, 
called view morphing [Seitz and Dyer, 1996a, 
Seitz and Dyer, 1996b, Seitz, 1997, Seitz and 
Dyer, 1997c], builds on existing image morph- 
ing methods for creating compelling image se- 
quences that smoothly transform one image into 
another. The method synthesizes images corre- 
sponding to new viewpoints by performing sim- 
ple image warping operations. This work ex- 
tends to perspective projection our earlier re- 
sults [Seitz and Dyer, 1995]. 

The fundamental research questions associated 
with this area are, when and how can physically- 
correct new perspective views of a 3D scene be 
predicted from a set of basis views? With re- 
spect to the first question we have shown that 
when two basis images have the same scene 
points visible in each, a constraint we call mono- 
tonicity, this is sufficient to uniquely predict the 
appearance of the scene for all in-between view- 
points on the line segment connecting the input 
cameras' optical centers. This is true despite 
the fact that there may not be sufficient infor- 
mation in the pair of images to uniquely recon- 
struct the 3D scene. In other words, while any 
number of distinct scenes could have produced 
the given input images, the monotonicity con- 
straint guarantees that each of those scenes will 

project to the same set of in-between images. 

To answer the "how" question we have devel- 
oped extensions to image morphing that cor- 
rectly handle 3D projective camera and scene 
transformations. View morphing works by pre- 
warping two input images, computing an image- 
morph (image warp and cross-dissolve) between 
the prewarped images, and then postwarping 
each in-between image produced by the morph. 
The prewarping step corresponds to changing 
the orientations of the two input views, but 
not the camera positions. The images are 
projected onto a common image plane that 
is parallel to the line between the two cam- 
eras' optical centers. From this special parallel 
camera configuration, we have shown that im- 
age morphing (i.e., linear image interpolation) 
produces physically-correct perspective views. 
These views correspond to positioning a virtual 
camera on the line between the original cam- 
eras, and orienting the camera parallel to the 
prewarped views. The postwarping step warps 
the morphed image so as to change the orien- 
tation of the virtual camera. This sequence of 
steps is illustrated in Figure 1. 

The major contributions to view synthesis that 
are achieved by view morphing include: 

• Ability to synthesize image sequences cor- 
responding to linear camera motion be- 
tween two basis images' known or unknown 
camera positions (with the orientation of 
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the camera along that path specifiable by 
the user) 

• Can compute smooth transitions between 
any two images, regardless of source or con- 
tent, producing simultaneous transitions in 
viewpoint, shape and color; consequently, 
the approach can perform both rigid and 
non-rigid transformations, and use a vari- 
ety of types of input from photographs to 
drawings 

• Does not require knowledge of 3D shape 
nor does it need calibrated cameras 

• When a generic visibility assumption holds, 
which we call monotonicity, view morphing 
guarantees a unique, physically-correct so- 
lution for all viewpoints on the line between 
the optical centers of two input cameras 

• When visibility changes occur between ba- 
sis views, the monotonicity assumption is 
violated, but image quality degrades only 
locally and can be minimized by using dif- 
ferent feature correspondences 

• When a stronger version of monotonicity 
holds for a set of basis views, new views can 
be synthesized for all viewpoints within the 
convex hull of the input cameras' optical 
centers 

• Efficient implementation of the algorithm is 
possible because many steps are ID scan- 
line operations 

2.1    Evaluation Plan 

Research results related to view morphing will 
be demonstrated and evaluated by both theoret- 
ical analysis and experimental testing of proto- 
type systems. With respect to theoretical prop- 
erties of interest, view morphing is currently 
Hmited in that it cannot directly cope with sig- 
nificant changes in visibility, is difficult to use 
for synthesizing a large range of views of a scene 
from many basis images, and can require solv- 
ing the correspondence problem for views that 
are far apart. These issues will be investigated 
further. In addition, we intend to continue the 

development of our view morphing system im- 
plementation in order to decrease the process- 
ing time, require less user interaction, and im- 
prove the realism of the synthesized views. Ex- 
perimental evaluation using VSAM-related data 
sets will be performed. 

3    View Synthesis from Many Views 

To synthesize new views from arbitrary camera 
viewpoints given a set of basis images is a diffi- 
cult unsolved problem. One important require- 
ment is the ability to integrate information from 
images containing significant differences in the 
parts of the scene that are visible. Second, since 
the desired results are photorealistic new views, 
methods must be "dense" so as to render images 
containing accurate texture and color informa- 
tion at every pixel, not a sparse set of feature de- 
scriptions. A third requirement is scalability— 
the capability for combining an arbitrary num- 
ber of basis views, with corresponding improve- 
ments in the quality of the synthesized views. 

With these requirements in mind, we are de- 
veloping a new approach, called voxel color- 
ing [Seitz and Dyer, 1997a, Seitz and Dyer, 
1997b], that reconstructs the "color" (radiance) 
at points in an unknown scene. In our initial 
study we assume a static scene containing Lam- 
bertian surfaces under fixed illumination so the 
radiance from a scene point can be described 
simply by a scalar value, which we call color. 

Coping with images with large changes in visi- 
bility means we must solve a difficult correspon- 
dence problem between images that are very 
different in appearance. Rather than use tradi- 
tional approaches such as stereo, we use a scene- 
based approach. That is, we discretize 3D scene 
space into a set of voxels that are traversed and 
colored in a special order. The advantage of this 
is that simple voxel projection determines corre- 
sponding image pixels. The main disadvantage 
is that this requires precise camera calibration 
to achieve the necessary accuracy. 

We have shown that certain voxels have an in- 
variant color, constant across all possible in- 
terpretations of the scene that are consistent 
with the basis images.   This leads to a volu- 
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(b) (c) 

Figure 2: Reconstruction of a dinosaur toy. (a) One of 21 original images taken from sliglitlj- above 
the toy while it was rotated 360°. (b-c) Two views rendered from the reconstruction. 

metric voxel coloring algorithm that labels the 
color-invariant scene voxels based on their pro- 
jected correlation with the input images. Cor- 
relation consistency will work only if we can 
determine when a voxel in fact corresponds to 
the projected pixel in an image, or whether the 
pixel corresponds to a different (closer) scene 
point, which occludes the current voxel. To 
solve this visibility problem, we introduce a geo- 
metric constraint on the input camera positions 
that enables a single visibility ordering of the 
voxels to hold for every input viewpoint. This is 
a relatively weak constraint in that it allows sig- 
nificant freedom in the placement of the input 
cameras, but it enables the visibility problem 
to be solved by simply traversing and labeling 
the voxels in increasing distance from the input 
cameras. Furthermore, the method is indepen- 
dent of scene complexity. 

Putting this all together, the voxel coloring al- 
gorithm works as follows. The scene is initial- 
ized to a volume of voxels. These voxels are 
traversed layer-by-layer, where a layer contains 
all voxels that are equidistant from the cameras' 
convex hull. The layer closest to the cameras is 
visited first, and so on until the layer of voxels 
that is farthest from the cameras is considered. 
A voxel is processed by projecting it into each 
basis image and determining how well its corre- 
sponding image pixels' colors are correlated. If 
the correlation is above a threshold, the voxel 
is added to the reconstructed shape and labeled 

with the color of its pixels. 

The final result is a dense, volumetric recon- 
struction, with associated color information, of 
scene surface points that is guaranteed to be 
consistent with all the basis images, regardless 
of visibility changes and scene concavities. Us- 
ing this reconstruction, the scene can be ren- 
dered from any view by projecting the voxels in 
the desired direction. Figure 2 shows two views 
rendered using the reconstruction produced by 
a set of 21 input images. 

The major contributions to view synthesis that 
are achieved by voxel coloring include: 

• Reconstructs a dense description of scene 
surface points and associated color (radi- 
ance) values, which can be used for render- 
ing arbitrary new views 

• Uses color invariance to ensure that all vox- 
els reconstructed are consistent with all of 
the basis images 

• Allows input views containing large visibil- 
ity differences by operating in scene (voxel) 
space and using a weak camera position 
constraint 

• Permits widely separated input camera po- 
sitions 

• Scales up directly to an arbitrary number 
of basis views, with processing time linear 
in the number of input images 
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The reconstruction produced by voxel coloring 
can also be used for virtually modifying the re- 
constructed scene by image editing operations 
such as image painting, scissoring, and mor- 
phing. We call this plenoptic image edit- 
ing [Seitz and Kutulakos, 1997] because the 
user can edit any one image and those changes 
are propagated automatically, in a physically- 
consistent way, to all other images as if the 3D 
environment had itself been modified. This al- 
lows a user to visualize how edits to an object 
via one image will affect the object's appearance 
from other viewpoints. The key component in 
realizing these operations is the reconstruction 
produced by voxel coloring. While preliminary 
results are encouraging, there are many open 
research problems that need to be addressed to 
make this approach more effective. 

3.1    Evaluation Plan 

Research results related to voxel coloring will be 
demonstrated and evaluated by both theoretical 
analysis and experimental testing of prototype 
systems. Improved methods are needed for han- 
dling large numbers of images, for example from 
a video stream, which are uncalibrated. Exten- 
sions are also needed to handle non-Lambertian 
scenes and dynamic scenes. The plenoptic im- 
age editing framework needs to be explored fur- 
ther to determine the types of scene modifica- 
tion operations that would be useful for VSAM 
applications. We plan to continue developing 
our system implementation so that the pho- 
torealistic quality, processing speed, scalabil- 
ity to large numbers of basis views, and large 
range of feasible output views are experimen- 
tally demonstrable. Also, can the method pro- 
duce smooth and natural scene visualizations 
corresponding to a moving camera? Synthe- 
sized view quality assessment will be performed 
if data sets with ground truth are available. 
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Abstract 
Image Understanding research in pose estima- 
tion, object recognition, various forms of learn- 
ing, predictive techniques, image-based view 
synthesis is continuing. The video surveillance 
and monitoring project we are just starting will 
tie together several of these techniques but re- 
quires new work. 

The objective of the most recent lU research at 
Rochester is to enhance battlefield awareness through 
the augmentation of surveillance and monitoring capa- 
bilities by the automatic recognition of objects and ac- 
tivities, and then by presenting graphic presentations of 
them in live video. Several research questions arise: 
the familiar object- and activity-recognition problems; 
the problem of real-time tracking of natural features and 
the determination of the state (pose and velocity) of 
remote objects; the representation of objects for com- 
puter processing; the registration of graphic objects with 
live video; the role of prediction in robust recognition 
schemes. We evaluate our work by comparision with 
other competing schemes, by quantifying how each mod- 
ification or technique affects system performance, and by 
quantifying the reliability, speed, effectiveness, and ver- 
satility of demonstration integrated systems. 

For more information: 
http://www.cs.rochester.edu/ 
http://www.cs.rochester.edu/darpa/main.html 

1     3-D Object Recognition with 
Generalization 

Appearance-based object recognition methods have re- 
cently demonstrated good performance on a variety of 
problems. However, many of these methods either re- 
quire good whole-object segmentation, which severely 
limits their performance in the presence of clutter, occlu- 
sion, or background changes; or utilize simple conjunc- 
tions of low-level features, which causes crosstalk prob- 
lems as the number of objects is increased. We have 
been developing an appearance-based method that uti- 
lizes intermediate-level features, in this case automati- 
cally extracted 2-D boundary fragments, to provide nor- 
malized keys and descriptors which alleviate these prob- 
lems. The work is described more fully elsewhere in this 
Proceedings. 

We have done various large-scale performance tests, 
involving, altogether, over 2000 separate test images 
ranging from sports cars and fighter planes to snakes and 
hzards over full spherical or hemispherical ranges (and 
planar scale, translation and rotation). In one experi- 
ment, we investigate performance scaling with increasing 
number of objects, and observe a decline in recognition 
accuracy from 99% to 97% as the number of objects in- 
creases from 6 (11 hemispheres) to 24 (34 hemispheres). 
In a second experiment, we investigate the effect of clut- 
ter on the performance of the recognition system. The 
third was a generic recognition experiment, where the 
system is trained on several objects in each of several 
several classes, (e.g. planes, snakes, cars), and asked to 
classify example objects from the same generic classes, 
but not in the training set. We get about 93% accuracy 
for 5 classes. 

Appearance-based methods are a useful technique; 
however because matches are generally made to repre- 
sentations of complete objects, these methods tend to 
be sensitive to clutter and occlusion and require good 
global segmentation for success. Hough transform meth- 
ods (and other voting techniques) allow evidence from 
disconnected parts to be effectively combined, but the 
size of the voting space increases exponentially with the 
number of degrees of visual freedom. 

Our idea is to represent the visual appearance of an 
object as a structured combination of a number of semi- 
local features, or fragments. Under different conditions 
(e.g. lighting, background, changes in orientation etc.) 
the feature extraction process will find some of these, 
but in general not all of them. However, we show that 
the fraction that is found by feature extration processes 
is frequently sufficient to identify objects in the scene. 
This is how we cope with the notorious segmentation 
problem. 

Our semi-invariant local objects are called keys. A 
key is any robustly extractable part or feature that has 
sufficient information content to specify a configuration 
of an associated object plus enough additional parame- 
ters to provide efficient indexing and meaningful verifi- 
cation. For rigid objects, configuration generally implies 
location and orientation, but more general interpreta- 
tions can be used for other object types. Semi-invariant 
means that over all configurations in which the object 
of interest will be encountered, a matchable form of the 
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Figure 1: The type of object used in the scahng test set 

feature will be present a significant proportion of the 
time. We currently make use of a single key feature type 
consisting of curve orientation templates normalized by 
robust boundary fragments. We call these features curve 
patches. 

We use a hashed database (an associative memory) 
organized so that access via a key feature evokes associ- 
ated hypotheses for the identity and configuration of all 
objects that could have produced it. These hypothesis 
are fed into a second stage associative memory, keyed by 
the configuration, which maintains a probabilistic esti- 
mate of the likelihood of each hypothesis based on statis- 
tics about the occurrence of the keys in the primary 
database. The idea is similar to a multi-dimensional 
Hough transform without the space problems. 

The basic recognition procedure consists of four steps. 
First, potential key features are extracted from the im- 
age using low and intermediate level visual routines. In 
the second step, these keys are used to access the as- 
sociative memory and retrieve information about what 
objects could have produced them, and in what relative 
configuration. The third step uses this information, in 
conjunction with geometric parameters factored out of 
the key features such as position, orientation, and scale, 
to produce hypotheses about the identity and configura- 
tion of potential objects. Finally, these hypotheses are 
themselves used as keys into a second stage associative 
memory, which is used to accumulate evidence for the 
various hypotheses. 

The system can be trained efficiently from image data 
(Fig. 1). The process is efficient, and essentially runs 
in time proportional to the number of pairs stored in 
memory. Speedups are possible since the algorithm and 
database are readily parallelized [Hunt and Nelson 1996]. 

The notion of generic visual classes is ill defined sci- 
entifically. What we have is human subjective impres- 
sions that certain objects look alike, and belong in the 
same group (e.g. airplanes, sports cars, spiders, teapots 
etc.) Unfortunately, human visual classes tend to be 
confounded with functional classes, and biased by expe- 
rience and other factors to an extent that makes formal- 
izing such classes, even phenomenologically, very diffi- 
cult. On the other hand, the subjective intuition is so 
strong, the early evidence of correct "generalization" so 
intriguing, and the payoffs so great, that we are looking 
into the matter seriously. The recognition system was 
trained on a subset of each class, and tested on the re- 
maining elements. The training sets consisted of 4 cups, 
2 airplanes, 2 jet fighters, 4 sports cars, and 4 snakes. 
We would have liked to have more samples of the planes, 
but local toy stores had no diversity. The performance is 
best for the cups, planes, and sports cars, all at around 

95%. The fighter planes were the worst, the reason being 
that there is quite a bit of difference between the exem- 
plars in some views in terms of armament carried, which 
tends to break up some of the lines in a way the current 
boundary finder does not handle. One of the test cases 
also has a camouflage pattern on it. 

Future plans include adding enough additional objects 
to push the performance below 75%, both to observe the 
functional form of the error dependence on scale, and 
to provide a basis for substantial improvement. We also 
plan to complete an evaluation of performance in the 
presence of clutter of various forms. Finally, we want to 
experiment with adapting the system to allow fine dis- 
crimination of similar objects (same generic class) using 
directed processing driven by the generic classification. 

2    Image Based View Synthesis 

We have devised and demonstrated an image-based 
method that can produce images of arbitrary animated 
motions of an articulated agent from a model learned 
by just watching the agent performing some other un- 
related task. No camera calibration, kinematic or 3D 
CAD model is needed. Instead the visual-model estima- 
tion (above) is combined with recent appearance-based 
visual representations. The basic idea (fig. 2) is to pa- 
rameterize the appearance changes in motor space (e.g. 
joint angles of a robot or human) instead of a visual 
space (e.g. affine or projective). Appearance changes 
are related to motor space in a two stage process. First 
the changes in the input intensity image are converted 
into a compressed representation in an appearance space 
using either a "Nayar"-type linear subspace or a motion- 
based method. Second the visual-motor model between 
the changes in appearance space and motor space is 
learned. To generate movies the process is reversed, and 
a user-supplied motor program is converted to appear- 
ance space and then to images. The method can be 
used both on-line, augmenting real-time live video with 
synthesized images based on an instantaneous, on-line 
estimated model, or off-fine, synthesizing movies from a 
previously learned model. 
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Figure 2: Outline of our method. 

In current work we have been able successfully to esti- 
mate the visual motor models for up to three joint artic- 
ulated robot and human arras (Fig. 3, and a simulated 
movie at 
http://www.cs.rochester.edu/u/j ag/ 
SimAct/SimAct.html} 

and 
{\tt   . ./handinoviel_l_l .mpg} 

), and use these models to simulate arbitrary motions. 
Future work includes using visual representations based 
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on modern image sequence compression techniques, and 
trying to extend the method to more complex agents. 

Figure 3: Simulation of a human arm. 

3    Video-Based 3D Scene Capture and 
Editing 

An increasing number of applications, from battlefield 
awareness to scene visualization and interior design, re- 
quire building and interacting with photorealistic models 
of physical 3D objects and environments. The availabil- 
ity of low-cost, high-performance rendering and video 
acquisition hardware promises a new generation of mul- 
timedia tools and techniques for this purpose that use 
photographs or video images as input, exploit their abil- 
ity to interact with the user or the user's environment, 
and are robust and cost-effective. To this end, we are 
investigating novel scene representation and reconstruc- 
tion methods whose goal is to make the digital capture 
and manipulation of physical 3D scenes as easy and effi- 
cient as the task of digitizing and editing a single color 
photograph with Adobe Photoshop or a similar picture 
editor. Research at the University of Rochester on this 
topic is outlined below. 

3.1    Scene Capture and Editing by Plenoptic 
Decomposition 

We have developed a new approach for capturing and 
editing 3D objects and environments from a few color 
images taken at known camera positions [Seitz & Ku- 
tulakos 1997]. its basic form, the approach uses the in- 
put images to automatically build a representation from 
which photorealistic views of a scene can be synthesized 
for any viewpoint. Our work overcomes a number of 
limitations of existing techniques, including the need to 
manually establish correspondences between images of 
complicated scenes, the inability to generate physically- 
correct views of the scene for viewpoints away from the 
input images, and the need to acquire a large set of im- 
ages that cover all viewpoints. A unique feature of the 
approach is that, in addition to providing this basic func- 
tionality, it allows editing a captured scene to achieve 
various 3D effects (e.g., animating 3D objects in a scene. 

changing their color, or removing them entirely). In or- 
der to achieve this, we have introduced a new class of 
image editing operations that extends operations such 
as image painting, scissoring, and morphing found in 
common picture editors. The operations are specifically 
designed to maintain consistency across all views of a 
physical 3D scene; unlike their counterparts in programs 
such as Photoshop, edits to any one image propagate 
automatically to all other views as if the (unknown) 3D 
scene had itself been modified (Fig. 4). 

At the heart of the approach lies a novel volumetric 
technique called plenoptic decomposition that enables an 
object's plenoptic function to be reconstructed from an 
incomplete set of camera viewpoints. Plenoptic decom- 
position attempts to interpret the rays of light hitting the 
input images in terms of a 3D shape and an unknown 
but slowly-varying reflectance function. This is accom- 
plished by volume carving: the unknown scene is initially 
represented by a trivial, voxehzed shape (e.g., a cube), 
and voxels that do not conform to an a priori-specified 
reflectance model are iteratively carved away. Our main 
results are that (1) the resulting shape-reflectance rep- 
resentation is suflicient for synthesizing arbitrary, pho- 
torealistic views of a scene, (2) the representation pro- 
vides sufficient point correspondence information to con- 
sistently propagate 2D image edits to all views of a 3D 
scene, and (3) the recovery of a shape- reflectance repre- 
sentation from two or more images is always a solvable 
and well-posed problem. In its current implementation, 
our system aflows physical 3D objects to be captured 
by rotating them in front of a stationary camera, it al- 
lows the synthesis of arbitrary views even when only two 
images are given as input, and it supports interactive 
operations such as image painting and light source mod- 
ification. 

3.2     Global Surface Reconstruction from 
Occluding Contours 

It is well-known that the occluding contour is a rich 
source of information about an object's 3D shape. We 
have recently shown that the problem of recovering 
global shape from occluding contours becomes consid- 
erably simplified if it is formulated as a reconstruction 
problem in the space of oriented rays that intersect the 
object [Kutulakos 1997]. The approach works by first 
mapping every pixel on every occluding contour image 
of a rotating object to a point in ray space (the oriented 
projective sphere 7^). Using results from oriented pro- 
jective geometry and the theory of convex duals, we have 
shown that if all occluding contour pixels are mapped 
to a set of points in ray space, global surface recon- 
struction can be achieved by applying well-known and 
efficient convex hull and line arrangement algorithms to 
that point set. The approach works with both calibrated 
and uncalibrated cameras, does not assume the ability 
to establish correspondences between occluding contour 
curves across frames, does not impose an a priori vox- 
elization of 3D space, and can enforce global shape con- 
straints such as convexity. Topics currently under inves- 
tigation include the use of robust convex hull techniques 
to enhance the method's insensitivity to noise and out- 
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Figure 4: Scene editing examples. (b),(c) show image 
painting and scissoring operations, respectively, applied 
to image (a) of a dinosaur toy. (e),(f) show the images 
that were automatically generated by propagating the 
operations to image (d). Observe that the propagation 
properly accounts for difference in visibility between the 
two views (e.g., part of the painted area is correctly oc- 
cluded by the dinosaur's right hand in image). 

liers, and the integration of the method with techniques 
such as plenoptic decomposition that can refine a com- 
puted shape by reconstructing surface regions that never 
project to the contour. 

4 Learning 

Learning in all its forms continues to be a central aspect 
of our research. Only a small proportion of this work is 
directly relevant to the current image understanding ef- 
fort. Some of the most relevant is learning applied to ma- 
nipulation, vehicle control, and navigation. We are using 
high degree of freedom systems (up to 22 dof) in com- 
plex manipulation tasks. Several learning and adaptive 
techniques are deployed, including genetic algorithms, 
Jacobian updating, neural net techniques for function 
approximation, and novel sparse distributed memory im- 
plementations [Fuentes and Nelson 1996a,b; Jagersand 
et al 1996, 1997; Jagersand and Nelson 1996; Rao and 
Fuentes 1996]. 

Learning is also a key component of our basic vi- 
sion research and has played a role in translating results 
from visual homing to object recognition as well [Nelson 
1996a,b]. 

5 Augmented Reality and Surveillance 

Work is just beginning that is aimed at increasing the ef- 
fectiveness of video surveillance and monitoring (VSAM) 
exploitation by the new visualization technique of view 
augmentation, which has produced dramatic improve- 

Figure 5: Graphic overlays depicting targets and utilities 
augment live video from an RPV. An observer-commander 
has an interactive interface for VSAM observation and com- 
mand. Video analysis can take place on the VSAM, at the 
center, or at both sites. 

ments in operator performance in other domains (e.g. 
medical). In an augmented view, the operator or field 
personnel see a graphic rendition of the target correctly 
registered with a live video stream or a canonical view, 
even if the target is obscured or hidden in the video 
(Fig. 5). This calibration-free view augmentation re- 
lies on new work in non-Euclidean object representations 
and on accurate feature tracking [Kutulakos and Vallio 
1996a,b]. Features of landmarks are tracked to establish 
the non-Euclidean frame, and target features are tracked 
to locate the target in the frame. The context-based 
tracker monitors the configuration of targets, the scene 
context, and the performance of trackers to choose the 
best technique for the current situation [Brown 1996b]. 

Currently, camera calibration is considered necessary 
for augmenting video streams with correctly-registered 
view-dependent graphical information. In the mobile 
VSAM scenario, calibration objects may not be visible, 
and platform movements and multiple sensor degrees of 
freedom make open-loop calibration impractical. View 
augmentation for scenes at different ranges or resolutions 
is beyond the current state of the art. To achieve scal- 
able, calibration-free view augmentation we shall exploit 
three new ideas: (1) representing the internal reference 
frames of the cameras and the graphical models within a 
non-Euclidean frame of reference (affine or projective), 
(2) establishing a reference frame by tracking detectable 
features in the live video stream whose 3D configura- 
tion in space is unknown, and (3) using a hierarchy of 
non-Euclidean reference frames for representing the en- 
tire VSAM environment, depending on the geometry and 
dimensions of the environment visible from any given 
camera [Kutulakos and Vallino 1996a,b]. 

Our challenge is to move view augmentation to uncal- 
ibrated environments, and we plan to use non-Euclidean 
(affine and projective) representations that render cali- 
bration unnecessary. Instead, tracking of landmarks is 
substituted [Araujo and Brown 1996; Araujo et al. 1996]. 

We plan to extend our work on repetitive activity 
recognition [Polana and Nelson to appear] to encom- 
pass new activity types including impulsive activities like 
throwing an object, and transitional activities like start- 
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ing or stopping a vehicle. We want to use situational 
context to constrain classifications and decrease type I 
and type II errors. 

The same graphics that augment the view provide a 
means for annotation of targets or regions of 3-D space 
and for interactivity; they can be used to build a unified 
observation and command interface for more effective 
deployment, positioning, cueing, and control of the semi- 
autonomous VSAMs. 

Mobile VSAM platforms are deployed in an area; per- 
haps a remotely piloted vehicle (RPV) platform circles 
above. Targets and their activities are sometimes visible, 
sometimes invisible to any given VSAM or the RPV. At 
a remote observation and command center an augmented 
view is presented featuring graphic overlays on the live 
video stream from a VSAM, RPV, or other observation 
post. In the augmented view the targets, activities, or 
other features of interest appear visible "through walls", 
"through hills", or "through cover". The graphic over- 
lays are correctly registered with the live video without 
open-loop platform calibration techniques or visible cal- 
ibration objects (Fig. 5). 

A summary of the approach is the following. 

1. Use outdoor-domain trackers and outdoor cameras 
to apply the technology to buildings, vehicles, and 
campus activities. 

2. Combine afhne and projective view algorithms to 
deal with a wide variety of imaging situations 
(ranges, focal lengths, resolutions). 

3. Input will be video streams from mobile platforms 
in outdoor situations. 

4. Deal with moving targets, moving VSAMs, and 
moving frames of reference. 

5. Use interactive graphics techniques to provide ob- 
server annotation and command interface. 

6. Provide graphic overlays not just for objects but for 
activities. 

7. Improve graphics with better models and advanced 
capabilities like obscuration and shading. 

Augmented views can serve not just to inform an ob- 
server but to provide a command interface to VSAMs. 
Our idea is an integrated system of multiple VSAMs 
and other observation platforms along with an inter- 
active command center. The observer-commander sees 
augmented views, and communicates what the VSAM 
should do. The VSAM, using local sensing and con- 
trol, takes care of how. Such semi-autonomy has many 
advantages over pure teleoperation (for which problems 
arise with bandwidth, remote sensing, and delays) or 
pure autonomy (which is still a research area) [Ballard 
et al. 1996]. We are looking into advanced haptic feed- 
back as well as graphical techniques (Section 9). 

Activity recognition is an important component of this 
project for three reasons: (1) It serves to focus attention, 
to alert the VSAM to important phenomena and to al- 
low it to ignore unimportant ones (such as wind-blown 
foliage), (2) activities are of interest to remote comman- 
ders and observers, and communicating their type and 
properties is more efficient than sending live images and 

(3) it can be used for local decision-making, allowing 
VSAMs to cooperate with each other and to make deci- 
sions based on sensed activities. Past work [Polana and 
Nelson to appear] has enabled us to recognize "natural 
clutter", or temporal textures (wind-blown foliage, fire, 
water), and repetitive activities like walking. 

We plan to demonstrate the VSAM capabilities on our 
two indoor-outdoor mobile platforms (Section 9). 

6    Pose Estimation 

The key idea of a classic pose recovery algorithm by Lowe 
is that, given a certain estimate for the unknown pose 
parameters (x) — and possibly even for some internal 
degrees of freedom in the scene — one can reproject the 
known 3D scene model into the image plane and then 
compute a vector of errors (e) between the positions, 
orientations and / or apparent angles of the reprojected 
features, and the corresponding actual measurements. 
Then, the partial derivatives of those image measure- 
ments with respect to the free pose and scene parame- 
ters are approximated locally by a jacobian (first order) 
matrix J. This allows one to compute a vector of correc- 
tions needed to adjust x to the image measurements in a 
least-squares sense, according to the local linearization 
implied by J: 

J 5x = e, where: Ji,- = -—^, 
OXj 

fl) 

By replacing x with x + (5x and iterating the procedure, 
one can then obtain a set of values for the free parameters 
(x) that minimize the euclidean norm of the vector of 
reprojection errors (e) locally, in the parameter space. 

The main weakness of Lowe's original formulation is 
the geometrical model suggested for computation of the 
jacobian matrix J. Lowe suggested that, in order to 
achieve greater efficiency, one should reparametrize the 
translational components of the pose, so as to express 
them directly in image plane coordinates, rather than in 
a tridimensional euclidean space, as usual. More specifi- 
cally, in his model, the image coordinates of an arbitrary 
feature [u and v) are expressed as a function of the corre- 
sponding model-space coordinates (p) by the following 
equation: 

M-i^-^D^ fy' 
z' + D, 

= Rp, 

(2) 

where D^, Dy and D^ are the redefined translational 
parameters and R is a 3 x 3 orthonormal rotation ma- 
trix, as usual. So, Lowe's formulation assumes that D^ 
and Dy are constants to be determined by the iterative 
procedure, when in fact they are not constants at all — 
they depend on the depth of each individual feature with 
respect to the camera reference frame. 

We drop this restriction [Araujo and Brown 1996, 
Araujo et al 1996] by redefining: 

(a:',y',z')^ = Rp, 

y'+ty' (   \   ff^l±k fy' 
\   z' + tz      z' +t. (3) 
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Figure 6: Left and center: convergence of an image- 
space error metric, the Norm of Distances Error, with 
respect to the number of iterations of Lowe's (solid 
hue), Ishii's (dotted hne), and our full projective solution 
(dash-dotted line); statistics exclude the best and worst 
25% results. Right: mean and standard deviation of ex- 
ecution time for 20 iterations of each method; statistics 
include all data. 

where the translation vector t = {tx, ty,tz)'^ is now mea- 
sured in a 3D euclidean space. 

A careful empirical comparison involving several mod- 
els described in the literature, as well as a reformula- 
tion of Lowe's algorithm proposed by Ishii, showed that 
that the use of true perspective yields a much more ac- 
curate numerical technique, with superexponential con- 
vergence for a wide range of initial conditions and even 
arguably better computation-time properties, as illus- 
trated by Fig. 6. 

We are also working on decoupling rotation and trans- 
lation recovery with point correspondences. Christy and 
Horaud proposed two modifications to Lowe's algorithm: 
(i) the use of quaternions, rather than RPY or Euler an- 
gles to represent orientation, in order to eliminate cetain 
singularities; and (ii) the use of second order terms in 
the local approximation to the error surface, in order to 
improve the global convergence properties of the result- 
ing algorithm. As a side effect of those modifications, 
they are able to decouple the recovery of the rotational 
components of the pose from the recovery of the trans- 
lation, so that the original 6D problem can be reduced 
to two much simpler 3D problems. 

However, their decoupled solution is based on edge 
correspondences and can not effectively explore addi- 
tional constraints provided by actual point correspon- 
dences. This results in only a slight loss of accuracy in 
the general case, but in some extreme scenaria (quasi- 
planar objects) it can result in catastrophic failures, due 
to the presence of a singularity in the pose recovery pro- 
cess. We showed that the use of additional constraints 
provided by point correspondences allows one to elim- 
inate that singularity, while still keeping the rotation 
recovery decoupled from translation, for improved effi- 
ciency. 

7    Hierarchical Prediction Improves 
Robustness in Several Applications 

Computational theories of biological mechanisms are un- 
der active investigation in Dana Ballard's laboratory 
[Rao 1996; Rao and Ballard 1996a,b,c,d,e; Rao et al. 
1996; Zelinsky et al. 1996]. Much of this work has prac- 

tical significance in producing more robust and powerful 
computer vision, salience, and recognition algorithms. 
One focus of current work is a model of the cortex as 
a hierarchical predictor that provides more robust, gen- 
eral, and adaptive results by dynamically predicting the 
input. The reciprocity of connections between cortical 
areas brings to mind the sort of feedback of observations 
to predictions that one sees in a Kalman filter (or in the 
Baum-Welch algorithm). The Kalman filter analogy is 
a powerful one that can be translated into mathematics, 
algorithms, and biological mechanisms. For instance, 
continuous adaptation of synaptic strength by a hier- 
archical Kalman filter minimizing prediction errors pro- 
vides a description that generalizes several proposed neu- 
ral encoding schemes and provides functional interpreta- 
tions for several well-known psychophysical and neuro- 
physiological phenomena [Rao and Ballard 1996e]. 

The Kalman filter approach can be adapted to produce 
a generative mechanism that allows rotation-, scale-, and 
translation-invariant recognition as well as application 
to stereopsis and motion estimation [Rao and Ballard 
1996a]. The Kalman filter model is derived from MDL 
considerations. When combined with a Hebbian model 
of adapting synaptic weights using a learning rule also 
derived from the MDL principle, can explain experimen- 
tal neurophysiological observations in free viewing and 
fixating conditions [Rao and Ballard 1996d]. 

The Kalman filters can be made robust to structured 
and unstructured noise by allowing the measurement co- 
variance matrix to be a nonlinear function of the pre- 
diction errors. Simultaneously the filter is learning an 
internal model of input dynamics by adapting both mea- 
surement and state transition matrices using two adapta- 
tion rules. This treatment generalizes and renders more 
responsive the traditional "gating" techniques, and is 
shown to work for segmentation and recognition of ob- 
jects and also of image sequences in noise, and with clut- 
ter and occlusion [Rao 1996]. 

8    Image Understanding Environment 

We have installed version 1.3.1. of the lUE along with 
some of the edge-finding sample application programs, 
and have designed a Hough Transform class that uses 
the Histogram class. Our initial white paper [Brown 
1996a] was wide of the mark in several places, and 
it is being rewritten to accord with our latest think- 
ing and the working implementation. The HT class 
takes image evidence (currently and most commonly 
this is a collection of lUE.edgels) and produces an 
lUEJiistogram that records vote strengths in parame- 
ter space and a similarly-dimensioned and similarly-sized 
IUE_accumulator_array whose elements contain the set 
of evidence items that voted for a particular parameter 
space bin. Voting patterns are determined by a function 
that is passed in at HT object creation time. We have 
sample voting functions for lines and circles. 

The HT application calls for several extensions to cur- 
rent HIE classes or implementations. Among the most 
obvious are N-dimensional arrays (for N-dimensional pa- 
rameter spaces) and histograms with floating point (in- 
stead of integer) elements (for recording floating point 
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vote strengths). Quite useful will be histogram smooth- 
ing and peak-finding functionality that is specced for in- 
clusion in the class. In future work we want to produce 
some more sophisticated voting functions (for example, 
to use edgel properties such as uncertainty in location or 
direction). 

9 Laboratory Developments 

The past year has seen a qualitative enhancement in the 
laboratory facilities with the arrival of a "memory ma- 
chine" configured to support Nelson's object recognition 
work. It is a four-processor ultraSparc with 2Gb of main 
memory. Another major acquisition (using DARPA 
DUMP funds), was two automated wheelchairs manu- 
factured by KIPR, each equipped with a wireless eth- 
ernet, FM television broadcasting, twin-Pentium Linux 
system, infrared, sonar, odometric and video sensors. 
These platforms are to support VSAM research. We 
have four "Phantom" haptic VR devices, which sample 
3-D position of a human finger and apply force back to 
it at 1500 Hz. They thus allow the simulation of real- 
istic interaction with table-top objects whose dynamics, 
texture, and other "feelable" properties are under com- 
puter control. We hope to use the Phantoms as part of a 
human-computer interface for control of remote manip- 
ulations or to command vehicle movements. 
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Abstract 
In order to provide visual surveillance and moni- 

toring (VSAM) systems with tracking and visualiza- 
tion capabilities, we will develop algorithms that will 
address the problems and limitations of the existing 
state-of-the-art technology. In particular, we will: 
(i) Develop image alignment techniques based on the 
Trilinear Tensor, both for single and for multiple sen- 
sors, to allow for accurate correspondence across sen- 
sors and time. 
(ii) Develop alignment techniques of sequences ob- 
tained by sensors of different modalities, 
(iii) Develop Scene Manifolds as extended scene rep- 
resentations that will efficiently combine information 
from single/multiple sensors. These representations 
will apply for a wide range of scenes and camera mo- 
tions. 
(iv) Develop algorithms for detection and continuous 
tracking of moving objects across time and sensors. 
The detection of moving objects will be performed us- 
ing Parallax Geometry constraints, 
(v) Develop means for the operator to visualize the 
scene. These include: Scene manifold projection, novel 
view synthesis, and video stabilization. 

1     Introduction 
The proposed approach is based on new techniques 

that have been pioneered and developed by the au- 
thors during the past three years, to represent and 
manage image information from multiple views. These 
techniques rely in part on the use of multilinear con- 
straints across three or more views and the trilinear 
tensor [15, 19], parallax geometry [6], and the duality 
of camera and scene invariants [6, 21]. Applications to 

*This research was funded by DARPA through the U.S. Of- 
fice of Naval Research under grant N00014-93-1-1202. URL: 
http://www.cs.huji.ac.il/labs/vision 

new view generation and to image stabilization are dis- 
cussed in [13, 1]. Theoretical analysis shows that these 
methods are superior to existing two-frame methods, 
as they are free of degenerate scene or camera config- 
urations [17]. A novel and efficient motion recovery 
method has also been developed [12]. Implementa- 
tions of these methods demonstrated superior numeri- 
cal stability for purposes of new view generation and of 
video stabilization. In addition, the "manifold projec- 
tion" method [11, 14] can provide "scene manifolds", 
extended panoramic views of a scene without the usual 
distortions and loss of resolution associated with the 
traditional perspective image mosaics. These capabil- 
ities are detailed below. 

1.1     Expected Impact 

This research handles fundamental issues in multi- 
ple view correspondence, moving object detection, and 
visualization. As such, it will have a direct impact on 
VSAM technology and systems, as well as advancing 
Image Understanding technology in general. It has 
the potential of becoming the standard of all lU sys- 
tems that deal with three-dimensional scenes acquired 
by two-dimensional sensors. In general lU contribu- 
tions, correspondence techniques become more robust 
as geometry and photometry are combined together; 
view-synthesis methods use the 2D imagery directly 
without the need for a detailed 3D model [1]; video 
stabilization can be handled robustly under the most 
general situations (unlike existing methods) [13]; mov- 
ing object detection from moving cameras can be han- 
dled using our duality of scene and motion invariants 
[6, 21, 7]; and extended scene representations will be- 
come more general than today's 2D mosaicing tech- 
niques [11] and more efficient than 3D CAD-ba.sed 
techniques. The use of true multi-view approaches 
will enable a simple and efficient way of relating infor- 
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mation across frames and across sensor modalities. 
For VSAM system, The proposed technology will 

provide some of the basic capabilities that are neces- 
sary to make the above scenario realizable. In partic- 
ular, it vifill provide techniques for the following capa- 
bilities: (i) Construct a view-based scene layout from 
a single sensor, (ii) Accurately compute correspon- 
dences between images obtained by different sensors 
as well as by the same sensor at different times. This 
is necessary for the creation of a view-based scene rep- 
resentation and for coordination between the sensors, 
(iii) Combine information from multiple sensors over 
time into a single or a few scene manifolds, which 
provide an optimal extended view-based scene repre- 
sentation. Such a scene representation facilitates co- 
operated and continuous tracking of moving objects 
across sensors and time. It provides the operator with 
the means to visualize the scene and to provide scene- 
based instructions to the sensors on the VSAM plat- 
form, (iv) Detect moving objects in a wide range of 
scenes, while the sensor itself is moving. This pro- 
vides the capability to detect potential enemy move- 
ment while the VSAM platform is on the move, (v) 
Synthesize new views from the constructed scene man- 
ifold for display to the operator. It will allow the 
operator to view the scene also from viewing posi- 
tions where no sensor physically exists, (vi) We are 
presently also exploring a multi-frame method which 
involves the tracking of salient temporal changes in 
the image. This method proved effective in tracking 
many independently moving objects, like ants on the 
forest floor or people in a crowd [4]. 

2     Tensor-based Image Alignment 
Three views give rise to a set of trilinear matching 

constraints that first became prominent in [15], whose 
coefficients form a tensor ("trilinear tensor") which 
encodes the relative camera locations, and whose un- 
derlying theory has been studied intensively. The ten- 
sor elements can be linearly recovered from at least 
7 matching points across three views, and the tenso- 
rial equations (trilinearities) provide a matching con- 
straint for use in image alignment tasks (such as "im- 
age transfer" applications). 

In [20] we show that the tensor can combine the 
information of spatial-temporal derivatives instead of 
matching points with the geometric constraint of cam- 
era motion. The result is the introduction of a "Tensor 
Brightness Constraint" which is a parametric equation 
for solving for ego-motion directly from the spatio- 
temporal derivatives of the image sequence. In [2] we 
show that the fundamental matrix of two views is em- 
bedded in the tensorial equation as a rank-2 trivalent 

tensor, and we introduce a standard set of tensorial op- 
erators that apply to both two views and three views 
alike. In [17] we show that there are no critical sur- 
faces for the computation of the trilinear tensor. The 
result of lack of degeneracy is powerful and suggests 
that three frames should be adopted as a "unit of anal- 
ysis" rather than concatenation of pairs of views. 

3 JVIulti-Sensor Alignment 
In images acquired by sensors of different modali- 

ties, the relationship between the brightness values of 
corresponding pixels is complex and unknown. Con- 
trast reversal may occur between the two images in 
some image regions, while not in others. Visual fea- 
tures present in one sensor image may not appear in 
the other image, and vice versa. Moreover, multiple 
brightness values in one image may map to a single 
brightness value in the other image, and vice versa. 
In other words, the two images are usually not glob- 
ally correlated, i.e., they are not correlated in their 
entirety. 

Image sequences obtained by sensors of different 
modalities have, however, additional common infor- 
mation components: (i) the scene geometry, and (ii) 
the scene dynamics. These two components are invari- 
ant to camera geometry, camera motion, and sensing 
modality, and therefore provide powerful constraints 
for multi-sensor image alignment. Yet, these have 
been rarely used for multi-sensor alignment. These 
two constraints will be added to our ongoing multi- 
sensor alignment work, which currently exploits only 
appearance information, and is reported in [8]. 

4 Parallax Geometry for Moving Ob- 
ject Detection 

Moving object detection is a difficult problem in 
general. It has been shown to have robust solutions 
for specific cases. In particular, in cases where induces 
camera motion can be described parametrically (e.g., 
[9]), or in cases where the induced 3D scene informa- 
tion in the image plane is dominant relative to effects 
of moving objects. However, where the 3D informa- 
tion is comparable in size to that of the independent 
motion information, then the moving object detection 
problem becomes a very difficult one (e.g., Thompson 
et. al). 

Parallax Geometry is a recently developed theory 
which provides a basis for 3D scene analysis (i.e., 3D 
shape recovery and moving object detection in 3D 
scenes), even in difficult scenarios where estimation 
of scene geometry or camera geometry is very difficult 
(e.g., when the 3D information in the image plane is 
sparse relative to effects of independent motions).  It 
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provides a means for recovering 3D structure without 
the need to estimate camera motion (or camera ge- 
ometry), and the means for detecting inconsistent 3D 
motions (i.e., independently moving objects) without 
the need to estimate neither camera motion (or cam- 
era geometry), nor scene geometry. For more details 
see [6]. 

The parallax geometry provides a multi-frame 
rigidity constraint which is complimentary to the 
epipolar rigidity constraint. Combining these two con- 
straints together is expected to provide a more pow- 
erful rigidity constraint for moving object detection. 

5 Scene Manifolds 
"Scene Manifolds" is an alternative scene represen- 

tation to image mosaics, which are currently used to 
represent panoramic view by stitching together a se- 
quence of images [5]. Traditional image mosaics use a 
projection of all images into a common mosaic-image- 
plane, thus creating unacceptable distortions for im- 
ages whose original image-plane is substantially differ- 
ent in angle from the mosaic-image-plane. In "Man- 
ifold Projection" the images are not projected into a 
plane, but are projected onto a manifold such that 
for every image its image-plane is tangential to the 
manifold. This manifold projection minimizes image 
distortion and provides superior visualization. Initial 
experiments with the manifold projections are very 
promising in terms of visualization quality as well as 
speed of computation. 

The coordinate system and the surface on which 
the scene manifold is constructed depends mostly on 
the camera motion, but also on the scene structure. 
Some examples follow: (i) When a camera is rotating 
about a point behind the image plane, the optimal 
manifold for the projection is a ball centered at the 
rotation point, (ii) When a camera is translating in a 
plane, always looking perpendicular to the plane, the 
"manifold projection" will be an orthographic projec- 
tion onto that plane, (iii) When the camera is zooming 
or is moving forward, the manifold is a cylinder [14]. 

6 Visualization 
6.1     Video Stabilization 

Another application of the "3 views as unit of anal- 
ysis" is for video stabilization, which is a necessary 
component for building a visualization engine of the 
project. The technical problem behind video stabi- 
lization is the extraction and subsequent cancelation 
of the rotational component of camera motion acro-ss 
the video sequence. Most existing methods take one 
of the following two approaches. One approach is to 
compute the camera rotation only after computing the 

camera translation (the epipole) [19, 10]. The .second 
approach assumes a specific 3D scene structure, e.g. 
assuming the existence and the detection of 3D planes 
in the scene [10, 18]. 

We have shown [13] that the camera rotation can be 
extracted directly from the tensor coefficients wiihoid 
the need to first recover the translational component of 
camera motion. We thus obtain a scheme that works 
under the most general conditions (without making 
assumptions on scene structure), and which does not 
suffer from the instability of recovering the translation 
from two views with a small base-line (see section on 
critical surfaces about instability of two views). This 
method was implemented and shown to provide robust 
video stabilization under general conditions [13]. 
6.2     Novel View Synthesis 

Another application of interest is the possibility of 
generating views from novel viewing positions from a 
collection of other views. The two extreme ends of 
this task is on one end creating a detailed 3D map of 
the scene and with appropriate texture mapping and 
rendering to create a virtual "fly-through", and on the 
other end to use 2D mosaicing methods for stitching 
together images assuming only 2D transformations. 
The approach we have been taking is to synthesize 
views without creating a 3D model in the process, and 
relying instead on the implicit 3D information embod- 
ied in the trilinear relationships across three views. In 
this manner one could enjoy the simplicity of the 2D 
mosaicing techniques, yet be able to handle the general 
problem of synthesizing physical views from any view- 
ing position. The technical idea is based on the fact 
that under certain arrangements of views, the trilinear 
tensors of triplets of views live in a small dimensional 
subspace [16]. One implication of this result is that 
one can synthesize new tensors from a given tensor 
and user specification of the position of a novel cam- 
era. Further details and demonstrations can be found 
in [1]. 

7    Local  Curve  Matching  and   Object 
Classification 

Initial experiments on object recognition using lo- 
cal curve matching [3] gave promising results, and we 
plan to continue and develop more robust versions. 
Currently we have developed an algorithm which com- 
putes the distance between two contours of possibly 
rather different shapes. The method is local and fast, 
relying on both local similarities and global alignment. 
We describe extensive experiments with real images of 
ZD objects obtained from different viewing positions, 
as well as curves under partial occlusion, and curves 
describing different objects.  In addition, we used the 
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method to compare a range of curves taken from a 
large database of real images of various toy models, 
some of them very different, others rather similar. We 
then used the results to classify the data with an auto- 
matic hierarchical clustering algorithm, getting excel- 
lent results vfhich faithfully captured the real structure 
in the data. 

8 Demonstrations and Evaluation 
The following are demonstrations that we expect to 

be able to perform in the early phase of the program: 

• Demonstrate the creation of panoramic scene 
manifolds from a video taken by a camera un- 
dergoing general motion and in a wide variety of 
scenes. While initial implementation will be run- 
ning off-line on recorded video, it is expected to 
be running real-time, without hardware accelera- 
tion, towards the end of the project. An exam- 
ple of such a panoramic manifold is displayed in 
Fig. 1. While this initial display is done indoors, 
the demonstration is expected to be indoors as 
well as outdoors. 

The manifolds will be evaluated regarding their 
quality (sharpness and distortion), and by the ac- 
curacy they can add to alignment of objects. 

• Demonstrate the creation of synthetic views of a 
scene from a small number of images taken from 
few views. While initial experiments are demon- 
strated on small objects in Fig. 2, it is expected 
that this approach will be applicable to indoor 
and outdoor scenes, and maybe even to scene 
manifolds. 

New views will be evaluated by comparing a sim- 
ulated new view to a real image taken at the ap- 
propriate imaging conditions. 

• Detecting and tracking multiple object will be 
demonstrated from a video recorded by aerial and 
ground moving sensors. Evaluation will be done 
by counting the mistakes in the detection and in 
the tracking. It is expected that we could display 
the tracking on the image manifolds to enable the 
operator to view the context as well as the tracked 
objects. 
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Abstract 
The Multiple Perspective Interactive Video 
(MPI-Video) project has been active for more 
than two years and has already demonstrated 
its applicability in areas including video surveil- 
lance and monitoring (VSAM). MPI-Video is 
an infrastructure for the analysis, management 
and interactive access to multiple streams of 
video cameras monitoring a dynamically evolv- 
ing scene. Our MPI-Video VSAM (MPI- 
VSAM) project will develop technology to sup- 
port crucial data processing activities. Specifi- 
cally, we will design and implement robust and 
comprehensive methods for assimilating infor- 
mation coming from a multitude of distributed 
real-time sensors. Our information assimilation 
activities are formalized in terms of a Battle- 
field Environment Model (BEM), an extension 
of information processing research currently be- 
ing done at our lab. The BEM represents a 
Gestalt of all the information obtained from in- 
dividual sensors, and thus reflects a synergistic 
integration of a variety of information sources to 
construct a comprehensive, dynamically evolv- 
ing model of the world. This model is used to 
provide strong contextual guidance for image 
understanding algorithms, such as motion de- 
tection, tracking, and activity understanding. 

1    Introduction 

The Multiple Perspective Interactive Video 
(MPI-Video) project has been active for more 
than two years and has already demonstrated 

its applicability in areas including video surveil- 
lance and monitoring (VSAM). MPI-Video is 
an infrastructure for the analysis, management 
and interactive access to multiple streams of 
video cameras monitoring a dynamically evolv- 
ing scene [Jain and Wakimoto, 1995, Kelly et 
al, 1995]. It has dominant database and hyper- 
media components which allow a user not only 
to interact with live events, but to browse 
the underlying database for similar or related 
events. The interactive construction of queries 
is also supported. 

For video surveillance and monitoring large ar- 
eas, sensor data from many platforms must be 
analyzed in a unified manner. Since a battle- 
field or any important urban site is too large 
to be covered just by one camera, it is essential 
that multiple platforms be used to acquire data 
from multiple perspectives. This system should 
be operational, independent of the time of the 
day and the season, requiring different types 
of sensors. The system composed of all these 
sensors mounted on multiple platforms should 
function in unison and present a Gestalt view 
to a user. Important research issues that must 
be addressed in this area include, assimilation 
of information from multiple sensors, determi- 
nation of camera placement, dynamic scene seg- 
mentation, event understanding, camera hand- 
off, and representation of individual sensor and 
global information. The details of all these is- 
sues are presented in [Boyd et al, 1997]. 

Our MPI-Video surveillance and monitoring 
(MPI-VSAM) project will develop technology 
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to support these crucial data processing activi- 
ties, so essential for successful VSAM systems. 
Specifically, we will design and implement ro- 
bust and comprehensive methods for assimilat- 
ing information coming from a multitude of dis- 
tributed real-time sensors. Our information as- 
similation activities are formalized in terms of a 
Battlefield Environment Model (BEM), an ex- 
tension of information processing research cur- 
rently being done at our lab. The BEM is a 
time-varying model that provides its users up 
to date information about an extended and dy- 
namically evolving environment covered by sta- 
tionary and moving video and infrared cameras. 
The BEM represents a Gestalt of all the infor- 
mation obtained from individual sensors, and 
thus reflects a synergistic integration of a vari- 
ety of information sources to construct a com- 
prehensive, dynamically evolving model of the 
world. This model is used to provide strong con- 
textual guidance for image understanding algo- 
rithms, such as motion detection, tracking, and 
activity understanding, issues of primary con- 
cern in our current research eff^orts. 

2    Research Issues 

There are several research issues related to im- 
age understanding, databases and informations 
systems, and network and storage architectures 
in the MPI-Video project. The MPI-VSAM 
project will focus on issues related to image un- 
derstanding only. These issues are briefly dis- 
cussed here. For details see [Boyd et al, 1997]. 

2.1    Assimilation of Information 

Information from multiple platforms must be 
assimilated into the central environment model. 
This model will have the Gestalt view of the 
environment. Also, information in this model 
will be represented at multiple levels of resolu- 
tion. In addition to transformation of informa- 
tion from one abstraction to the other in the 
environment model, techniques must be devel- 
oped to combine imprecise and unreliable in- 
formation coming from these sensors. We will 
adopt our current EM to represent this for the 
VSAM scenario.   We have started formulating 

information assimilation problem and soon we 
intend to start experiments in this area. 

2.2 Motion Detection and Tracking 

The environment model contains up to date 
information about objects in the environment. 
This model can provide a strong context for mo- 
tion detection and tracking to individual sen- 
sors. We will adopt existing techniques to uti- 
lize the context provided by the EM to im- 
prove the motion detection and tracking algo- 
rithms. In particular, we are developing a mix- 
ture density based approach for segmentation of 
dynamic scenes and for tracking objects to iden- 
tify motion parameters that will help determine 
events. 

2.3 Tracking Across Multiple 
Platforms 

Techniques will be developed to track objects as 
they move in the environment. Objects may go 
from one platform's scope to another and must 
be tracked smoothly and reliably as they cross 
platform boundaries. The user should be shown 
views from the environment model, independent 
of the camera view. Also, this form of tracking 
may require use of difi'erent sensors and steer- 
able cameras to follow an object efficiently. 

2.4 Activity Understanding and 
Discrimination 

Techniques for defining complex activities, such 
as the discrimination of military incursions from 
common civilian activity or increased activity 
at an airport, in terms of simpler activities in 
the environment will be developed. The sim- 
pler spatio-temporal activities should be de- 
tectable in the environment model based on 
data acquired from individual platforms. We 
will develop algorithms to detect these activi- 
ties from image data using activity recognition 
algorithms which employ Hidden Markov Model 
(HMM) techniques developed in our group. 
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2.5    Best and Virtual Views 

Often an operator is interested in looking at the 
best view of an object or event. In this case, 
algorithms should be developed to provide the 
operator with the best view by switching to the 
appropriate camera. The best view determina- 
tion will require definition of the best view, and 
optimization and switching criteria for selecting 
the best camera at each moment in time. 

It is possible to synthesize virtual views of the 
environment using the environment model and 
the data available from sensors. We will develop 
and provide algorithms to generate these virtual 
views so that an operator may see an object of 
interest from an arbitrary view. 

3    Evaluation 

In the proposed effort, we will employ ten to 
twenty video and infrared sensors to allow day 
and night operations. These sensors will be 
mounted in and around our building to con- 
struct a realistic urban surveillance laboratory. 
This is a straightforward extension of our exist- 
ing testbed that uses six video cameras. The 
set-up will be used to stage and record differ- 
ent events of interest. The effectiveness of our 
assimilation system will be evaluated for vari- 
ous conditions such as different environmental 
conditions, different population density (a few 
people, large crowds) and different activities or 
behavior of dynamic scene objects. Our eval- 
uation will assess how well our system detects, 
locates and tracks moving people and vehicles in 
this area under the conditions mentioned above. 
Furthermore, we will evaluate the event detec- 
tion and activity understanding capability of 
the system. This assessment will be in terms of 
how well the system can discriminate between 
different group or individual behaviors, as ex- 
hibited by the volunteers participating in these 
live tests. 

Many different types of objects appear in the 
area where we will mount cameras. These ob- 
jects are usually people, bicycles, golf caxts, and 
some small trolleys and carts. The number of 
objects and activity depends on the time of the 
day and varies significantly. For example, when 
classes change on our campus, hundreds of stu- 
dents are seen walking, while in between classes, 
there is little activity. These variations in ac- 
tivity will provide us a natural setting to test 
activities of different kinds in a natural setting. 
We will also stage activities at specific locations 
in the field to compare them with the quantita- 
tive results obtained by the system. 

A very important fact about our set up is that 
these cameras will be mounted in an actual area 
where all the activity takes place. This area 
will be our laboratory. We will record different 
scenes and then run experiments in our lab. For 
each subtask, we will define several quantitative 
experiments to evaluate our algorithms. 
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Abstract 
This project focuses on tracking and recogni- 
tion of vehicles and vehicular activity. We have 
developed a variety of methods that will be 
applied to this tasli, based primarily on non- 
parametric statistical methods. A central goal 
is to combine motion, color and 2D shape in- 
formation in tracking, classification and recog- 
nition. Contextual constraints will also play a 
role, particularly in tracking. These systems 
will be demonstrated and evaluated by deploy- 
ing them on the Cornell campus, for tasks where 
the performance can be independently verified. 

1    Introduction 

Our research addresses the task of tracking and 
recognizing vehicles and vehicular activity, both 
from ground-based and aerial platforms. A cen- 
tral focus is the use of non-parametric statis- 
tical methods, based on fundamental proper- 
ties such as rank ordering. We also plan to 
develop methods that exploit contextual con- 
straints in order to obtain more reliable and 
faster performance. For example, the motion of 
vehicles along roadways is highly constrained. 
This can be used to predict subsequent views 
of an object, to assist in tracking and to in- 
crease the speed and reliability of classifica- 
tion and recognition. The planned systems 
will build on methods that we have previously 
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0052 to Hughes Aircraft. 

developed for shape- and color-based match- 
ing and tracking [Huttenlocher et ai, 1993b, 
Pass and Zabih, 1996]. We will also develop 
new methods that use motion in combination 
with spatial and color cues. Our goal is to de- 
velop cost-effective systems that run quickly on 
standard computing platforms with a few pro- 
cessors. 

Techniques from robust statistics have been of 
considerable utility in developing computer vi- 
sion algorithms that are reliable over a wide 
range of image conditions (e.g., [Besl et ai, 
1988]). We have found non-parametric statis- 
tical measures to be particularly valuable, for 
problems including shape matching (using the 
Hausdorff distance [Huttenlocher et a/., 1993a]) 
and determining visual correspondence (using 
census transform correlation [Zabih and Wood- 
fiU, 1994]). A key property of non-parametric 
measures is that the outbers, or bad data, do 
not need to be explicitly modeled. There is only 
a bmit on the number of outliers that can be 
tolerated, not on the form that they take. Such 
tolerance of unknown and variable data will en- 
able the planned systems to operate at any time 
of day, in different weather conditions, and with 
unknown objects in the field of view (perhaps 
partly occluding objects of interest). 

2    Context-based vehicle tracking 

Our approach to tracking is based on match- 
ing two-dimensional image views in order to 
determine where an object at one time frame 
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Figure 1: An example of vehicle tracking 
through heavy shadow regions, 
which change as the vehicle moves. 

moved to in a subsequent frame [Huttenlocher et 
ai, 1993b]. Unlike other work on model-based 
tracking (e.g., [Lowe, 1992]), our method is not 
restricted to tracking rigid or articulated ob- 
jects. Moreover, our approach does not require 
a geometric model of an object before it can 
be tracked. This is particularly important for 
video monitoring, where the range of possible 
objects is large and where there are many possi- 
ble distractors that may also need to be tracked. 
We have demonstrated matching-based track- 
ing mechanisms which work well even in situa- 
tions where objects becoming temporarily hid- 
den from view or pass through strong shadow 
boundaries [Huttenlocher et al, 1993b], as illus- 
trated in Figure 1. One of the first challenges 
that our new research is addressing is main- 
taining high reliability tracking for considerably 
lower-resultion objects than that pictured here. 

We plan to use a three-stage process for tracking 
vehicles: segmentation, in which we identify re- 
gions of the image that contain moving objects; 
discrimination, in which we ascertain whether 
each moving object is a vehicle, and not, e.g., 
a pedestrian or animal; and following, in which 
we track an object as it follows a path (generally 
along a roadway). 

Segmentation. Segmentation wiU be done by 
distinguishing between background motion and 
object motion. For non-rigid objects, simple 
techniques may result in one object being split 
into several moving pieces. In tasks that involve 
tracking pedestrians, we will develop techniques 
that use local time intervals to obtain more reli- 

able estimates of what is moving together. For 
vehicles, simple techniques based on differential 
motion should suffice. Because the objects of 
interest move at a wide variety of speeds, this 
processing will need to be done at several differ- 
ent time scales. For vehicle tracking it is partic- 
ularly important to find the bottom of the ob- 
ject, as this indicates its position on the ground 
plane. 

Discrimination. It is necessary to determine 
if a moving object is a vehicle or something else 
(pedestrian, animal, etc.). We will exploit sev- 
eral contextual constraints that are specific to 
the task of vehicle identification on roadways, 
as follows. Position and motion direction: Ve- 
hicles wiU not in general drive on the sidewalk. 
Pedestrians can be in the street temporarily, 
but when there are typically moving perpendic- 
ularly to the flow of traffic. Size: Vehicles are 
substantially larger than pedestrians, especially 
in width and length. Rigidity: Vehicles undergo 
rigid motion, while living creatures typically are 
highly non-rigid. We wiU construct an algo- 
rithm to detect whether or not an object is rigid. 
Speed and motion smoothness: Vehicles gener- 
ally move faster than pedestrians, and their mo- 
tion forms smooth trajectories, with substantial 
smooth accelerations and decelerations. 

Following. We wiU use a model-based tracker, 
based on the work described in [Huttenlocher 
et ai, 1993b]. This tracker matches a two- 
dimensional model from the previous time 
frame to a region of the current image frame, 
in order to determine where the object being 
tracked is located at the current time. We wiU 
use contextual constraints in order to speed up 
the operation of the tracker, and potentially to 
also make it more reliable. One powerful con- 
straint is the fact that a vehicle should move 
along a roadway, so the image search is really 
just one-dimensional. This greatly restricts the 
search region for matching. Moreover, the ve- 
hicle orientation with respect to the camera is 
given by the position along the roadway (assum- 
ing the roadway location and orientation are 
known in the camera coordinate frame). This 
can be used to transform the view from the pre- 
vious time frame before performing a match. 
We wiU evaluate the speed and accuracy of the 
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tracker with and without such constraints. 

We will also investigate techniques for determin- 
ing when the contextual constraints used by the 
tracker have been violated, and therefore should 
be relaxed to enable tracking to continue. One 

approach is to expand the search window when 
the tracker fails to find a match in the win- 
dow that was specified using the contextual con- 
straints. If a match is then found outside the 
specified search window, this is evidence that 
the contextual constraints are being violated. 
If this continues for several frames, the tracker 
can be adjusted to use the new more relaxed 
constraints. 

2.1     Classification and recognition 

In the planned systems, there are both classi- 
fication and recognition problems. By classi- 
fication, we mean the problem of determining 
which objects are instances of the same class. 

By recognition (or identification) we mean find- 
ing the best match between an unknown object 
and a set of object models, in effect assigning a 
name to the unknown object. Classification can 
be performed without the need for prior models, 
while recognition problems involve prior mod- 
els. In convoy detection, classification is suffi- 
cient for the problem of determining which vehi- 
cles are instances of the same vehicle type. On 
the other hand, counting the number of vehicles 
of a given type that pass through an intersection 
may require recognition (the ability to search for 
a given type of vehicle in the image). 

We plan to use a view-based approach to clas- 
sification and recognition, where an object is 
represented by a sequence of two-dimensional 
views. These sequences wiU be compared us- 
ing view matching techniques based on the 
Hausdorff measure [Huttenlocher et ah, 1993a]. 
While three-dimensional information (e.g., from 
stereo) could be useful for estimating the size 
of objects, we will instead use contextual con- 
straints (e.g., by exploiting information about 
the scene geometry of roadways). For both clas- 
sification and recognition, we plan to use mul- 
tiple views of a vehicle as it passes by an ob- 
servation point (for some camera positions this 

can include front, side and rear views). The use 
of multiple views makes it possible to classify 
and recognize objects despite transient prob- 

lems such as specular reflections (which gener- 
ally occur over a small range of views), glitches 
in the video signal, or when a vehicle is occluded 
from view by a passing vehicle. Multiple views 
also enable the use of those views that best dis- 
tinguish a given object from other objects (e.g., 
an APC and a tank are similar except from 
frontal and side views where the turret and bar- 
rel are visible). 

Both classification and recognition require sim- 
ilarity measures for comparing views. For re- 
liability, we will use quite different measures, 
based on shape and on color. We will use the 
Hausdorff fraction [Huttenlocher et al., 1993a] 
for shape, which measures the portion of one 
binary image that approximately overlaps with 
another. This measure is robust to both partial 
occlusion and to positional uncertainties in fea- 
ture locations. Our approach to color is based 
on computing joint histograms of local image 

properties (see section 4). 

The classification problem involves partitioning 
a set of objects into subsets of equivalent ob- 
jects (classes). We wiU use standard cluster- 
ing techniques to form such equivalence classes. 
Since there are multiple views of each object, 
and the correspondence of views is known, the 
clustering process should make use of the in- 
formation from multiple views in an intelligent 
manner. Suppose two objects match well in all 
views except one. This could be due to a tran- 
sitory event such as a passing vehicle causing a 
false mismatch in one view, or it could be due to 
the fact that the two objects actually only diff'er 
in one view. While for a single pair of objects 
these two cases cannot be distinguished, for a 
set of objects there can be good heuristics for 
doing so. For instance, in convoy detection it is 
reasonable to assume that "singleton" objects 
(those which don't match any other object) are 
unlikely, as a convoy consists of repeated vehi- 
cles. 

One approach to recognition that we are pursu- 
ing is based on extending the eigenspace approx- 
imation to the Hausdorff fraction [Huttenlocher 
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et al., 1996]. This technique uses a subspace 
approach to enable a large number of stored 
model views to be efficiently matched against 
an unknown view. Unlike other subspace meth- 
ods which are based on the SSD and thus sen- 
sitive to outliers, this method uses the robust 
Hausdorff fraction for matching. We will de- 
velop a system for recognizing view sequences, 
which makes use of known viewpoints for some 
or all of the views (as discussed above) to speed 
the image matching process. We will also in- 
vestigate new matching measures for robustly 
combining information from multiple views of 
an unknown object. One approach is to discard 
outlying views of an unknown object that don't 
match any stored model views well, and then to 
vote with the remaining views. This prevents 
bad views (due to occlusion, specularities, etc.) 
from throwing off the matching process. 

2.2    Evaluation plan 

The planned systems were chosen in part be- 
cause they have independently verifiable out- 
puts, such as the number of vehicles appearing 
in the field of view during a given time inter- 
val. This enables us to evaluate system accu- 
racy by comparing it with human performance 
on the same task. Our goal is to achieve accu- 
racy comparable to human observers (of course 
human accuracy will vary, depending on the ob- 
server and the conditions). System speed, and 
the tradeoff of speed versus accuracy will also 
be evaluated. Some of the modules that we 
will construct will also have verifiable outputs, 
and these modules will be similarly evaluated 
against observer-supplied ground truth. On the 
other hand, several of the modules do not have 
verifiable outputs. For instance, there is no 
clear definition of the "correct" motion segmen- 
tation for a frame. For such modules we wiU 
do informal tuning and evaluation. We will do 
formal evaluations, using ground truth, both for 
the complete systems and for the modules with 
verifiable outputs. The modules which we eval- 
uate informally wiU play a vital role in the com- 
plete systems. They will therefore be subject to 
an indirect evaluation against ground truth as 
part of an overall system. 

3 Comparing matching measures 

We are interested in characterizing how various 
matching measures differ from one another in 
terms of their ability to correctly detect a dis- 
torted instance of a target in clutter. In order 
to determine the power of different measures, 
we use Monte Carlo techniques to estimate Re- 
ceiver Operating Characteristic (ROC) curves 
for each measure. These curves give the trade- 
off between probability of detection and proba- 
bility of a false alarm for the different measures, 
thus enabling a determinination of which mea- 
sures perform better under which operating con- 
ditions. We consider variations in the amount 
of occlusion of the target, the amount of back- 
ground clutter, the type of background clutter 
(correlated noise such as "edge chains" versus 
uncorrelated noise such as points), and the spa- 
tial perturbation of the target feature points. 

Thus far we have compared several measures 
for matching binary images that are based on 
distance transforms. A distance transform of a 
binary image defines for each image pixel the 
distance to the nearest "on" pixel of that im- 
age, using a given distance function such as Eu- 
clidean distance (the L2 norm). In order to 
match two images, the "on" pixels of one image 
are used as probes to select distance transform 
values of the other image. Such measures have 
formed the basis of a number of model-based 
recognition techiques (e.g., [Huttenlocher et ai, 
1993a, Paglieroni, 1992]), where they are used 
to compare binary attributes extracted from im- 
age data. The evaluation results are described 
in more detail elsewhere in these proceedings 
(see the paper by Huttenlocher). 

4 Color-based image comparison 

Color-based comparison of unmodeled objects is 
typically done via color histograms. Histograms 
are robust to large changes and viewpoint, and 
are trivial to compute; however, they fail to in- 
corporate spatial information. We have devel- 
oped a class of methods for combining color in- 
formation with spatial layout, while retaining 
the advantages of histograms. Our approach is 
based on computing joint histograms of several 
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local properties. Joint histograms can be com- 
pared as vectors, just as color histograms can. 
However, in a color histogram any two pixels 
of the same color are effectively identical. With 
joint histograms, pixels must share several prop- 
erties beyond color. We have explored a number 
of different local spatial properties. For exam- 
ple, we can divide pixels into classes based on 
their spatial coherence and (coarse) position in 
the image. We demonstrate in [Pass and Zabih, 
1996] that these simple, efficient' measures per- 
form significantly better than color histograms, 
especially when the number of images is large. 
We have also investigated the distribution of a 
given color as a function of the distance between 
two pixels. The resulting method, which we call 
a color correlogram, has also proven to be quite 
effective. See the paper by Huang and Zabih in 
these proceedings for more details. 

5    Adaptive-window methods 

Early vision relies heavily on rectangular op- 
erators for tasks such as smoothing, segmenta- 
tion or computing correspondence. While rect- 
angular windows have obvious efhciencies, they 
poorly model the boundaries of real-world ob- 
jects. We have developed an efficient method 
for adaptively choosing a window without a 
rectangular bias, in a manner which varies at 
each pixel. We model an image as a piecewise 
constant function corrupted by noise, and ex- 
plicitly consider aU possible connected compo- 
nents. Almost all components can be pruned, 
however, by a simple maximum likelihood argu- 
ment. The remaining components can be com- 
pared by a variety of methods, including (for ex- 
ample) global contextual constraints. Our ap- 
proach can be applied to many problems, in- 
cluding image restoration, motion and stereo. 
It can help solve a number of well-known prob- 
lems, including a version of the aperture prob- 
lem. Our methods run in a few seconds on tradi- 
tional benchmark images with standard param- 
eter settings, and give quite promising results. 
Details are given in the paper by Boykov, Vek- 
sler and Zabih in these proceedings. 
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Abstract 

The CMU Image Understanding program contin- 
ues to comprise a panorama of activities ranging 
from basic vision research to the development of 
new application systems. This PI report summa- 
rizes our recent activities in the following focal 
areas: 

• Basic vision research 
• Real-time vision 
• Video surveillance and monitoring 
• Mobile robot navigation 
• Image and video database 
• Image-Guided Surgery 

Taken together, these represent progress on a broad 
front towards deployable, dependable and taskable 
machine vision systems. 

1. Basic Vision Research 

While many vision systems have been demon- 
strated in principle, few have been highly reliable 
when deployed. This failure is largely because of 
the reliance on vision modules which are based on 
oversimplified assumption of the principles  of 
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imaging process. To remedy this deficiency, we 
have pioneered at CMU the exploration of vision 
science, the careful analysis of each vision process 
based on law of physics and mathematics. Our 
work in this area has already demonstrated major 
advantages in deploying vision systems. We con- 
tinue this effort to study the fundamental issues. In 
particular, this PI report highlights two fundamen- 
tal vision issues: object representation and recogni- 
tion in vision science. 

1.1. Object Representations 

One of the fundamental requirements in computer 
vision is the construction of object representations. 
These object representations are later utilized in 
various vision tasks such as recognition, tracking, 
visualization, and navigation. In the past, represen- 
tations have typically been manually created using 
computer-aided design tools. Manual modeling, 
however, suffers from expense and accuracy limita- 
tions. Our work has been directed towards over- 
coming these limitations by automatically 
constructing object representations from real 
images of the object. 

1.1.1. Geometric Representation 

Object representations have two aspects: geometric 
and photometric. Geometric representations con- 
vey three dimensional shapes of objects, while 
photometric representations do appearances of 
objects, including surface textures, real color and 
reflective properties. We examine the methods to 
automatically acquire both of these representations 
from real images of objects. In this section, we 
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focus our recent achievement to acquire geometric 
representations. 

1.1.1.1. Acquiring Surface representation 

We (Wheeler, Sato and Ikeuchi) developed a sys- 
tem that creates 3D surface representations from 
range images of the object. Our basic approach is 
to acquire several range-image views of the object, 
align the image data, merge the image data using 
the aid of a volumetric representation, and then 
extract a triangle mesh from the volumetric repre- 
sentation of the merged data. Our main contribu- 
tion is a new algorithm for computing the 
volumetric representation from the sets of image 
data [Wheeler, 1996]. Our algorithm, the consen- 
sus-surface algorithm, eliminates many of the trou- 
blesome effects of noise and extraneous surface 
observations in the data. It does so by searching for 
a consensus of surface observations in order to esti- 
mate the implicit distance from each point in the 
volume to the closest point on the surface. From 
the discrete implicit surface representation in the 
volumetric grid, it is straightforward to generate a 
smooth triangulation of the surface. 

This algorithm can produce accurate object models 
despite the poor quality of data available from real 
imagery (for both range and intensity images). Our 
algorithms achieve robustness by searching for 
consensus information among several views to 
determine which image features justifiably consti- 
tute an element in the model. As an example, Fig- 
ure 1 (a) shows a surface generated by a naive 
algorithm, while Figure 1 (b) shows those obtained 
by our algorithm. 

1.1.1.2. Multi-Scale Representations 

We (Zhang and Hebert) have developed an 
approach to representing shapes at different levels 
of resolution [Zhang and Hebert, 1996], to control 
appropriate details in terms of memory efficiency 
and efficient matching. 

This approach starts with a smoothing algorithm 
for representing objects at different scales. In a way 
similar to the classical scale space representations, 
larger amount of smoothing removes more details 
from the surfaces. Smoothing is applied in curva- 
ture space directly, thus avoiding the usual shrink- 

(a) 

Figure 1: Models generated (a) a naive algorithm 
and (b) our algorithm 

age    problems     and     allowing 
implementations. See Figure 2. 

for    efficient 

We introduced a 3D similarity measure that inte- 
grates the representations of the objects at multiple 
scales. Given a library of models, objects that are 
similar based on this multi-scale measure are 
grouped together into classes. We showed how 
shapes in a given class can be combined into a sin- 
gle prototype object by using the technique of 
inverse mapping from representation to shape, 
introduced in our earlier work. 

Finally, the derived prototypes are used for hierar- 
chical recognition. The input scene representation 
is first compared to the prototypes and then 
matched only to the objects in the most likely pro- 
totype class rather than to the entire library of mod- 
els. Beyond its application to object recognition, 
this approach provides an attractive implementa- 
tion of the intuitive notions of scale and approxi- 
mate similarity for 3D shapes. 

1.1.2. Photometric Representation 

Generation of object models requires two pieces of 
information: the object's shape (geometric infor- 
mation)  and  reflectance properties  (photometric 
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(a) (b) (c) 
Figure 2: Smoothed curvature distribution 
(top) reconstructed mesh by inverse mapping 
(bottom) for different degree of smoothing, a. 
(a) a=0.5; (b) o=2.0; (c) a=5.0. 

information) such as color and texture. The previ- 
ous section describes one half of this effort. This 
section describes our effort on the second half. 

1.1.3. Acquiring Photometric 
Representations 

We (Sato and Ikeuchi) have been developing a 
method to acquire photometric representations - 
the color, texture, and reflectance parameters - of 
an object by observing a real object. Previously, we 
developed a method to analyze a sequence of color 
images taken under a moving light source [Sato 
and Ikeuchi, 1994]. The method, goniochromatic 
space analysis (GSA), allows us to estimate the 
photometric information of the object model - the 
diffuse and specular reflection components - from a 
series of color images of an object. 

In our recent work [Sato and Ikeuchi, 1996, Sato, 
1997], GSA has been extended to handle moving 
object.s. First, a sequence of range and color 
images of a real object is measured by rotating the 
object on a rotary table. Then, the object shape is 
obtained as a collection of triangular patches by 
merging multiple range images. Second, a 
sequence of color images is mapped onto the 
recovered shape. As a result, we can observe color 
changes for each triangular patch of the object sur- 
face throughout the image sequence. The observed 
color sequence is separated into the diffuse reflec- 
tion component and the specular reflection compo- 
nent by the modified GSA. A linear combination of 
the Lambertian model and the Torrance-Sparrow 
model is used as the reflection model. 

For accurately recording texture distribution of an 
object, we divide each triangular patch into finer 
grids. For each grid, a set of pieces of information 
consisting of body color, specular parameters, and 
the surface orientation are stored. Once we have 
this representation of an object, we can synthesize 
very realistic images using the stored parameter- 
sunder various illumination condition. 

1.1.4. Acquiring 3D Edgel Representations 

Three-dimensional (3D) edgel representations are 
useful for object recognition. These 3D edges are 
due to various visual effects: orientation disconti- 
nuities, occluding boundaries, and surface texture. 
Thus, it is quite difficult to predict edgel appear- 
ances. 

We (Wheeler and Ikeuchi) have developed a sys- 
tem that automatically acquires a 3D edgel model 
of an object from images. First, a 3D model of the 
surface is built using the previously described 3D 
modeling system. A set of intensity-image views of 
the object is collected, and the edgels from them 
are extracted using a standard edge operator. The 
edgels are then projected and aligned in the 
object's 3D coordinate system using a 3D surface 
model of the object (built using the 3D surface 
modeling approach alluded to previously). The 
aligned 3D edgel data is then merged to produce a 
set of rigid edgels belonging to the object. We 
again use the concept of consensus to perform the 
merging — extracting statistically significant/ 
salient 3D edgels from the collection of observed 
3D edgels. To account for occluding-contour 
edgels, we use curvature analysis of the points on 
the 3D surface model to predict which surface 
points are contour edgel generators. 

The experimental results demonstrate that our 
modeling algorithms can extract clean models from 
rather noisy data, and that these models can be effi- 
ciently and effectively used for localization tasks. 

1.2. Object Recognition 

We have devoted a substantial amount of effort 
toward robust and general object recognition. First, 
we have addressed two major problems in object 
recognition: object localization and object classifi- 
cation. We have built and successfully demon- 
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strated two object recognition systems. The first 
uses a novel approach to 3D surface representation 
to recognize objects in complex scenes using range 
data; the second one recognizes objects in SAR 
images. 

1.2.1. Robust Algorithms for Object 
Localization 

Being able to accurately estimate an object's pose 
(location) in an image is an important and practical 
problem. Recognition algorithms often trade off 
accuracy of the pose estimate for efficiency ~ usu- 
ally resulting in brittle and inaccurate recognition. 
One solution is object localization ~ a local search 
for the object's true pose given a rough initial esti- 
mate of the pose. 

We (Wheeler and Ikeuchi) have been developing 
algorithms for object localization [Wheeler and 
Ikeuchi, 1993] [Wheeler, 1996]. In previous work, 
we developed and tested a robust algorithm for 
localizing 3D (arbitrary-shaped, rigid) objects in 
range images (3D-3D localization). Our localiza- 
tion algorithm iteratively refines the pose by opti- 
mizing an objective function defined over the 
image data, model data and the object's pose. The 
feature of this work was the use of a robust objec- 
tive function to reduce the effect of noise and outli- 
ers which are prevalent in real image data. This 
method proved capable of efficiently and accu- 
rately localizing 3D objects in range images 
despite clutter and significant amounts of missing 
and occluded data. 

In the past year, we have extended the technique to 
localizing 3D objects in 2D intensity images using 
edge matching [Wheeler, 1996]. In order to deal 
with intensity images, we developed a new repre- 
sentation of an object's appearance as a collection 
of 3D edgels (edge points or elements). By repre- 
senting a 3D object as a dense collection of points 
on the surface which are capable of generating 
intensity edges in images, we have a way to con- 
nect the 3D object (and its pose) to the 2D image 
observations (edges). Edgels provide a very gen- 
eral representation since any shape can be approxi- 
mated as a collection of points. Our representation 
also allows for 3D edgels which generate occlud- 
ing   contours.   Hence,   our   representation   can 

account for a wide variety of rigid object shapes 
(smooth and non-smooth). 

The algorithm has been tested with a wide variety 
of objects. Despite noisy image data and large ini- 
tial pose errors (10 mm and 15 degrees error for 
objects of scale 100 mm), it successfully localized 
objects correctly. In addition, we showed that 
multi-image localization (implicit model-based tri- 
angulation without computing depth) was shown to 
provide substantial improvements in the resultant 
pose estimation. 

1.2.2. Recognition of 3D Objects for Remote 
Operation Applications 

For recognition of complex 3-D objects in range 
images, we (Johnson and Hebert) have developed a 
representation that combines the descriptiveness of 
global object properties with the robustness to par- 
tial views and clutter of local shape descriptions 
[Johnson and Hebert, 1997]. A local basis is com- 
puted at an oriented point (3-D point with surface 
normal) on the surface of an object. All the posi- 
tions on the object surface now can be described 
with respect to the basis of other points by two 
parameters. By accumulating these parameters in a 
2-D array, a descriptive image (spin-image) associ- 
ated with the point is created. Because spin-images 
describes the coordinates of points on the surface 
of an object with respect to the local basis, they are 
local encoding of the global shape of the object and 
are invariant to rigid transformations. 

To prepare a model for recognition, a spin-image 
is generated for each vertex in the model mesh. The 
top images in Figure 3 show some representative 
spin-images for a model of a valve. 

At recognition time, spin-images from points on 
the model are compared with spin-images from 
points in the scene; when two images are similar 
enough, a point correspondence between model 
and scene is established. After point matching, a 
model is localized in the scene by grouping corre- 
spondences to compute a transformation which is 
subsequently refined and verified using a modified 
iterative closest point registration algorithm.This 
recognition algorithm has been integrated into a 
semi-automatic world modeling system called 
Artisan [Johnson et. al., 1997b]. Artisan combines 
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3-D sensors, object modeling and analysis soft- 
ware, and an operator interface to create a 3-D 
model of a robot's work area. Through object rec- 
ognition. Artisan assigns semantic meaning to 
objects in the scene which facilitates execution of 
robotic commands and drastically simplifies opera- 
tor interaction. Figure 3 shows the recognition of a 
valve model in a complex scene typical of interior 
work environments. Artisan was demonstrated in 
several tasks at the Oakridge National Labs, using 
a remotely operated mobile platform. 

Model 
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Figure 3: Recognizing objects in complex scenes. 
This technique is used in the Artisan system for 
remote maintenance. 

1.2.3. Object Recognition in SAR Images 

Automatic target recognition (ATR) using syn- 
thetic aperture radar (SAR) images is a promising 
military application area, because SAR sensors 
allow continuous day/night coverage under all 
weather conditions, and can achieve high spatial 
resolution even from orbital platforms. Despite 
these advantages, SAR-based ATR systems are dif- 

ficult to develop [Ikeuchi et al., 1996]. For objects 
with complex surface geometry, such as a tank, 
slight differences in viewing angle cause features 
to suddenly appear, disappear, and abruptly change 
shape. Furthermore, signals that bounce off multi- 
ple surfaces before returning give rise to non- 
attached features that appear to be floating beyond 
the target surface. Some prominent image features 
are sometimes useless for recognition. 

The eigenspace method is a promising classifica- 
tion technique that can take a training set of target 
images and automatically determine what features 
are most important for recognition, and it is there- 
fore a potentially useful approach to SAR ATR. 
However, there are several known drawbacks to the 
standard eigenspace method, in particular, it is sen- 
sitive to the placement (translation) of the object in 
the image, and does not handle occlusions and 
articulated object well. 

We overcome these difficulties in eigenspace clas- 
sification techniques by building a SAR ATR sys- 
tem based on small "eigenwindows" [Ohba and 
Ikeuchi, 1997]. This system divides each training 
image into small subwindows, all of which are 
stored as points in the eigenspace. An unknown tar- 
get image is also broken into subwindows and pro- 
jected into eigenspace. Each pairing of a target 
eigenwindow point and a training point votes for a 
particular target and viewing angle, and the final 
classification is achieved as the consensus of all 
such votes. This eigenwindow approach has a num- 
ber of benefits. First, when some parts of a target 
are occluded, remaining windows covering visible 
parts can identify the target. Second, to detect a tar- 
get with articulated components, we can define 
separate windows for each, and recognition can 
proceed separately on the articulated parts and the 
body. Third, the method is by definition insensitive 
to image translation. Finally, using multiple small 
windows rather than a whole image greatly reduces 
the dimensionality of the eigenspaces that must be 
manipulated. 

We (Collins, Wheeler, Ohba and Ikeuchi) have 
implemented an eigenwindow-based SAR ATR 
system, and evaluated it using seven targets types: 
BMP, BTR60, KTANK, M35, M113, M60 and 
SCUD. Training images for each target were gen- 
erated via the XPATCH simulator by varying the 
azimuth angle from 0 to 359 degrees in 1 degree 
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increments, while maintaining a constant SAR 
depression angle of 22.5 degrees and resolution of 
30 cm/pixel. Test images were also generated via 
XPATCH, at fractional azimuth values. A target 
classification produced by the system was consid- 
ered to be correct if it was of the correct object 
type, and had an estimated azimuth angle within 5 
degrees of the correct angle. Under this criteria, 
when the system was tasked to produce a single, 
best candidate hypothesis, the mean classification 
accuracy was 95% (std of 4%) for unoccluded tar- 
gets, and 93% (std 5%) for targets occluded up to 
50% in the worst case. 

The system was also tested in an indexing mode, 
where the top 5 best candidate hypotheses were 
generated. Under this tasking mode, the correct 
classification was contained in the top 5 hypotheses 
99% (std 1%) of the time for unoccluded targets, 
and 98% (std 2%) for targets occluded up to 50%. 
System performance is therefore excellent, particu- 
larly when used as an object indexing system, and 
performance degrades slowly with respect to target 
occlusion. 

2. Low-Latency Real-Time Image 
Processing 

Latency, or reaction time, is the time that a system 
takes to react to an event. The primary sources of 
latency in vision systems are: the data transfer bot- 
tleneck caused by the need to transfer an image 
from the camera to the processor, and the computa- 
tional load bottleneck caused by the processor's 
inability to quickly handle the large amount of 
visual data. The detrimental effects of both bottle- 
necks scale up with the image size. 

Another aspect presently missing in machine 
vision is top-down sensory adaptation. Complex 
adhoc algorithms that try to extract relevant infor- 
mation from inadequate sensor data are inevitably 
unreliable. In fact, time and time again it has been 
observed that using the most appropriate sensing 
modality or setup, allows recognition algorithms to 
be far simpler and more reliable. A system that can 
adjust its operation at all levels, even down to the 
point of sensing, would be far more adaptive than 
the one that tries to cope with the variations at the 
"algorithmic" or "motoric" level alone. 

We (Brajovic, Amidi, Madison and Kanade) have 
been developing low latency and adaptive real-time 
image processors based on a computational sensor 
paradigm and a reconfigurable 2D vision machine 
architecture. 

2.1. Computational Sensors 

The computational sensor paradigm [Kanade and 
Bajcsy, 1993] has the potential to greatly reduce 
latency and provide top down sensory adaptation to 
the vision system. By integrating sensing and pro- 
cessing on a VLSI chip both transfer and computa- 
tional bottlenecks can be alleviated: on-chip 
routing provides high through put transfer, while 
an on-chip processor could implement massively 
parallel fine grain computation providing high pro- 
cessing capacity which readily scales up with the 
image size. In addition the tight coupling between 
processor and sensor allows for efficient top down 
feedback that can control and adjust sensor for fur- 
ther acquisition based on the preliminary results of 
the processing. 

Our recent work has been concerned with efficient 
implementation of global operations over a large 
groups of image data using computational sensor 
paradigm [Brajovic and Kanade, 1994]. The data 
are supplied optically by focusing an image 
(henceforth referred to as a retinal image) onto the 
array of photo detectors. A processor integrated 
within the chip, incrementally makes decisions 
based only on a few input data at a time. The prob- 
lem is how to efficiently chose which few input 
data to route to the global processor at each given 
time. Recently we investigated two models: the 
sensory attention [Brajovic and Kanade, 1996], and 
the intensity-to-time processing paradigm [Brajo- 
vic and Kanade, 1997]. 

More details are presented in our MURI PI Reports 
in the same proceedings. 

2.2. Reconfigurable Vision Machine 
Architecture 

A practical real-time vision machine must per- 
forms low-latency, high-bandwidth, and versatile 
operations on an uninterruptable, overwhelming 
volume of image data. Image processing functions 
can be local or global, their operations can be uni- 

100 



form or non-uniform, and their control flow can be 
data-dependent or data-independent. A suitable 
architecture for vision varies depending on applica- 
tions. We have to balance input bandwidth (i.e. data 
access requirements), processor bandwidth, and 
output bandwidth for different appUcations. Our 
strategy for developing a vision machine architec- 
ture stresses modularity, expandability, and sim- 
plicity in configuring a target machine, rather than 
blind "generality". It is not important how general 
a fixed machine is, but how quickly a specific eco- 
nomical machine can be configured for an applica- 
tion at hand. 

We (Amidi, Kanade and Madison) have been 
developing a two-dimensional Reconfigurable 
Vision Machine (RVM) pipelined architecture. The 
RVM architecture integrates functional modules 
with a unified communication interface, each con- 
figured into an application-specific system to 
achieve the best performance with the lowest cost. 
In designing such a target system, processing and 
input/output bottlenecks at various pipe stages are 
overcome by vertically and horizontally extending 
the pipes with modular hardware. To support such 
a process of system configuration, we have devel- 
oped software systems with which a designer can 
graphically interconnect appropriate modules, sim- 
ulate the operation of the target system, identify the 
system bottlenecks for improvement before hard- 
ware realization of a target system. 

The RVM architecture employs four types of func- 
tional modules: Function-specific Image Process- 
ing (FIP) Modules, Processor Modules, Junction 
Modules, and Bridge Modules. The FIP modules 
are hardware-oriented modules which perform cer- 
tain image processing functions such as image cap- 
ture, display, table lookup, and convolution. 
Processor modules are self-contained programma- 
ble processing units used for realizing capabilities 
that are best implemented by software for flexibil- 
ity. Junction modules and Bridge modules provide 
unified high-speed communication links. Junction 
modules perform tasks such as data broadcasting, 
branching, and merging. Bridge modules link off- 
the-shelf computer systems, such as personal com- 
puters or DSP engines, to the configured system. 

The reconfigurable hardware operates in conjunc- 
tion with a suite of software libraries and tools. 
These include tools which run on the PC to create 

DSP processor code, to build loadable images of 
programs and data, and to communicate with the 
host-interface module. Software libraries have 
been developed for the host interface and C44 pro- 
cessors which allow fast and simple development 
of typical computer vision applications. An operat- 
ing system on the host-interface provides facilities 
for debugging, for communication with other mod- 
ules, and for communications with man-machine 
interfaces running on PCs. 

The RVM architecture has been already applied to 
industrial inspection problem. 

3. Video Surveillance and Monitoring 

Carnegie Mellon University and David Samoff 
Research Center have recently started a joint, inte- 
grated feasibility demonstration (IFD) effort in the 
area of Video Surveillance and Monitoring 
(VSAM). The objective of the VSAM project is to 
develop automated video understanding technol- 
ogy for use in future urban and battlefield surveil- 
lance applications, where human visual monitoring 
is too costly, too dangerous, or otherwise impracti- 
cal. Sample applications include building and park- 
ing lot security, monitoring restricted access areas 
in warehouses and airports, scanning urban battle- 
zones for sniper activity, and performing recon- 
naissance on the battlefield. Technology advances 
developed under this project will enable one 
human operator at a remote host workstation to 
supervise a network of VSAM platforms (station- 
ary, moving on the ground, or airborne), having 
multiple, steerable sensors operating in the visible 
and infrared bands for continuous day/night opera- 
tions. The platforms will be mainly autonomous, 
notifying the operator only of salient information 
as it occurs, and engaging the operator minimally 
to alter platform operations. 

The technical objectives to be achieved by the 
CMU/Samoff effort are: 1) cooperative surveil- 
lance by multiple ground and airborne sensors to 
seamlessly track moving targets as they enter and 
leave the field of views of individual sensors, or 
become temporarily occluded from one or more 
sensor viewpoints. 2) Scene-level representation of 
targets and their environment by integrating evolv- 
ing visual, geometric, and symbolic sensor obser- 
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vations together with collateral scene data. 3) 
Active control of sensor parameters, sensor pro- 
cessing, and platform deployment in response to 
mission and task needs based on the evolving wide 
area representation. 4) Development of an experi- 
mental testbed that includes the sensors, hardware 
platforms, and software architecture needed to sup- 
port data collection and experimental evaluation of 
VSAM technologies developed by the DARPA lU 
community. 

More details are presented in the VSAM-IFD PI 
Report in the same proceedings. 

4. Mobile Robot Navigation 

There are three main thrusts to CMU's mobile 
robot activities: the DARPA-funded Unmanned 
Ground Vehicle program, NASA's Lunar Rover ini- 
tiative, and DOT on-road research. All three share 
common elements of sensing and sensor interpreta- 
tion, and all draw heavily on lU work and resuhs. 

4.1. Unmanned Ground Vehicles (UGV) 

We (Hebert, Stentz and Thorpe) have extended the 
capabilities of the UGV systems demonstrated as 
part of the DARPA/OSD Demo II program 
[Hebert, 1996; Hebert et al., 1996] in four areas: 
advanced sensors, perception, planning, and tele- 
operation. 

In the area of advanced sensors, we have investi- 
gated the use of three perception sensors for obsta- 
cle avoidance and navigation. First, we have 
modified the frame-rate stereo machine developed 
by Kanade for use in UGV applications. The stereo 
machine was integrated in the navigation system 
and demonstrated in the field. Initial results show 
that the stereo system can achieve up to 8Hz effec- 
tive frame rate with long range obstacle detection 
and robustness to illumination variations. In order 
to make the use of stereo in long missions over 
rough terrain more practical, we have developed 
techniques for self-calibration of a set of stereo 
cameras [Jiar and Hebert, 1997]. 

Second, we have developed a high-performance 
laser range finder under partial support from a 
state/industry partnership program. This laser 
range finder can achieve lOOKHz measurement 

rates with a maximum range of 50m. The sensor 
provides accurate intensity measurements in addi- 
tion to range. This sensor will enable faster and 
more reliable driving in cross-country terrain. 

Data from stereo cameras or laser range finder pro- 
vide data for describing the shape of the terrain. 
Our third sensing modality is designed for identify- 
ing the nature of the terrain. Specifically, we are 
using a prototype AOTF system developed by the 
Carnegie Mellon Research Institute (CMRI) under 
a MURI program. This sensor the imaging of a 
scene at arbitrary frequency and polarization set- 
tings which can be programmed in real-time. For 
example Figure 4 shows a scene imaged at 530nm 
and 620nm. Selecting the appropriate filter param- 
eters facilitate terrain classification. We have con- 
ducted preliminary experiments and are developing 
a prototype system to be integrated with the UGV 
system. 

Figure 4: Sensing for terrain typing. A scene 
imaged at two different wavelengths, 620nni 
(top) and 530nm (bottom). 

In the area of perception for UGV navigation, we 
have developed an algorithm for representing 
uncertainty in our obstacle detection system, 
SMARTY. Specifically, obstacle regions are 
assigned confidence values based on a sensor 
model and on the number of observations of the 
obstacle region. Regions of low confidence are 
identified as spurious detections and are eliminated 
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from the map. This approach to perception for nav- 
igation was shown to enhance performance by 
removing false obstacles due to sensor noise, or 
terrain features such as vegetation. Based on this 
definition of uncertainty, we have developed an 
algorithm for sensor control which integrates opti- 
mization of terrain coverage and reduced uncer- 
tainty in obstacle detection. 

In the area of planning, we have extended the capa- 
bilities of our two systems, D*, a dynamic route 
planner, and DAMN (Distributed Architecture for 
Mobile Navigation), an arbitration system for inte- 
grating commands from different mobility compo- 
nents. We have extended D* to the case of multiple 
agents and multiple goals. The new system, 
GRAMMPS, is able to dynamically plan route for 
several vehicle simultaneously, and to dynamically 
allocate goals [Brumitt and Stentz, 1996]. The map 
used in both D* and GRAMMPS is updated every 
time new sensor data becomes available. The 
extension of our planning system to multiple 
agents greatly increases the range of UGV mis- 
sions. 

Our current approach to integrating multiple driv- 
ing behaviors into a system is to use an arbiter to 
combine the commands issued by the behaviors. 
This approach has been successfully demonstrated 
in scenarios in which the vehicle drives at moder- 
ate speed. At higher speeds, however, this approach 
to command arbitration leads to instability because 
of delays and latencies that are not taken into 
account in the arbiter. We have developed a new 
approach which addresses those issues [Rosenblatt, 
1996]. In this approach, each mobility behavior 
contributes a local map in which areas that are 
driveable and consistent with the task of the behav- 
ior are assigned high "utility" values, while areas 
such as obstacles are assigned low utility values. 
The arbiter combines the utility maps from all the 
behaviors into a single map from which the optimal 
command, speed and turn radius, is computed. We 
have shown that this approach provides increased 
stability and robustness at higher speed. 

Finally, in the area of teleoperation, we have con- 
ducted controlled user studies in order to evaluate 
our approach to teleoperation, STRIPE [Kay, 
1996]. In this approach, the user selects points in 
images transmitted from the vehicle. The points are 
transformed to three-dimensional locations as the 

vehicle travels. STRIPE is unique in that it is 
designed for operation with very low bandwidth 
communication links in rough terrain. The purpose 
of the users studies was to evaluate the users' 
response to different types of interfaces, and to dif- 
ferent system parameters, e.g., system latency, 
image resolution. The studies provide a solid foun- 
dation for further development of teleoperation 
systems. 

4.2. Planetary Rovers 

We have made progress in perception for planetary 
rovers in three major areas: long-duration autono- 
mous navigation, landmark-based position estima- 
tion, and augmented reality. 

We (Krotkov, Hebert and Simmons) have demon- 
strated the combining use of stereo and safeguard- 
ing laser range finder for autonomous navigation. 
Specifically, we have demonstrated navigation of 
over a 50km course in the "Moonyard", a test site 
designed to simulate lunar terrain [Puke and Krot- 
kov, 1996, Krotkov et al., 1995, Krotkov et al., 
1996]. The navigation system was based on corre- 
lation area-based stereo running on a Pentium pro- 
cessor, with frame rates of 2Hz. In addition, a short 
range laser range finder provided safeguarding for 
those obstacles not detected by stereo. 

Landmark-based position estimation enables rover 
navigation in the absence of external active posi- 
tioning reference. We (Deans, Krotkov and Hebert) 
have started the development of a positioning sys- 
tem based on tracking natural features in a stream 
of images. This visual feature tracker is being inte- 
grated into a system which will use the estimated 
location of the feature to update the position esti- 
mate of a rover which tracking the fixed feature rel- 
ative to the rover as the it traverses a site 

.We (Cozman, Krotkov) have been developing an 
interface aimed at mobile robot operations in 
space, which operates by analyzing images sent by 
the robot and overlaying information about the 
robot's environment onto the images [Cozman and 
Krotkov, 1996, 1997]. To this end, we have devel- 
oped algorithms for pose estimation from outdoor 
imagery, which allow us to automatically detect the 
position of the robot and determine the relationship 
between terrain information and image pixels. We 

103 



have processed Earth images from Pittsburgh 
(Pennsylvania), Dromedary Peak (Utah) and Niles 
Canyon and Don Juan Resort (both in California), 
with accuracies ranging from 80 to 150 meters. We 
have also obtained and mosaiced a sequence of 
images from the Apollo 17 mission, and applied 
our algorithms to this sequence with resulting 
accuracy of 300 meters. The implemented system 
achieves better estimation performance than com- 
peting methods, due to our quantitative approach 
and better time performance due to our pre-compi- 
lation of relevant data. 

Terrain information and position estimates are pre- 
sented to the operator so as to increase situational 
awareness and prevent loss of orientation. To be 
able to continuously superimpose relevant infor- 
mation on the incoming sequence of images, we 
estimate the motion between frames using the Kug- 
lin-Hines algorithm. Motion estimates allow us to 
stabilize video sequences and create seamless pan- 
oramas with broad field of views. The complete 
system, from real-time image acquisition to map 
rendering, is now integrated in a single system run- 
ning in a Silicon Graphics Impact workstation. 
Image processing and position estimation takes an 
average of 2 to 3 seconds. The complete system, 
with image mosaicing, mountain detection and 
position estimation will be used in the coming 
Nomad mission, a multi-week traverse of the Ata- 
cama desert, Chile, to be conducted by the Robot- 
ics Institute at CMU. 

4.3. Automated Highway Systems Program 

We (Pomerleau, Jochem, Sukthankar, Rosenblatt, 
Kay, Langer and Thorpe) have been working two 
sub-project in the DOT work. The first, Run Off 
Road Collision Countermeasures, is not aimed at 
autonomous driving, but rather at driver assist. The 
goal is to have a computer vision system monitor 
the vehicle's position in the lane while a person 
drives. Then, if the person starts to fall asleep and 
drift off the road, the computer can wake the driver 
before a collision occurs. The first phase of this 

Figure 5: Result of mosaicing a 
sequence of 20 images while 
detecting the skyline and the 
mountains. 

project is now complete. It consisted of statistical 
analysis of the accident data to determine the 
causes of accidents, computer simulations of acci- 
dent trajectories to identify the opportunities and 
times for intervention, prototyping of a vision sys- 
tem for determining lane position, and experiments 
in a driving simulator to measure human reaction 
to various warning systems. The results of this first 
phase are encouraging. 80.4% of single vehicle 
roadway departure accidents are due to driver error, 
and 64.8% of those could potentially be prevented 
by warning of too high a speed coming into a cor- 
ner or drifting out of the lane. RALPH [Pomerleau 
and jochem, 1996, 1996b], the vision system built 
for this project, tracks lane positions to within 12 
cm even in inclement weather. Test subjects in the 
University of Iowa driving simulator react well to 
auditory alarms or haptic alarms, nudges on the 
steering wheel back towards the road center. The 
next phase of the project is now under way. This 
consist of building a new test vehicle, the Navlab 8, 
and performing on the road tests. The first set of 
tests will use RALPH in a passive mode, to mea- 
sure typical lane-tracking behavior of several test 
drivers on a variety of roads. This will be used to 
set lane departure warning thresholds low enough 
to not generate false alarms, but sensitive enough 
to provide ample warning. The next set of tests will 
involve extended duration tests of the complete 
warning system, testing both drivers in the Navlab 
8 minivan and professional truckers. 

The second DOT project is the Automated High- 
way System. The goal of the AHS project is to pro- 
vide completely automated driving of specially- 
equipped vehicles on specially-equipped lanes. An 
AHS vehicle will look like an ordinary car, truck, 
or bus, and will be driven normally until it merges 
onto the AHS freeway. Then, the driver will desig- 
nate a destination, and the automated system will 
take control and drive smoothly and safely until the 
desired exit is reached. AHS is being developed in 
the US by a consortium, which includes General 
Motors, Delco, Hughes, Bechtel, Parsons Brinker- 
hoff, the University of California, Caltrans, and 
Lockheed Martin, and the US DOT, as well as 
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CMU. The project is proceeding along several par- 
allel fronts. In technology development, the main 
questions involve how to follow the road, and how 
to detect obstacles. CMU is building a new ladar, a 
new radar, enhancements to the RALPH vision 
system, stereo vision, carrier phase GPS for blind 
driving, and optical flow for obstacle detection. In 
concept development, one of the major issues is 
whether the automated vehicles need to drive in a 
separate lane, occupied only by other automated 
vehicles, or whether they can be made intelligent 
enough to drive intermingled with human-driven 
cars. CMU is building systems to recognize other 
vehicles in traffic, predict their behavior, and 
maneuver safely through the traffic stream. As part 
of the legislation authorizing the AHS project, 
Congress asked for a proof of technical feasibility 
demonstration in 1997. The integrated demo will 
take place the first week of August on the HOV 
lanes of 1-15, just north of San Diego CA. CMU is 
building 5 new vehicles for the 97 demo: Navlabs 6 
and 7 (two Pontiac Bonnevilles, partially instru- 
mented by General Motors and Delco), Navlab 8 
(an Oldsmobile Silhouette minivan), and Navlabs 9 
and 10 (two Flexible city busses). The 5 vehicles 
will demonstrate lane following, lane changing, 
vehicle following, vehicle passing, and obstacle 
detection and avoidance. 

5. Image Understanding for Intelligent 
Video and Image Databases 

Digital image and video databases are rapidly 
becoming important for education, entertainment, 
and a host of multimedia applications. Because of 
the size of the image and video collections, tech- 
nology is needed to effectively store, browse, 
retrieve, and present the content that a user wishes 
to access. 

5.1. Video Skimming 

The Informedia Digital Video Library at Carn- 
egie Mellon University, funded by NSF, ARPA, 
and NASA, is developing intelligent, automatic 
mechanisms to populate a video library and to 
allow for full-content knowledge-based search, 
retrieval and presentation. The distinguishing fea- 
ture of Informedia's approach is the integrated 
application of speech, language and image under- 

standing technologies for efficient creation and 
exploration of the library. 

We (Smith and Kanade) have been developing a 
method to extract the significant audio and video 
information and create a "skim" video - a very 
short synopsis consisting of the significant words 
and images - which enables the user to quickly 
grasp the entire content of the original video 
[Smith and Kanade, 1997]. The goal is to automati- 
cally reduce the playback time by as much as 20:1, 
e.g., to compact an hour-long video to a clip as 
short as a few minutes. 

The current method consists of language analysis 
and image analysis, plus skimming rules. The 
image analysis part segments the input video into 
scenes by detecting scene breaks. Camera motions 
are detected and classified into pan, left/right, 
zoom in/out, and partial motion (usually, object 
move). Also, important objects are detected. At 
present, the methods enables detection of faces 
[Rowley, Baluja and Kanade, 1997] and text. 

The language analysis part extracts relevant key 
words and phrases by using the well-known tech- 
nique of Term Frequency Inverse Document Fre- 
quency (TF-IDF). The TF-IDF of a word is its 
frequency in a given scene, /^, divided by the fre- 
quency, /^ of its appearance in a standard corpus. 
Words that appear often in a particular segment, 
but relatively infrequently in a standard corpus, 
receive the highest TF-IDF weights. 

Finally, the skim rules combine the results of the 
two analyses. The audio part of the skim video 
consists of a sequence of phrases or sentences that 
include the key words. The video part, however, is 
not simply a concatenation of the corresponding 
video, since the video and audio parts of videos are 
not usually synchronized. Instead, the video parts 
are determined by rules such as, "If a key word is 
human related, select the nearby video portion that 
includes faces" and "If video consists of panning 
followed by static and then zoom-in, the last part is 
usually the most important." 

We have created several skim videos by using this 
system; their compaction ratio ranges from 6 to 15. 
Currently, user study is being performed to evalu- 
ate the effectiveness of video skimming. 
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5.2. Neurosurgical Database 

We (Liu, Chen and Kanade) are developing an 
intelligent, interactive. Content-based Medical 
Image Storage and Retrieval (CMISR) System as 
part of the National Medical Knowledge Bank 
project. Medical images form an essential and 
inseparable component through out the diagnosis 
and treatment process. This is especially true in 
neurology, which is our current research focus. The 
CMISR system uses medical images and their col- 
lateral information, such as relevant medical 
records and procedures in the form of text, voice or 
video, to achieve the three main goals of the 
knowledge bank: 1) facilitating consultations 
between primary care givers and specialists,; 2) 
improving patient management, and 3) enhancing 
medical education and training. 

The specific function of the Knowledge Bank is to 
find medical cases similar to a patient's case at 
hand. Accordingly, the CMISR system will ulti- 
mately have the ability for similarity-based medi- 
cal image storage and retrieval. For indexing 
neuroradiology images, with the help from radiolo- 
gists and neural surgeons, we have identified, and 
are in the process of building detectors for a set of 
salient visual features, including: mass effect, ana- 
tomical location, density, sensitivity to contrast 
enhancement, edema, shape and boundary. 

6. Image-Guided Computer-Assisted 
Surgery 

Surgical precision is of vital importance in many 
fields such as neurosurgery and orthopaedics. 
Computer-assisted surgical systems can greatly 
increase the accuracy of these operations and have 
already been applied to a few applications. 

Real-time and interactive imaging of complex bio- 
medical systems has become another priority 
within medicine. One major challenge is to inte- 
grate the precise information currently found with 
CT and MRI into surgical practice. 

6,1. Accurate Shape-based Registration 

The registration process is a fundamental compo- 
nent of most computer-assisted surgical systems. 
Registration   estimates   a  spatial  transformation 

between two coordinate systems: a pre-operative 
system used to construct plans or simulations 
based upon medical data (e.g., CT, MRI, or X-ray 
images), and an intra-operative system in which the 
surgical procedure is performed (e.g., relative to a 
robot, navigational guidance system, etc.). 

We (Simon and Kanade) have developed registra- 
tion methods, referred to as shape-based registra- 
tion methods, which use representations of object 
shape to estimate the required transformation. Rep- 
resentations are constructed using data collected in 
the two coordinate systems (i.e., pre- and intra- 
operative). Registration estimates a transformation 
which aligns one shape representation with the 
other in a manner which minimizes a measure of 
the distance between them. 

Several factors affect shape-based registration 
accuracy, including: errors in the shape representa- 
tions due to sensor noise or shape reconstruction 
errors [Simon et al., 1995]; the quantity of registra- 
tion data; and the locations on the registration 
object from which the data are collected [Simon et 
al., 1995, Simon, 1996]. This work addresses the 
problem of improving shape-based registration 
accuracy via intelligent selection of registration 
data and on-line estimation of accuracy. Intelligent 
data selection (IDS) is comprised of geometric 
constraint analysis which provides a sensitivity 
measure shown to be well correlated with registra- 
tion accuracy; and geometric constraint synthesis, 
an optimization process which generates data con- 
figurations which maximize the sensitivity measure 
for a fixed quantity of data. IDS uses the pre-opera- 
tive shape representation to generate a data collec- 
tion plan (DCP) which can be used during surgery 
to guide the acquisition of registration data. On- 
line accuracy estimation provides an upper bound 
on true registration accuracy based upon a conven- 
tional root-mean-squared error. 

After in-vitro on cadaveric specimens and via sim- 
ulation studies, the above method has been incor- 
porated into the HipNav system, a clinical image- 
guided orthopedic surgical application [Simon et 
al., 1997] [Simon and Kanade, 1997] [Jaramaz et 
al., 1997]. 
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6.2.3-Dimensional Image Overlay 

Image overlay is a display technique that combines 
2D or 3D computer generated images with the 
user's view of the real world. We (Blackwell, Mor- 
gan, Simon and Kanade) have developed a system 
that provides the observer with an unimpeded view 
of the actual environment, enhanced with 3D stereo 
images [Mrcas, 1997]. The system tracks objects in 
the real world and the observer's view point to 
transform the computer images to appear in the 
appropriate location (see Figure 6) 

A significant advantage of our 3D image overlay 
system is that the user sees virtual images properly 
registered within the real world scene. For some 
tasks, the ability to view this data without looking 
away from the scene is extremely beneficial. The 
user views the patient through a beam splitter (a 
half-silvered mirror) which is both transparent and 
reflective. Positioned above the beam-splitter is a 
display device (video monitor or projector). The 
user sees the patient directly through the beam- 
splitter, and also sees a reflection of the video dis- 
play which appears to float within the workspace. 
A pair of liquid crystal shutter glasses are worn 
allowing the user to view stereo images. A 6 degree 
of freedom tracking system is integrated with the 
overlay device allowing the user to change the 
view point and objects in the world scene to move 

Figure 6:  Stereo image 

while maintaining correct registration of the 
images. 

The current prototype system is being re-designed 
as a smaller and more mobile system for use in an 
operating room.The system is also being designed 
for use in Interventional Magnetic Resonance 
Imaging (IMRI) systems, which will allow a sur- 
geon to view MRI images in near real-time with a 
simultaneous unobstructed view of the patient. 
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Abstract 

The dimensionality of visual motion analy- 
sis can be reduced by analyzing projections 
of flow vector fields. In contrast to motion 
vector fields, these projections exhibit sim- 
ple geometric properties which are invari- 
ant to the scene structure and depend only 
on the camera motion. Using these prop- 
erties, structure and motion can be either 
completely or partially decoupled. We esti- 
mate motion parameters from projections 
of flow fields by using robust techniques, 
implemented in a recursive observer model. 
The recovered scene structure is collected 
in a visual scene memory for both tempo- 
ral and spatial integration of instantaneous 
measurements. The model is applicable 
to general camera motion and to almost 
arbitrary known focal length without the 
requirement of point correspondence. We 
demonstrate our projection method on the 
problem of detecting independently moving 
objects from a moving camera. Using the 
projection approach, the problem can be 
reduced to a one-dimensional optimization 
process which involves robust line-fitting 
and outlier detection. 

1    Introduction 

Problems in visual motion analysis require the study 
of large, relatively high-dimensional spatio-temporal 
data (visual displacement vector fields) projected 
onto the image plane. Each component of this 
data provides only a weak geometric constraint on 
the confounding of camera motion and scene struc- 
ture, and the input data is usually highly erroneous. 
Therefore, visual-motion-based problems such as 
navigation or structure estimation need to be ad- 
dressed by a combination of geometry and robust 
spatio-temporal signal processing. 

In our approach to analyzing visual motion fields, 
we propose a method based on the analysis of pro- 
jected components of flow vector fields. When the 
flow vector field is projected onto a small set of lines, 
the original two-dimensional flow field is reduced to 
a small number of one-dimensional scalar functions 
representing components of the input flow field. Ex- 
ploiting two simple properties of the projected flow 
fields allows us to recover the projected components 
of the egomotion. To obtain complete information 
about the motion two (or more) projections in diff'er- 
ent (e.g. orthogonal) directions can be employed. In 
certain restricted domains, even the partial informa- 
tion provided by a single projection is sufficient to 
obtain information about the motion and the scene 
structure. Emphasizing the importance of integral 
measurements, we extend our analysis of flow fields 
into the spatio-temporal domain by using a cumula- 
tive visual scene memory. 

In the first part of this paper we introduce our imag- 
ing model and characterize visual motion fields. We 
then examine the projected components of these 
fields and discuss various properties of special one- 
parameter families of these projections. Based on 
these properties we construct an algorithm and im- 
plement it in the form of a recursive filter for the es- 
timation of egomotion parameters. We demonstrate 
the application of the projection approach to a spe- 
cial case of the structure-from-motion problem, the 
detection of independently moving objects. 

2    Visual motion fields 

An important goal of computer vision is to obtain 
information about (1) the motion of the visual ob- 
server and/or (2) the structure of the scene being 
observed. The camera collects information about 
the three-dimensional world by projecting it onto a 
frontal image plane. We define our reference coordi- 
nate system in the usual way, as fixed to the camera 
frame with origin coinciding with the lens center, 
xy-plane parallel to the image plane, and .^-axis in- 

113 



tersecting the image plane at distance /. 

Setting the focal length / to unity, the visual motion 
of an image point q{x,y,f) can be expressed as a 
function of the camera motion by the well-known 
motion equation [6] 
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where {xo,yo) = (^, ^) is the focus of expansion 
(FOE), T = ([/, V, W) denotes the translational ve- 
locity and Ct — {Q,x,^y,^z) the angular velocity of 

the camera. ZQ = ^ defines the scaled depth. 

Given the flow field v = {u, v), motion ana;lysis aims 
to recover either the egomotion parameters or the 
(scaled) scene depth, or both. This problem requires 
the decoupling of structure from motion by solving 
(1) and (2) at each flow vector v = {u,v). In gen- 
eral the solution can be very ambiguous, making the 
problem unstable or ill-posed. 

A possible approach to attacking this ill-posed prob- 
lem is to avoid the complete estimation of the mo- 
tion parameters and to recover only a reduced, well- 
conditioned subset of them. This can be done (e.g.) 
by using parallax [7] or epipolar constraints [13]. Un- 
fortunately, these models require point correspon- 
dences, which are hard to extract accurately. Alter- 
native approaches involve the direct use of the so- 
called normal flow. This form of input data is easy 
to estimate, providing a large number of constraints 
on the motion. However, the constraint provided by 
each normal flow vector is rather weak, which causes 
high algorithm complexity and instability of the im- 
plementations. 

3    Projected components of visual 
motion fields 

It is well known that purely translational (O = 0) 
or purely rotational (T = 0) flow fields possess sim- 
ple geometric regularities; however, these regulari- 
ties disappear if the two components are superim- 
posed. This is, evidently, due to the relatively high 
dimensionality of the resulting fiow field. 

One way to reduce dimensionality is to use projec- 
tions.   One can consider only specific components 

of the flow field (in one or more directions) and use 
them to extract information about the visual mo- 
tion. This approach was first introduced in [3; 4; 
9] and then further developed in [2; 10; 12]. Let 
v{x,y) be a flow vector field in the image plane 
and p be the (unit) projection vector. Taking the 
component of v{x, y) parallel to p, we obtain a two- 
dimensional (scalar) function u'(x,y) = v{x,y)p. 

In order to completely exploit the original flow field 
we have to perform two or more projections in dif- 
ferent (e.g. orthogonal) directions. The fact that no 
correspondence is established between the compo- 
nents u'^ and w" of diff'erent projections of the same 
flow vector Vq = (ug,Vq) is an important benefit of 
the method for vision applications: it allows the ap- 
proach to handle the well-known aperture problem 
by not requiring point correspondence. 

In the special case when p is parallel to the a;-axis we 
obtain the identity u'{x,y) — u{x,y) of (1). Gener- 
ally, the expression for u' remains of the same form 
due to symmetry considerations, except that its pa- 
rameters are expressed in the rotated coordinate sys- 
tem aligned with p. In practice it may be that some 
projection directions are better than others, as we 
will see; however, this will not effect the theoretical 
discussions to follow. Therefore, for simplicity we 
will consider the a;-component only in the standard 
image coordinate system {x,y) and refer to other 
coordinate systems {x',y') only when necessary. 

In our analysis of projections of flow fields we will 
consider restrictions on u{x, y) which will result in 
one-parameter-functions of w. We define the parallel 
restriction 

def 
(x)  = u{x,y) (3) 

y^const 

where the restriction (sampling) direction is paral- 
lel to the projection direction p, and the orthogonal 
restriction 

Ux{y) = u{x,y) (4) 
x = const 

where the restriction (sampling) direction is orthog- 
onal to the projection direction p (Figure 1). We 
show in the next two subsections that these two re- 
strictions reveal qualitatively different properties of 
the underlying motion field. 

3.1     Parallel restriction of projected 
flow 

The parallel restriction on a projection of a flow field 
can be decomposed into translational and rotational 
components (1): Uy{x) = Uy^T{x) -\- Uy^ciix)- 

The translational component is a function of scene 
depth and the distance from the projection of the 
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Figure 1: One-parameter functions of the projec- 
tions of flow fields: the parallel restriction Uy and 
the orthogonal restriction MJ;. 

FOE, XQ. For the point x = XQ the translational 
component vanishes, independently of the underly- 
ing structure. 

The rotational component Uii{x) is in general a 
second-order function of x. Assuming that the im- 
age FOV is small {x,y <C 1), the second-order 
terms of x and y can be neglected, so that we have 
Uy{x) = Qy + fi^y. Since the rotational -'n-y   -   Zo{x,y) 
terms have become constant with respect to x we 
can make the following observation: 

\/x 
X < xo     =^ Uy{x) < Uy{xo) = y.y,n{xo) 
X> Xo       =>   Uy(x) > Uy{xo) = Uy^a{xQ). 

(5) 
These inequalities express the divergence prop- 
erty of parallel restrictions (Figure 2). They reflect 
the assumption that scene depth must be positive 
(because the scene is in front of the camera). The di- 
vergence property of purely translational flow fields 
is widely known. Less obvious is the regular behav- 
ior of general flow fields if a specific projection is 
considered. Of course, as the image FOV becomes 
large the rotational component depends on x, which 
cannot be ignored, and the divergence property no 
longer holds. 

In summary, the parallel restriction provides con- 
straints on the location of the FOE if the FOV is 
small, or more generally if the rotational component 
is negligible compared to the translational one. 

3.2    Orthogonal restriction of 
projected flow 

Like the parallel restriction, the orthogonal restric- 
tion can also be decomposed into translational and 
rotational components: u^{y) = Ux;r{y) + Mr,n(y)- 

From (1) it follows that when x = XQ the transla- 
tional component Uxa;r{y) vanishes for all y inde- 
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Figure 2: The divergence property of the parallel 
restriction of projected flow in the case of general 
camera motion and narrow FOV. 

pendently of the structure of the scene. 

The rotational component of the orthogonal restric- 
tion is a linear function of the free variable, y, which 
is independent of the camera parameters. In the case 

of a narrow FOV, it reduces to Wa;,n(?/) = —^y + ^zV- 
We will call this the linearity property of the 
orthogonal restriction. An orthogonal restriction, 
when it intersects the FOE, is a linear function of 
y; therefore the linearity property provides a con- 
straint on the rotational parameters. 

It is important to note that the linearity property 
is not a sufficient condition for concluding that a 
particular restriction intersects the FOE. If (e.g.) 
the flow field contains only rotational components 
(e.g., ZQ = GO), or the scene structure is criiical 
(^ A \ = ro{x) + ri{x)y), then the orthogonal re- 

striction is linear whether or not it intersects the 
FOE. It can be easily shown that one of the most 
common scene structures, a plane, is also a criiical 
surface for orthogonal restrictions; planes induce lin- 
ear orthogonal restriction functions independently of 
camera motion. 

4    Recovering motion using 
projections of flow fields 

The divergence and linearity properties of restric- 
tions of projected flow flelds provide constraints on 
the camera motion and can be used as a basis for 
estimating motion parameters. 

In [2; 3; 12] the linearity property of projections of 
flow fields is used to constrain the location of the 
FOE and estimate the rotational parameters. In 
those approaches, the parameter estimation search 
process analyzes only those orthogonal projections 
which pass through the image center {x = 0). This 
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reduces (1) to the very simple form Ux=o{y) = 
—fly + ilzV, independent of the camera parameters. 
This constraint is used to find the direction of the 
line passing through the FOE. A second search along 
this line determines the location of the FOE; one 
can then immediately recover the rotational compo- 
nents. 

While this method is very elegant and is indepen- 
dent of the camera parameters, it does suffer from 
several shortcomings. First, the approach uses only 
the flow values that fall on two intersecting lines as 
the basis for motion parameter estimation. Second, 
as we have seen, the linearity property is only a nec- 
essary and not a sufficient condition for locating the 
FOE. 

In what follows we describe an algorithm that com- 
bines the linearity and the divergence properties to 
solve motion estimation problems, but does so using 
methods that integrate information over the entire 
image plane. 

4.1 The algorithm 

First, for simplicity, we will assume that the cam- 
era FOV is narrow and that the projection of the 
FOE (XQ) is inside the image. Choosing projection 
direction p, 

1. We analyze each parallel restriction, Uy(x), and 
for each x find the value ity^n^x) that best satis- 
fies the divergence property under the assump- 
tion that X = xo- This corresponds to the value 
that minimizes the regions of negative depth 
[5] in the parallel restriction. Geometrically, 
it is that value w such that the NW and SE 
quadrants of the x — u plane defined by the 
axis through {x,u) have (e.g.) the minimum 
numbers of projected flow values (Figure 3). A 
straightforward algorithm for computing Uy_n 
would require 0{N'^) computation for 0{N) 
steps of X and u. In Section 4.2 we present 
a heuristic algorithm for computing Uy,aix) in 
OiN) time. 

2. These Uy^n{x) are combined into un{x,y) and 
the orthogonal restrictions Ux,n{y) are con- 
structed. The linearity property is then used 
to select the estimate XQ. According to the lin- 
earity property Uxoiv) = —f^y + flzV, there- 
fore we select the x value for which the or- 
thogonal restriction Ux,a{y) best fits a line at 
Xo. Furthermore, fly = mean{w£„,n(2/)} and 

flz = slope{uf„,n(2/)} 

4.2 Implementation 

We describe a linear algorithm to approximate 
Uy,ci{x) by defining the /operand upper distributions 

50 100 200 250 300 350 

Figure 3: The estimation of Wj/,n(^) in parallel re- 
striction Uy. 

of a function u for a given interval [xmin, ^max]: 

*-  -^ ~  1   -foe otherwise, 

—CO otherwise. u^ix) 

Since we have assumed a small FOV and an FOE in 
the image, the parallel restriction satisfies the diver- 
gence property. We therefore have the constraint 

Ko e {a; I u^ix) > u^{x) }. 
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Figure 4: The estimation of Uy^fi{x) in parallel re- 
striction Uy{x) using the lower and upper distribu- 
tions Uy{x) and u^{x). 

We use these distributions to, heuristically, estimate 
Uy^n{x) as follows (Figure 4): 

«y,n(^)'=  ^KW + <W)- (8) 

This is based on the observation that the only possi- 
ble values for Uyfl{x) lie in the interval determined 
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by Uy{x) and Uy{x), and on the assumption that 
the flow values will be uniformly distributed in the 
{x,u) plane between these distribution functions. 

The second device for simplifying the computation 
of Uy^n is based on reducing the number of parallel 
restrictions by collapsing a band of parallel restric- 
tions of width 2w using their extrema as follows: 

uf'^ix) = min {uy(x)} 
{2k-l)w<y<(2k + l)w 

max (x) = max {uyix)], 
^   '       (2Jt-l)«;<j/<(2fc + l)u)      " 

where ^^^ < k < %^, and w is the half-width of 
ZW      — —       ZW    ' 

the band. As a result, the image is subdivided into 
a small number of non-overlapping bands, where the 
original parallel restrictions are replaced by the up- 
per and lower envelopes of u(a;, y) within each band^. 
This step can be regarded as an extension of the pro- 
jection principle. 

After the collapsing step, the envelopes w^'" and 
uf^^ are used to compute u^{x) and u]^{x), respec- 
tively, and then (8) is used to compute Uk,n- As a 
result of the collapsing of the image into bands, the 
line fitting has only ^°"~^'°'" points to estimate the 
best fit Uk,ftix) to the values of Uk.ui^^) at each x 
position (Figure 5). The candidate for XQ is that x 
which minimizes the cost function 

C{x) = J2k cipos2(wi,n(a;) - ii^ni^)) + 

cipos2(M^f^(a;) - Wi,n(a;)) + C2W^,n(^),(9) 

where the function pos(a;) = x ii x > 0, else 0, and 
ci,C2 are constants. The first two terms penalize 
negative depth in the estimated Uk,nix), and the 
last term provides regularization. 

Performing these steps, we recover the projected 
components of the motion. In order to recover the 
complete set of motion parameters we must employ 
more (> 2) projection directions and combine the 
results as vector components. 

4.3    Extension of the algorithm to a 
general FOV 

Until now we have assumed that the FOV is small, 
since the divergence property is not satisfied for a 
large FOV when the flow contains a large rotational 
component. The extension of the algorithm to the 
case of a wide FOV is as follows. We process the 
flow field as if the FOV were narrow. We use the es- 
timated rotational parameters to derotate the orig- 
inal flow, and we iteratively process the derotated 
flow, in which the rotational component has been 

Figure 5: The collapsing of bands of u{x,y) into a 
small number of lines (five in this case) results in 
a significant reduction in the number of parallel re- 
strictions in the image. Each band provides a lower 
and upper distribution u^ jvF from which un is com- 
puted. The one-dimensional optimization in x gives 
XQ when a combination of line fitting and minimiza- 
tion of negative depth is employed. 

The structure-independent information of the mo- 
tion field is provided by (either of) the extrema of the 
projected flow. Since our goal is to extract this feature 
we do not lose relevant information in the collapsing step. 

reduced. As the iteration process converges, the 
rotational component decreases and the divergence 
property is better satisfied by the derotated flows, 
providing a more accurate estimate for XQ. 

The iteration steps can be implemented using a re- 
cursive observer model, where the state variables of 
the observer are the rotational parameters (Figure 
6). 

In order to employ this approach the stability of the 
recursive filter has to be assured. Applying the di- 
vergence property to parallel restrictions of large- 
FOV projected flow fields with rotational compo- 
nents results in erroneous estimates of XQ. This 
effect can be modeled as noise affecting the accu- 
racy of the rotation estimates. It can be shown that 
this noise is bounded, where the bound is a func- 
tion of the FOV. Expressing the stability conditions 
for the linearized discrete system model we can es- 
timate the tolerance of the system to noise distur- 
bances. This provides us with an upper bound on 
the allowable FOV (> 100 - 120 degrees) for which 
the recursive observer is stable. Experiments sug- 
gest that this bound is rather pessimistic and 2-4 
iterations can usually approximate the motion pa- 
rameters with less than 10-20% error. 
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Figure 6: The recursive observer model implement- 
ing the divergence (D) and linearity (L) properties 
for the case of a large FOV. Each bank in the filter 
represents a specific projection direction. The vec- 
tor components of the estimated motion parameters 
are combined in intermediate steps to provide the 
complete parameter vector. 

4.4    Extension of the algorithm to an 
arbitrary FOE 

Until now we have assumed that the projection of 
the FOE, XQ, is inside the image, or more precisely, 
inside the convex hull defined by the locations of the 
flow vectors. It is clear that neither the divergence 
nor the linearity properties can provide (unique) 
constraints on the visual motion if the FOE is out- 
side this convex hulP. This is a theoretical limitation 
on the projective approach as compared with tradi- 
tional methods; however, its practical shortcomings 
are minor. 

The ambiguity of the divergence property can be 
illustrated as follows. If XQ is not visible then the 
divergence property of parallel restriction Uy{x) is 
satisfied by any point (x,Uy^n(x) ) where x < aimin 
and Wy,n(«) < minj;{ Uy{x) }, or a; > a;max and 
Uy,n(x) > maxj;{ Uy(x) }, since the estimated depth 
at the location of each flow vector would be positive 
(Figure 4). 

It follows that we cannot recover the accurate posi- 
tion of a;o if it is not within the image. But we can 
still recover a qualitative estimate of XQ which lies on 
the image boundary closest to XQ- In order to be able 
to recover this qualitative estimate we need to as- 
sume that the scene is sufficiently cluttered and has 
(approximately) constant variation AZQ for each x 
along the given y. The resulting variation in the par- 
allel restriction of the translational projected flow is 

then Auy^T{x) = '"^z ■ ^'-'^ simplicity and without 
loss of generality we suppose that XQ < Xmm (i-e., XQ 

lies beyond the left image border). It follows that 
for any x G (^min, aJmax] we have 

AUy^TiXmin) < AUy^T{x). 

^This problem is relevant only if the translational 
component of the flow field is measurable; otherwise (e.g. 
Zo = CO or pure rotation) it is not possible to recover this 
component. 

From the definition of the distribution functions 
(6,7) it follows that 

Uy(Xmin) - My (aJmin) < U^{x) - U^ix). 

Since our cost function (9) favors those x values for 
which the lower and upper distributions are closer 

to each other we get xo = aJmin- 

We will demonstrate in Section 5 that there exist 
navigation and structure-from-motion applications 
in which it is not necessary to recover an accurate 
value of Xo, but only to find a qualitative estimate 
of XQ when it is not within the image. 

5    Applications 

In this section we demonstrate the application of 
our approach to a special qualitative structure-from- 
motion problem, the detection of independently 

moving objects. 

Human and animal vision systems have the abil- 
ity to detect moving objects even if the observer 
is moving. A human uses a combination of vi- 
sual cues to solve this problem, such as geome- 
try; shape; illumination; color; ordinal depth from 
stereo, structure and occlusion; knowledge about the 
scene; etc. As in many other studies [l; 7; 8; 10; 
13], we use only the geometry cue to solve this prob- 
lem, and assume no domain knowledge (which, of 
course, would be useful in practical applications). 
In our approach, the detection of moving objects is 
based on the rigidity analysis of visual motion fields 
using the constraint that depth is positive. In con- 
trast to other work, we assume general camera mo- 
tion and wide FOV, and we use the normal flow field. 

5.1    Theory of detectability 

Let r be a flow field and FOE the focus of expansion 
induced by the motion of the camera. We also define 
FOEmo, which is induced by the relative motion of 
a moving object, ignoring the rigid scene. If FOE 
and FOEmo are located at the same image point, 
then we cannot detect any inconsistency in v based 
on geometry, since the directions of the flow field 
are the same for both the rigid scene and the moving 
object^. If, however, FOE and FOEmo are distinct, 
then there exist regions in the image plane where the 
flow vectors originating from the rigid scene and the 
ones from the moving object point in difl'erent direc- 
tions (Figure 7a). In this case it follows that there 
always exists a projection direction, p, for which the 

^In general, when the directions are the same but only 
the magnitudes of the translational components vary, in- 
consistency cannot be detected unless we have partial 
depth information about the scene. For example, if we 
were able to detect ordinal depth [4], e.g. from occlusion, 
it would significantly improve our detection capabilities. 
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3-     Detection using optic flow 

#163 

Figure 7: (a) Detectability of a moving object using 
optic flow, (b-d) Projections of optic flow in differ- 
ent directions. The brighter regions indicate easier 
detectability. In (c) and (d) the object is not de- 
tectable since the projected flow generated by the 
moving object lies in the same direction as that of 
the egomotion. 

object is detectable from sign differences of the pro- 
jected flow field. Based on this criterion, we can 
define p-detectability Xp for a given image location q 
as 

•^p(9)   =   {Pro,g)iprmo,q), 

where ro,g is the unit vector in the direction of q 
emanating from FOE and Vmo.q is the unit vector 
in the direction of q emanating from FOEmo- It 
follows that if Xp{q) < 0, the moving object located 
at q can be detected from the single projection p; 
otherwise, it is not detectable. The more negative 
Xp{q) is, the more significant the sign difference is, 
hence the easier is the detection of q as an inde- 
pendently moving point. We can also easily deter- 
mine the optimal detection direction to maximize 
the size of the region in the image in which the mov- 
ing object is detectable. This can be achieved when 
p II FOE, FOE^„ (Figure 7). These results sug- 
gest that it is not necessary to recover the complete 
motion of the camera to detect moving objects. If a 
priori knowledge is available about the possible mo- 
tion of the moving target (e.g. detection of ground 
moving targets from a ground vehicle) then we can 
choose a single projection direction (in this case hor- 
izontal) from which the target is detectable. 

5.2    Detection algorithm 

Detecting moving objects requires identifying re- 
gions of actual independent motion and excluding 
regions of "outhers" [l]. Our detection algorithm 
is based on the estimation of the (projected) mo- 
tion parameters of the camera; the motion estima- 

Figure 8: Detection of a toy car using normal 
flow and a single projection over a long image 
sequence. The hand-held, sideways-looking cam- 
era (~55-degree FOV) has general rotational and 
translational motion, and the FOE lies beyond the 
left image border. In the top image the dot- 
ted lines delineate the bands. The detected mov- 
ing points were verified by temporal integration; 
the boxes in the bottom images represent group- 
ings that are assumed to belong to the same rigid 
body. (For an MPEG demonstration see also 
http://www.cf3r. umd.edu/~fejes/research_sum.html#CV) 

tion process is designed to tolerate inconsistencies in 
some of the bands of the projected flow field. Vio- 
lation of the linearity property can be tolerated by 
using robust line-fitting based on a repeated-median 
algorithm [ll] which assumes that moving objects 
corrupt the given projected flow in less than half 
of the total number of bands. It follows that the 
rather complex problem of detecting inconsistencies 
with rigidity in the visual scene is reduced to that 
of one-dimensional robust line-fitting and outlier de- 
tection. After this, the constraint of positive depth 
is examined by back-projecting the estimated pro- 
jected flow. The regions where this constraint is vi- 

119 



olated are considered to be non-rigid, corresponding 
to independently moving objects. 

There are several sources of error in the parame- 
ter estimation process, which practically require that 
the algorithm use certain thresholds. The choice of 
these thresholds is very critical, since a poor choice 
can cause either a high false alarm rate or a high 
ratio of undetected objects. 

The outlier detection in the robust line fitting pro- 
cess ideally finds those bands corrupted by the pres- 
ence of an independently moving object. We must 
then find the regions (pixels) within the corrupted 
bands that cause the inconsistencies, ideally with 
few false alarms. We employ an adaptive threshold 
which depends on the amount of error in the current 
motion estimate. If the estimate is erroneous, then 
the threshold has to be set high to avoid false alarms, 
whereas if it is accurate we can set the threshold low 
to achieve more sensitive detection. 

The actual values of the motion parameters are, of 
course, not available; however, we can estimate the 
error by examining the degree to which the diver- 
gence and linearity properties are satisfied. If these 
properties are well satisfied then there is probably 
little error in the motion estimate. On the other 
hand, if these properties are violated (as is typically 
the case) we use as a measure of rigidity the largest 
error found in those bands which are not outliers. 
Using this value as the threshold results in a good 
trade-off between false alarms and false dismissals. 

5.3    Integration of instantaneous 
measurements 

Detection reliability also has to be considered at 
other levels of the model. Vision algorithms based on 
frame-by-frame analysis lack robustness unless they 
make use of temporal and spatial integration of the 
spatio-temporal visual information. 

Temporal integration of our visual measurements is 
performed at two levels. The first level is realized 
by the recursive observer model which provides the 
estimation of the motion parameters. The second, 
higher level is realized using what we call the visual 
scene memory. This memory is the representation 
of motion-independent information, i.e., some kind 
of depth estimate, extracted from and continuously 
updated from motion fields of long image sequences. 
The cumulative maintenance of scene structure is 
achieved by tracking regions based on the estimated 
motion parameters. In our specific case of moving 
object detection, this memory is, at each time in- 
stant, binary and stores the sign of the estimated 
depth ZQ at each scene point, which is negative only 
if the point is on an independently moving object. 
A point in the image is defined to be a verified tar- 

get only if this status is sufficiently supported along 
the time axis. This model helps us (1) ignore false 
alarms which have short durations and (2) maintain 
detection in regions where short-term drop-outs oc- 
cur. 

Spatial integration of individual points is achieved 
by grouping. In our model, if two detected points 
are "close" to each other and have similar transla- 
tional projected flow values, they are assumed to be- 
long to the same rigid target. The smallest bounding 
box surrounding an equivalence class of this group- 
ing relation is used to identify and represent a mov- 
ing object (Figure 8). 

6    Conclusions 

In this paper a methodology is proposed which ana- 
lyzes projections of visual motion fields. Taking ad- 
vantage of the reduced dimensionality of projected 
subspaces, we identify two structure-invariant prop- 
erties of projections of flow fields: the divergence 
and linearity properties. These properties serve as 
a basis for decoupling structure from motion and 
estimating projections of motion parameters, or if 
multiple projections are available, the complete set 
of motion parameters. The method does not re- 
quire point correspondence; it is directly applicable 
to normal flow, and can handle wide-FOV flow flelds. 
Our approach is implemented using a recursive filter 
which incorporates robust techniques. It is extended 
by using structure-related temporal and spatial in- 
tegration, implemented in a model of visual scene 
memory. We have applied it to the problem of de- 
tecting independently moving objects from a moving 

Acknowledgments: 

The authors would like to thank K. Daniilidis, Z. 
Duric and A. Rosenfeld for valuable comments and 
discussions. 

References 

[l] G. Adiv. Determining three-dimensional mo- 
tion and structure from optical flow generated 
by several moving objects. IEEE Transactions 
on Pattern Analysis and Machine Intelligence, 
7:384-401, 1985. 

[2] K. Daniilidis and I. Thomas. Decoupling the 3D 
motion space by fixation. In Proceedings of the 
European Conference on Computer Vision, vol- 
ume 1, pages 685-696, Cambridge, UK, 1996. 

[3] C. Fermiiller and J. Aloimonos. Direct percep- 
tion of three-dimensional motion from patterns 
of visual motion. Science, 270:1973-1976,1995. 

120 



[4] C. Fermiiller and J. Aloimonos. Qualitative ego- 
motion. International Journal of Computer Vi- 
sion, 15:7-29, 1995. 

[5] C. Fermiiller and J. Aloimonos. Algorithm- 
independent stability of structure from motion. 
Technical Report CAR-TR-840, University of 
Maryland at College Park, 1997. 

[6] B.K.P. Horn. Robot Vision. MIT Press, Cam- 
bridge, MA, 1986. 

[7] M. Irani and P. Anandan. A unified approach to 
moving object detection in 2D and 3D scenes. In 
Proceedings of the DARPA Image Understand- 
ing Workshop, pages 707-718, Palm Springs, 
CA, 1996. 

[8] C.H. Morimoto, D. DeMenthon, L.S. Davis, 
R. Chellappa, and R. Nelson. Detection of inde- 
pendently moving objects in passive video. In 
I. Masaki, editor. Proceedings of the Intelligent 
Vehicles Workshop, pages 270-275, Detroit, MI, 
1995. 

[9] R. Nelson and J. Aloimonos. Finding mo- 
tion parameters from spherical motion fields (or 
the advantages of having eyes in the back of 
your head). Biological Cybernetics, 58:261-273, 
1988. 

[10] R. Sharma and J. Aloimonos. Early detection 
of independent motion from active control of 
normal image flow patterns. IEEE Transactions 
on Systems, Man, and Cybernetics, 26:42-52, 
1996. 

[11] A.F. Siegel. Robust regression using repeated 
medians. Biometrika, 69:242-244, 1982. 

[12] C. Silva and J. Santos-Victor. Direct egomotion 
estimation. In Proceedings of the International 
Conference on Pattern Recognition, volume 1, 
pages 702-706, Vienna, Austria, 1996. 

[13] W.B. Thompson and T.C. Pong. Detecting 
moving objects. International Journal of Com- 
puter Vision, 4:39-57, 1990. 

121 



A Kalman Filter That Learns Robust Models Of Dynamic Phenomena 

Rajesh P. N. Rao* 
Department of Computer Science 

University of Rochester 
Rochester, NY 14627-0226 

E-MAIL: rao@cs.rochester.edu 
HOMEPAGE: http://www.cs.rochester.edU/u/rao/ 

Abstract 
We derive a Kalman filter that can autonomously 
learn an internal dynamic model of its input en- 
vironment directly from the spatiotemporal input 
stream. The filter uses its learned internal model to 
maintain robust optimal estimates of the input en- 
vironment's hidden state by allowing the measure- 
ment covariance matrix to be a non-linear function 
of the prediction errors. This endows the filter with 
the ability to reject outliers in the input stream. We 
present experimental results demonstrating the util- 
ity of such filters in appearance-based segmentation 
and recognition of objects and image sequences in 
the presence of varying degrees of occlusion and 
clutter. 

1    INTRODUCTION 

Three and a half decades after its discovery, the 
Kalman filter [Kalman, 1960] remains one of the 
most versatile algorithms in parameter estimation 
theory, having found applications in areas as diverse 
as economics [Athans, 1974], engineering [Cipra, 
1993], and neuroscience [Rao and Ballard, 1996b]. 
One fundamental obstacle to the direct application 
of the Kalman filter to arbitrary state estimation 
problems has been the need to specify accurate dy- 
namic models of the observed physical system. Fur- 
thermore, since it is derived from a least squares 
optimization criterion, the standard Kalman filter is 
highly susceptible to gross outliers in the input data 
stream. 

In this paper, we describe how a Kalman filter can 
(a) autonomously learn an internal model of an ob- 
served dynamic system, and (b) reject outliers in 
the input stream, thereby allowing robust optimal 
estimation of the observed system's hidden state. 
The utility of these robust adaptive filters is illus- 
trated using a relatively difficult problem in vision, 
namely, appearance-based segmentation and recog- 
nition of objects and image sequences, in the pres- 
ence of varying degrees of occlusion and clutter. 

2   THE KALMAN FILTER 

The starting point for the derivation of the Kalman 
filter [Bryson and Ho, 1975] is the assumption that 
at time instant t, the dynamic process of interest is 
characterized by a A; x 1 internal state vector r{t) that 
cannot be measured directly, but generates measur- 
able outputs I(i) in the following manner: 

I(t) = Urit) + n{t) (1) 

In the above, U is ann x k "measurement" matrix 
and the n X 1 vector n is a stochastic white noise 
process with mean £^(11) = 0 and covariance S = 
£;[nn^]. 

Given the state r (i — 1) at time instant f — 1, the next 
state r{t) is assumed to be given by: 

r(t) = Vr{t - I) + ni{t - I) (2) 

'This work was supported by NIH/PHS research grant no. 
1 P41 RR09283. 

where V is the state transition (or prediction) ma- 
trix and m is white Gaussian noise with mean m = 
E[m\ and covariance 11 = E[{in — m) (m — m)-^]. 

Given the above model of the observed dynamic 
system, the goal is to optimally estimate the sys- 
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tern's hidden state r{t) using only the measurable 
inputs I(i). Suppose that we have already computed 
a prediction f of the current state r based on prior 
data. In particular, let f{t) be the mean of the cur- 
rent state vector before measurement of the input 
data I at the current time instant t. The correspond- 
ing covariance matrix is given by E[{r — r)(r — 
f)-^] = M. An optimization function whose min- 
imization yields an estimate for r is the weighted 
least-squares criterion [Bryson and Ho, 1975]: 

J = {l-UvfY.-^{l-Uv) + {r-vfM-\r-r) 
(3) 

It is easy to show (see, for example, [Bryson and 
Ho, 1975]) that J is simply the sum of the nega- 
tive log-likelihood of generating the data I given the 
state r, and the negative log of the prior probability 
of the state r. Thus, minimizing J is equivalent to 
maximizing the posterior probability p(r|I) of the 
state r given the input data (under the assumption 
thatp(r, n) = p(r)p(n)). 

The optimization function J can be minimized by 
setting §7 = 0 and solving for the minimum value 
r of the state r (note that f equals the mean of r 
after measurement of I). The resultant Kalman filter 
update equation is given by: 

f(i)    =   Y{t)+N{t)U'^T.{t)-^{l-Uv{t)){A) 

Y{t)    =    Vv{t-l)+Yn{t-l) (5) 

where N{t) = {U'^^{t)-^U + M{t)-^)-^ is a 
"normalization" matrix that maintains the covari- 
ance of the state r after measurement of I. The ma- 
trix M, which is the covariance before measurement 
ofl, is updated as M(i) = VN{t~l)V'^+U{t-l). 

3   A ROBUST FORM OF THE KALMAN 
FILTER 

The standard derivation of the Kalman filter mini- 
mizes Equation 3 but unfortunately does not specify 
how the covariance S is to be obtained. A common 
choice is to use a constant matrix or even a con- 
stant scalar. Making S constant however reduces 
the Kalman filter estimates to standard least-squares 
estimates. It is well-known that least-squares esti- 
mation is highly susceptible to outliers or gross er- 
rors i.e. data points that lie far away from the bulk 
of the observed data [Huber, 1981]. For example, 
in the case where I represents an input image, oc- 
clusions and other forms of noise will cause many 

pixels in I to deviate significantly from correspond- 
ing pixels in the predicted image Ur. These com- 
ponents of I need to be treated as outliers and dis- 
counted for in the minimization process in order to 
get an accurate estimate of the state r. 

The problem of outliers can be tackled using robust 
estimation procedures [Huber, 1981]. One com- 
monly used procedure is M-estimation (Maximum 
likelihood type estimation), which involves mini- 
mizing a function of the form: 

j' = J2p{r-u'r) (6) 
i=l 

where p is normally taken to be a less rapidly in- 
creasing function than the square. This ensures that 
large residual errors (which correspond to outliers) 
do not influence the optimization of J', thereby 
"rejecting" the outliers. Note that when p equals 
the square function, we obtain the standard least 
squares criterion. More interestingly, we obtain the 
following weighted least squares criterion also as a 
special case: 

J' = (I - UrfS{I - Ur) (7) 

where 5 is a diagonal matrix whose diagonal en- 
tries 5*'* determine the weight accorded to the cor- 
responding data residual (F — Wr). A simple but 
attractive choice for these weights is the non-linear 
function given by: 

S''' = mm{l,c/ir -Wrf} (8) 

where c is a threshold parameter that can be mod- 
ulated according to the application at hand. To un- 
derstand the behavior of this function, note that S 
effectively clips the ith summand in J' to a con- 
stant value c whenever the «th squared residual 
(I* — f/V)^ exceeds the threshold c; otherwise, the 
summand is set equal to the squared residual. 

By substituting S""^ = 5 in the optimization func- 
tion J (Equation 3), we can re-derive the Kalman 
filter update equations. The resulting robust Kalman 
filter for updating the state estimate is given by: 

f(i)    =   x{t) + N{t)U'^G{t){l-Uv{t)) (9) 

r(i)    =    Vr{t - 1)) -t- m(i - 1) (10) 

where N{t) = {U^G{t)U + M{t)-^)-\ M{t) = 
VN{t - 1) V^ + n(i - 1), and G(t) is an n x n di- 
agonal matrix whose diagonal entries at time instant 
t are given by: 
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G''' = 
1 

if(r(«)-C/'r(i))2>c(i) 
otherwise 

G can be regarded as the sensory residual gain or 
"gating" matrix, which determines the (binary) gain 
on the various components of the incoming sensory 
residual error. By effectively filtering out any high 
residuals, G allows the Kalman filter to ignore the 
corresponding outliers in the input I, thereby en- 
abling it to robustly estimate the state r. 

4   LEARNING A DYNAMIC MODEL 

The measurement (or generative) matrix U and the 
state transition (or prediction) matrix V used by the 
Kalman filter together encode an internal model of 
the observed dynamic process. Most traditional ap- 
plications of the Kalman filter employ hard-wired 
dynamic models inferred from a priori knowledge 
of the task at hand [Ayache and Faugeras, 1986, 
Blake and Yuille, 1992, Broida and Chellappa, 
1986, Dickmanns and Mysliwetz, 1992, Hallam, 
1983, Matthies etal., 1989, Pentland, 1992]. These 
applications depend crucially on the ability to for- 
mulate accurate physical models of the object prop- 
erties being estimated. In complex dynamic envi- 
ronments, the formulation of such hand-coded mod- 
els becomes increasingly difficult. 

An alternate approach is to learn an internal model 
of input dynamics directly from observed data, as 
suggested in [Rao and Ballard, 1996a]. Let u and v 
denote the vectorized forms of the matrices U and 
V respectively. For example, the n x A; generative 
matrix U can be collapsed into an nA; x 1 vector 
u = [t/^C/2 ... i/ri-^T where W denotes the ith row 
of U. Note that (I - Ur) = (I - Ru) where R is 
the n X nk matrix given by: 

R = 
0 

0 

0 0 
0 

0 

(11) 

By minimizing an optimization function similar to 
J (see [Rao and Ballard, 1996a] for details), one 
can derive a Kalman filter-based "learning rule" for 
the generative matrix U at time t: 

u   =   U + NUR'^G{I-RU) (12) 

whereu(t) = u{t-l) andNuit) = {Nu{t-l)-'^ + 
R^G{t)R)'\ 

As in the case of U, an estimate of the prediction 
matrix V can be obtained via the following learning 
rule for v at time t [Rao and Ballard, 1996a]: 

V   =   V + NyR{tfM-^ir{t + 1) - r(t + 1)) 

(13) 

where v(^) = 9{t - 1), Ny{t) = {Ny{t - 1)-^ + 
R{tfM{t)-'^R{t))-'^, and R{t) is the k x k'^ ma- 
trix: 

R{t) = 

r{tf      0 
0      f{tf 

0 
0 

0     r(i)^ 

(14) 

Note that in this case, the filter corrects its estimate 
of V using the prediction residual error {r{t -f 1) — 
f{t + l)), which denotes the difference between the 
actual state and the predicted state. 

An interesting question is the issue of convergence 
of the overall filtering/learning scheme involving 
r, U, and V. Fortunately, one can appeal to the 
well-known Expectation-Maximization (EM) algo- 
rithm [Dempster et at, 1977] and allow the over- 
all scheme to converge by choosing appropriate val- 
ues for the state r in the above learning rules for 
u and V (note that in the above rules, we did not 
specify values for r{t) (comprising R{t)) in Equa- 
tion 12 and r(i + 1) in Equation 13). The EM algo- 
rithm suggests that in the case of static input stimuli 
(r (i) = r (i—1)), one may use r{t) = r when updat- 
ing the estimate for u, where f is the converged op- 
timal state estimate for the given static input. In the 
case of dynamic (time-varying) stimuli, the EM al- 
gorithm prescribes the use of r{t) = T{t\N), which 
is the optimal temporally smoothed state estimate 
[Bryson and Ho, 1975] for time t (< N), given 
input data for each of the time instants 1,... ,N. 
Unfortunately, the smoothed state estimate requires 
knowledge of future inputs and is computationally 
quite expensive. For the experimental results, we 
approximated the smoothed estimates by their on- 
line counterparts r{t) when updating the matrices 
U and V during training. 
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Figure 1: Static Appearance-Based Recognition, (a) Images used to train the robust adaptive filter (b) Occlusions, background 
clutter, and other forms of noise are all treated as outliers (white regions in the third image, depicting the diagonal of 
the gating matrix G). This allows the filter to simultaneously segment and recognize the training object, as indicated 
by the accurate reconstruction (middle image) of the training image based on the final robust state estimate, (c) 
In the more interesting case of the training objects occluding each other, the filter converges to one of the objects 
(the "dominant" one in the image). Having recognized one object, the second object is recognized by taking the 
complement of the outliers (diagonal of G) and repeating the filtering process (third and fourth images). The fifth 
image is the image reconstruction obtained from the standard (least squares derived) Kalman filter estimate, showing 
an inability to resolve or recognize either of the two objects. 

5   EXPERIMENTAL RESULTS 

The robust adaptive filter derived above was ap- 
plied to the problem of appearance-based recogni- 
tion of objects and image sequences in the pres- 
ence of occlusions and clutter. A prominent ap- 
proach to appearance-based recognition is princi- 
pal component analysis [Turk and Pentland, 1991, 
Murase and Nayar, 1995, Black and Jepson, 1996]. 
It is known [Rao and Ballard, 1996a] that the feed- 
forward version of the Kalman filter-based learn- 
ing rule for U is equivalent to Oja's principal sub- 
space algorithm [Oja, 1989], which performs a 
form of principal component analysis. Thus, the 
Kalman filter based method described herein gener- 
alizes principal component (or eigenspace [Murase 
and Nayar, 1995]) based approaches by (a) allow- 
ing non-orthogonal basis vectors, (b) seeking more 
than pairwise correlations in the input data (when 
Equation 4 is augmented with a non-linear decay 
term [Olshausen and Field, 1996]), and (c) allowing 
learning and recognition of time-varying imagery. 

In the first experiment, static grayscale images of 
size 65 X 105 depicting two "iD objects were used 

for training the filter (Figure 1 (a)). For learning 
static inputs, the prediction matrix V is unnecessary 
since we may use r(i) = r{t — 1) and M{t) = 
N{t — 1). After convergence of the filter for each 
input, the matrix U (of size 6825 x 5) was updated 
according to Equation 12. After training, the robust 
filter was tested on images containing the training 
objects with varying degrees of occlusion and clut- 
ter. The outlier threshold c was initialized to the sum 
of the mean plus k standard deviations of the current 
distribution of squared residual errors, decreasing k 
during each iteration. After convergence, the diag- 
onal of the matrix G contains zeros in the image 
locations containing the outliers and ones in the re- 
maining locations. As shown in Figure 1 (b), the 
filter was successful in segmenting and recognizing 
the training object in spite of considerable occlu- 
sion and background clutter. More interestingly, an 
outlier mask m can be defined by taking the com- 
plement of the diagonal of G (i.e. m 1 - G'''). 
By replacing the diagonal of G with m in Equa- 
tion 9 and repeating the estimation process, one can 
obtain robust estimates of the image region(s) that 
were previously treated as outliers, thereby allow- 
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Figure 2: Dynamic Appearance-Based Recognition, (a) Cyclic image sequence of gestures used for training the adaptive filter, 
(b) Robust prediction and tracking of gestures in the presence of various forms of occlusions and clutter. Results shown 
are those obtained after five cycles of exposure to the occluded gesture images. 

ing the filter to recognize the occluder(s) as shown 
in Figure 1 (c). 

In a second experiment, a Kalman filter was trained 
on an image sequence depicting hand gestures (Fig- 
ure 2 (a)). Each image was of size 75 x 75. The 
matrices U and V (of size 5625 x 15 and 15x15 
respectively) were initialized to small random val- 
ues, before training using Equations 12 and 13. Dur- 
ing the recognition phase, the robustness parameter 
c was computed at each time instant as the sum of 
the mean plus 0.3 standard deviations of the current 
distribution of squared residual errors. As shown 
in Figure 2 (b), the filter was able to learn a suffi- 
ciently accurate dynamic model of the gesture se- 
quence and use this model for robust recognition 
and tracking in the presence of various forms of oc- 
clusions and clutter. 

6   DISCUSSION AND CONCLUSION 

During the past decade, Kalman filters have been 
applied to a wide range of problems in computer 
vision [Blake and Yuille, 1992] and image pro- 
cessing [Chou et al, 1994]. However, a major- 
ity of these approaches have used hard-wired dy- 

namic models inferred from a priori knowledge 
of the task at hand. This paper suggests a rel- 
atively straightforward method for learning these 
dynamic models directly from input data, thereby 
avoiding the need for hand-coded physical models 
of the observed dynamic system. In addition, the 
robust Kalman filter proposed herein may serve as 
an alternative to more complex stochastic estima- 
tion schemes such as the CONDENSATION algo- 
rithm [Isard and Blake, 1996] for tackling the prob- 
lem of occluders and background clutter in the input 
image stream. The robust Kalman filter presented 
here can also be readily extended to the hierarchical 
Kalman filter framework proposed in [Rao and Bal- 
lard, 1996a] and allows useful functional interpre- 
tations of neural circuitry in the visual cortex [Rao 
andBallard, 1996b]. 
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Abstract 

Given a target, fixation of an active camera pair 
requires that the pan and tilt angles must be set 
to bring the target to image centers. This paper 
defines a direct mapping from the changes in the 
direction of target motion in the image plane to 
changes in camera angles necessary to reduce the 
image plane disparity between image center and the 
target location. The mapping captures camera cal- 
ibration and unmodelled effects such as deviations 
from the assumed imaging model. The mapping is 
formulated as a task in nonlinear function approx- 
imation, and, for computational efficiency, learnt 
from real data at multiple resolutions. In this work 
the learning is performed using a neural network. 
Experimental results are presented using an active 
vision system. 

1    Introduction 
For active vision systems to be useful for performing real 
tasks, it is critical that the camera control and process- 
ing be real-time. The increased availability of powerful 
and cheap computers and real-time image processing ca- 
pabilities are making such systems feasible. This paper 
is aimed at the capability of fixation which is an integral 
part of active visual analysis [2, 3, 4, 5, 13]. To fixate on 
a three-dimensional (3D) point, the orientations (joint 
angles) of the cameras are changed such that the optical 
axes of the stereo camera move to intersect at the 3D 
point. 

It is possible to compute an exact analytical expres- 
sion for the camera joint angles required to fixate on a 
3D point. This requires an accurate calibration of the 
various camera parameters [14]. The calibration pro- 
cess is usually tedious and time consuming. However, 
complete calibration is more than what is required to 
fixate. It suffices to know how to continuosly approach 
the state of fixation from current camera position using 
the images obtained during the fixation as feedback in- 
stead of directly transitioning to the state of fixation in 
one reconfiguration step. This paper uses a Direction- 
to-Joints (DTJ) mapping which models the relation- 

ship between incremental changes in the direction of 
image plane motion of the scene points and incremen- 
tal changes in joint angles. DTJ exploits the property 
that for a given image of a 3D target, as camera joint 
angles are changed by a small amount, the direction in 
which the image of the target moves is independent of 
the current joint angles and the 3D target location. 

We present a neural network based approach to learn 
the DTJ mapping at multiple resolutions of incremen- 
tal camera motions. Initially, the coarse resolution DTJ 
mapping is used to rapidly bring the target roughly to 
the vicinity of the camera. Then, increasingly fine reso- 
lution DTJ mappings are used to monotonically reduce 
the residual error to accurately fixate on the 3D tar- 
get. An interesting aspect of the approach is that a 
single target at a fixed depth from the active camera 
is sufficient to learn the DTJ mapping over the entire 
joint space for which the target is visible. Thus, it is 
easy to implement the learning in an autonomous mode 
on a real active vision system. The learning process 
presented is also self-organizing because all the train- 
ing inputs and outputs are self-generated. Finally, as 
stated earlier, the learning approach does not require 
calibration. 

2    Definitions 
The most popular form of experimental setup used 
in active vision research has two motorized cameras 
mounted as a 'head' [1, 5, 7, 8]. The University of 
Illinois Active Vision System (UIAVS) [1] is one such 
system. Typically, each camera is mounted on a plat- 
form and controlled by a separate motor and enables 
the camera to move from side to side. The platform 
is itself motorized such that both the cameras have a 
common tilt angle. This allows the camera to assume 
arbitrary azimuth and elevation angles. In this paper, 
the UIAVS will be used to perform all the experiments. 

A simplified kinematic model of the UIAVS is shown 
in Figure 1. The angles qi (and ga) represent the an- 
gular positions of optical axis of the left (right) camera. 
These angles are called pan angles and are defined with 
respect to a "straight-ahead" direction (X-axis). The 
tili is represented by the angle qn between the plane de- 
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fined by the optical axes and the XY plane. The direc- 
tion conventions for each of these three angles are shown 
in Figure 1. These three angles are independently con- 
trolled. The point of intersection of the optical axes is 
called the fixation point (P in Figure 1). When a scene 
point is fixated, its image appears at the image centers 
for both cameras. 

(Ipical K\K 111 / (Ipli^al Aiis of 

'    IttlcartMa 

Figure 1: Simplified schematic of the UIAVS. 

3    Existence of DTJ mapping 
Let us assume that we have a calibrated active camera 
system with the following characteristics: the image is 
formed according to the pin-hole imaging model, the 
pan and tilt axes of each camera pass through its op- 
tic point, and the camera coordinate frames (centered 
at A and B in Figure 1) and the coordinate frame of 
the active vision system (centered at O) are offset by 
half of the baseline distance d. Let a 3D point P be 
imaged at (u, v) for the position (gi, 92) of the left cam- 
era. Then, for an incremental change (Agi, A52) in the 
camera orientation, the corresponding change in the im- 
age position {Au,Av) can be derived using the image 
jacobian [9] as, 

A« 
Av 

X^+n^ —uv 
X 

uv 
X 

-xK^ 
X 

A91 
A?2 (1) 

where A is the focal length of the camera. 
In order to establish the existence of the DTJ map- 

ping, let us rewrite the left hand side of equation (1) in 
terms of the image plane direction components {rix, riy) 

where n^ = %i and n^ = ^ and C = (AM^ + Av'^)h. 
The magnitude C depends upon the depth of the tar- 
get from the active camera (closer the target, larger the 
magnitude) as well as the magnitude of (Agi, Aq2). The 
direction vector {rix, ny) depends on {u, v) and the ratio 

^^. To illustrate this, a simple experiment was per- 

formed using an uncalibrated UIAVS. A set of random 
3D targets (small dark patches on a white background) 
at various 3D locations were viewed one at a time by 
the UIAVS using a variety of camera joint angles. For 
each pair of 3D target location and camera orientation, 
the camera pan and tilt angles were changed over a wide 
range at fixed angular increments (Agi = A53 = 0.001° 

and Ag2 = 0.003° where the resolution of the joint en- 
coders of the pan and tilt units is 0.001°). The observed 
directions of target motion in image were recorded for 
small neighborhoods of (w, v) values of target location, 
regardless of 3D target location and camera joint an- 
gles. Results for seven such neighborhoods in the left 
camera image are shown in Figure 2. As can be seen in 
Figure 3, the image plane directions are similar for an 
entire neighborhood, and are different for the different 
neighborhoods (appearing as seven different curve seg- 
ments for seven different clusters oi{u,v) values). This 
serves as empirical evidence for the existence of the DTJ 
mapping. 
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Figure 2: Seven clusters of image coordinates. 
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Figure 3: Seven clusters of the unit directional vectors. 

4     Estimation of DTJ mapping 
A straight forward approach to estimating DTJ for a 
given active vision system will be to estimate the 2X2 
matrix in equation (1). This could be done by obtaining 
a least squares estimate of A from observations of u and 
V and {Au,Av) values for many Aqi and Aq2- How- 
ever, equation (1) is for the ideal case. In practice, the 
rotation axes of an active camera may be offset from the 
optic point. This will result in additional parameters in 
the Jacobian, which will also need to be estimated. Any 
deviations from the pin-hole model of image will lead to 
yet other unknowns. Therefore, we view this compli- 
cated mapping function from image plane directions to 
changes in camera joints as a non-linear function ap- 
proximation task. 
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To obtain the data for learning, a single target at a 
fixed depth suffices, provided it is visible to the cam- 
era at all orientations. An additional benefit of using a 
single target is that the training examples for learning 
can be generated automatically making the implementa- 
tion easier. The learning yields samples of mapping for 
selected {u,v,nx,ny) values for which {Aqi,Aq2) was 
generated. Mapping for other intermediate values of 
(w, V, Ux, Uy) are obtained using the interpolation capa- 
bilities of the neural network. 

5    Implementation of Multi-Resolution 
DTJ Mapping 

The DTJ learning is posed as a function approximation 
problem. The inputs of the function are (u,v,nx,ny) 
while the corresponding outputs are (A5i,Ag2)- The 
learning process is presented with several examples of 
these inputs and outputs and the DTJ mapping is ap- 
proximated from these examples. We perform learning 
at a range of step sizes (resolutions) of {Aqi, Aq2). This 
is because while using the mapping to determine the 
(A51, A52) for a desired image plane motion direction, 
it may be desirable to perform the (A5i,Ag2) control 
in a coarse-to-fine manner for computational efficiency. 
The large camera motions (or ballistic mode of fixation) 
will bring the target image roughly near the image cen- 
ter, and, the fine resolution mapping will help bring the 
target into fixation more accurately. 

In this paper, we use the PROBART neural network 
[11] for learning (Figure 4). This network is capable of 
incremental function approximation of non-linear map- 
pings.The main advantage of this network over other 
commonly used networks such as the back-propogation 
[12] and Kohonen [10] is that it is capable of retaining 
the knowledge from previously presented inputs but at 
the same time accomodate knowledge from new inputs 
in an incremental fashion. The network consists of two 
clustering modules one of which is used to cluster the 
inputs to the function while the other is used to cluster 
the corresponding outputs of the function. These two 
modules are then mapped by weights F that measure 
the frequency of co-activation of the winning input and 
output clusters. 

FIZZV 

ART, 

To achieve multi-resolution performance, we use one 
PROBART network for each resolution. It consists of 
two Fuzzy ART networks [6] as shown in Figure 4. The 
Fuzzy ART network is capable of unsupervised and sta- 
ble clustering of both binary and analog inputs in real- 
time. The Fuzzy ARTi is used as the input processing 
module. At each resolution, the input layer Li mod- 
ule receives two types of inputs: (1) Image coordinates 
(Mi,t;i) of the non-fixated 3D point target on the left 
camera and the (2) Image direction {nx,ny). The Li 
layer of the Fuzzy ART2 module receives the change in 
camera pan and tilt (A51, Ag2) that caused the image 
of a 3D target at (wi,Vi) to move in {nx,ny) direction. 
These inputs are then clustered in the L2 layers of the 
two Fuzzy ART modules. For brevity, the clustering 
process for the Fuzzy ART will not be described here. 
The reader is referred to [6] for complete details on the 
clustering process. 

During the clustering process, the weights between 
the two Fuzzy ART networks are updated by increment- 
ing FjK by 1 where J and K are the winning clusters 
in the two ART modules. It should be noted that the 
initial values of F are zero for all j and k and that the 
learning process for the right camera is the same as 
for the left camera. Once all the inputs and outputs 
are presented to the PROBART network, its predicting 
ability can be tested using inputs not seen during the 
training period. An input is first presented to the Li 
layer of the Fuzzy ARTi network. A cluster J whose 
weight Wj that is most parallel to the input is selected 
as the winner. Then, the weights F are used to predict 
changes in the joint camera position as follows: 

Aft 
J2k = l Pjk 

(f=l,2) (2) 

Figure 4: The PROBART neural network architecture. 

where Zik are the weights for the cluster k in the Fuzzy 
ART2 module and R is the number of clusters in the L2 
layer of the Fuzzy ART2 module. 

5.1     Training 

The regimen to learn the multi-resolution DTJ map- 
ping using the PROBART network is outlined in Fig- 
ure 5. The UIAVS is moved to various non-fixated cam- 
era positions for which a single target at a fixed depth 
is viewed. The location of the target is chosen such that 
the image of the target is visible for all values of the pan 
and tilt angles. These non-fixated camera positions are 
obtained using a random generator of pan and tilt an- 
gles within the allowable joint ranges. At each of these 
non-fixated camera positions, the pan and tilt of the 
camera are randomly moved in increments of multiple 
increments to generate the training inputs Vj = (MI, Vi) 
and D = {ux, riy) and outputs Qk = (Aqi, A52) at each 
time step k as shown in Figure 5. The direction vector 
D is computed by using the image coordinates of the 
fixed target at two consecutive time steps. 
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and tilt angles. These non-fixated camera positions are 
obtained using a random generator of pan and tilt an- 
gles within the allowable joint ranges. At each of these 
non-fixated camera positions, the pan and tilt of the 
camera are randomly moved in increments of multiple 
increments to generate the training inputs Vk = (ui, vi) 
and D = {n^, Uy) and outputs Qk = (A51, A52) at each 
time step k as shown in Figure 5. The direction vector 
D is computed by using the image coordinates of the 
fixed target at two consecutive time steps. 

5.2     Performance Evaluation 

Once the PROBART network has been trained on the 
DTJ mapping at multiple resolutions of joint angle in- 
crements, it is passible to use the learned mapping to 
fixate on any randomly selected 3D target. There are 
two modes in which the fixation can occur. The first 
mode is based on the availability of a continuous visual 
feedback as shown in Figure 6. The role of the incremen- 
tal motion generator during training (Figure 5) is now 
replaced by the trained neural network. In this mode, a 
randomly selected 3D point target is first viewed by the 
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Figure 6: Continuous visual feedback approach. 

active camera at some non-fixated camera position. In 
order to fixate on a 3D target, the coarse resolution net- 
work first generates large increments in the joint angles 
of the camera. The desired direction for each camera is 
obtained from the vector connecting the current image 
coordinate (V^ at time step k) of the 3D target and the 
image plane center. The coarse resolution network is 
used as long as the distance between the current image 
position and the image center is greater than the min- 
imum distance that can be commanded by using the 
current resolution. When this condition is violated, the 
control is transferred to a network at the next resolu- 
tion. In this manner, the incremental changes in joint 
angles at time k (AQk) are generated by an appropri- 
ately chosen PROBART network until the target is ac- 
curately fixated. 

The second mode of the fixation process is based on 
the availability of only an intermittent visual feedback as 
shown in Figure 7. At the initial time step, the image 
coordinate of the target is known. Using this informa- 
tion, the direction D to the camera center is computed. 
By assuming a constant magnitude M (fixed different 
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Figure 7: Intermittent visual feedback apiiroacli 

for different resolutions) of image motion, the new im- 
age location Vj(,'_,_j due to the change in joint angle AQt 
is predicted. The process continues until the ])redic(od 
^l+i is within 0.5 pixels of the image center. VVlien 
this occurs, a visual feedback is provided to verify if the 
camera has actually fixated on the target. If not, the 
actual image location is used to reiterate the fixation 
process until the target is fixated. 

6     Experiments and Results 
The PROBART neural networks at multiple resolutions 
were interfaced with the camera joint actuators and tiie 
image signals from the UIAVS. The active vision setuj) 
is mounted on a mobile robot to provide additional mo- 
bility. However, the mobile robot was not used during 
any of our experiments. The camera motion can be 
controlled by the tilt and pan units. The experimental 
setup for training the PROBART network is shown in 
Figure 8. A single dark patch was placed on a wall at a 

Figure 8: Experimental setup during training. 

depth of about 4 meters from the active vision system. 
The image of the patch was extracted by thresholding 
and its centroid was used as the target. 

In the experiments reported here, the DTJ mapping 
was learned at two resolutions. The angle changes at the 
coarse resolution for pan and tilt angles was randomly 
selected to be within 0.5° and 1° while those for the 
fine resolution were selected to be between 0.001° and 
0.003°. The resolution of the joint encoders is 0.001°. 
The allowable joint angle range for both the pan and tilt 
angles was [—60°, 60°]. Since the image contains 512 X 
512 pixels, each coordinate was normalized to the range 
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[0,512]. The focal length A was fixed at 30mm. The 
regimen outlined in section 5.1 was adopted to train 
the PROBART neural networks. 

Training data was collected at 60, 000 camera orienta- 
tions were collected. At each of these orientations, the 
active camera was incrementally moved both by coarse 
and fine camera motions. For each such motion, the 
[rix, Uy) and (AM, AD) were sampled. This training data 
was clustered by the coarse resolution network (of each 
camera) into 302 input and 16 output clusters. Simi- 
larly, the fine resolution networks created 1231 and 49 
clusters for the inputs and outputs respectively. 

Once the networks were trained on the inputs and 
outputs generated by observing a single target, the per- 
formance of the trained network was evaluated by plac- 
ing 3D targets one at a time in a 4x4x6 cubic meter 
volume in front of the active camera. Each of these 
targets were fixated using the continuous and inter- 
mittent visual feedback modes. The image and joint 
trajectories during fixation in the continuous mode are 
shown in Figure 9 for the left camera and for a target at 
{X = 3.5, y = 2.0, Z = 2.0). This plot corresponds to 
the prediction of the multi-resolution PROBART net- 
work. The image is rapidly brought to within 6 pixels 
of the image center by the coarse resolution network. 
Then, the fine resolution network brings the target ac- 
curately into fixation. An accuracy of 0.05 pixels was 
obtained for all the targets. The average time taken to 
bring each of these targets was about 6 sees using the 
multi-resolution networks. 

In order to compare the multi-resolution approach to 
just a single JTD mapping at fine resolution, the above 
plots were repeated without the coarse resolution JTD 
mapping. These plots are shown in Figure 10. It can be 
seen that the time taken to bring the same target into 
fixation is 20 times more than in the multi-resolution 
case. The accuracy of fixation is however the same for 
single and multi-resolution cases. 

For the intermittent mode of visual feedback, the time 
taken to fixate on a target clearly depends on the ac- 
curacy of the mapping. The main parameter that af- 
fects this accuracy is the constant M (Figure 7). In the 
multi-resolution case, M can be large (for the coarse 
resolution) or small (for the fine resolution). 

However, for large values of M, the system can have 
large overshoots and thus take prohibitively long peri- 
ods of time to fixate. These overshoots can also be detri- 
mental to the camera control equipment. To prevent 
this, we used the active camera only for small values 
of M. For comparison, the image and joint trajectories 
for the same 3D target are plotted for the intermittent 
mode as shown in Figure 11. The value of M was set 
to 0.05 pixels. This setting was reasonable because it 
prevented overshoots in the image trajectory for all the 
3D targets. The inflection points in the image trajec- 
tory correspond to instances of visual feedback during 
the fixation process as shown in Figure ll(i). For all 
the targets in our experiments, the maximum number 
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Figure 9:  Performance of multi-resolution network during 
continuous visual feedback for the left camera (i) image tra- 
jectories and (ii) camera joint trajectories 

of feedbacks was less than 10. It can be seen from Fig- 
ures 11 that the intermittent mode takes longer com- 
pared to even the single resolution mode. However, 
there are no overshoots and the accuracy of fixation is 
not compromised. 

7    Conclusions 
There has been considerable interest in applying active 
vision to various image analysis tasks. This interest 
is primarily because active vision can enhance the ca- 
pabilities of machine vision by dynamically changing 
the camera parameters. In this paper, we address the 
issue of learning to fixate on 3D point targets. This 
is achieved by exploiting a Direction-To-Joints or DTJ 
mapping that relates camera motion to image motion. 
The learning does not require the camera to be cali- 
brated. Once the DTJ mapping is learned for multiple 
resolutions, it is possible to rapidly fixate on any other 
visible 3D target. This is achieved by using the learned 
DTJ mapping in a control loop with continuous or inter- 
mittent visual feedback. Experiments were performed 
on the UIAVS to verify the feasibility and accuracy of 
the proposed approach. The results obtained suggest 
that our approach is accurate and easy to implement 
on a real active vision system. 
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Abstract 

A model for computing image flow in im- 
age sequences containing a very wide mag- 
nitude range of instantaneous flows is pro- 
posed. This model integrates the spatio- 
temporal image derivatives from multiple 
temporal scales to provide both reliable 
and accurate instantaneous flow estimates. 
The integration employs robust regression 
and automatic scale weighting in a gener- 
alized brightness constancy framework. In 
addition to instantaneous flow estimation 
the model supports recovery of dense esti- 
mates of image acceleration. A demonstra- 
tion of performance on image sequences of 
typical human actions, taken with a high- 
frame-rate camera, is given. 

1    Introduction 

Image motion estimation involves relating spatial 
and temporal changes in image intensity to esti- 
mates of image flow. Articulated and deformable 
motions such as those encountered in images of hu- 
mans in motion give rise to image sequences hav- 
ing, simultaneously, a wide range of flow magnitudes 
ranging from very small sub-pixel motions whose 
recovery is inhibited by typical signal-to-noise con- 
straints, to very large multiple-pixel motions whose 
recovery requires expensive correlation methods or 
multi-resolution approaches. Here, we focus on the 
problem of estimating dense image flow for image se- 
quences in which the instantaneous flows range from 
2-4 pixels/frame to 1/16—1/32 pixel/frame. The dif- 
ficulty is that we do not know a priori which parts 
of the image are moving with which speed. Our so- 
lution is a scale-space like solution [7] in which we 
estimate image flow over a wide range of temporal 
scales, and combine these estimates (using both spa- 
tial and temporal constraints) using a combination 
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Figure 1:  Pendulum movement illustrating varying 
velocities along its motion path 

of robust estimation and parametric modeling as in 

[4]. 
To motivate both the problem and our proposed so- 
lution, consider a pendulum arm moving in front of 
a camera. The image flow will vary depending on 
the distance of the measured point from the hang- 
ing point (see Figure 1). As we move towards the 
hanging point the instantaneous flow becomes very 
small and falls into the noise range of the imaging 
system. As a result, two-frame estimation and sub- 
sequent integration of these flow measurements over 
time will be highly noisy. In the context of human 
motion, the coincidence of lip motion with body and 
head motion, or the rotation of the calf around the 
knee, create similar scale variations in the flow field. 

The majority of published algorithms for estimation 
of image flow are based on image pairs (for a re- 
cent survey see [1]). Several approaches, however, 
consider the incremental estimation of flow [3, 9]; 
then, temporal continuity of the flow applied over a 
few images (for example, assuming constant accel- 
eration) can improve the accuracy of the flow esti- 
mates. These approaches are based on computations 
between consecutive images. Other approaches use 
velocity-tuned filters (i.e., frequency-based methods) 
[5, 6] to compute the flow, and can be extended 
to flow estimation from several frames. The use of 
scale-space theory to compute optical flow was re- 
cently proposed by Lindeberg [8]. The proposed al- 
gorithm focused on scale selection in the spatial di- 
mension so that different-size image structures lead 
to different selections of scales for flow computation. 
The algorithm estimates flow from two images and 
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involves spatial multi-scales. 

The approach presented in this paper simultaneously 
estimates 

• small and large flows (spatially and temporally) 

• dense flow and acceleration. 

This paper is organized as follows. Section 2 illus- 
trates, using an image sequence, the inadequacy of 
single-scale flow estimation. In Section 3 we describe 
the motion model employed for estimating image 
flow from multiple scales; this is followed by exper- 
imental results in Section 4. Section 5 provides the 
extension of the model to compute image accelera- 
tion. Finally, in Section 6 a discussion and a sum- 
mary of our approach are provided. 

2    A Motivating Example 

We will use scale —I to denote flow estimation be- 
tween two consecutive images (i.e., the finest tempo- 
ral resolution available),sca/e =2 to denote flow es- 
timation between images that are two frames apart, 
etc. To illustrate the limitation of image flow esti- 
mates from any single scale we employ an image se- 
quence of an arm moving in front of a camera. The 
sequence was taken with a high-frame-rate camera 
(500 frames per second) which allows us to capture 
the natural rapid motion of the arm. The arm (see 
Figure 2) is moving in a pendulum-like motion (with 
the hand rotating around the arm during the mo- 
tion) in front of a lightly textured background*. No- 
tice that there is a shadow created by the hand, lead- 
ing to non-zero flow estimates of the shadow as well 
as the arm. The arm's intensity pattern consists of 
two parts: the arm itself is highly textured (allowing 
better flow estimation) while the hand is relatively 
uniform in brightness. Figure 2 shows eight images 
from the sequence (chosen two frames apart). The 
motion of the arm between two frames is very small, 
but it will become apparent when the flow estimates 
are shown. 

Figure 3 shows the image flow magnitudes for six 
scales (falling on a geometric scale 1,2,4,8,16, and 32 
frames apart). The finest scale provides detailed es- 
timates of the flow magnitude at the hand but quite 
noisy estimates along the arm, while the coarsest 
scale results in accurate estimates along the arm but 
considerably blurred and inaccurate estimates on the 
hand. 

*The intensity variation along the boundaries of the 
quadrants of the background is because the video cam- 
era has four separate A/D banks. As a result, flow esti- 
mation at the quadrant boundaries is inaccurate. This 
problem could be overcome by local gain compensation. 

Figure 2:   Eight images (two frames apart) from a 
long sequence of a moving arm 

Scale=l Scale=2 Scale=4 

Scale=8 Scale=16 Scale=32 

Figure 3: Flow magnitudes at scales 1,2,4,8,16 and 
32 (top left to bottom right) 

Figure 4 is a rescaled version of Figure 3 in which 
the small flow values along the arm can be more eas- 
ily observed. The flow estimation along the arm at 
fine scales is dominated by the noise of the imaging 
system. As scale increases, better estimates are com- 
puted along the arm at the cost of blurring the flow 
of the hand. As a consequence, if motion segmenta- 
tion into parts is sought, the finest scale would result 
in highly fragmented components, while the coarsest 
scale would lead to highly inaccurate boundaries for 
the hand. 

3    A Multi-scale Flow Model 

Let I{x, y, t) be the image brightness at a point {x, y) 
at time t. The brightness constancy assumption at 
scale s is given by 

I{x,y,t) = I{x-\- su6t,y-^ svbt,t -\- s8t)      (1) 

where {u,v) is the horizontal and vertical image ve- 
locity at (a;, y), and 6t is small. We assume, for now, 
that the instantaneous velocity (w, v) remains con- 
stant during the time span s6t (leading to a displace- 
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Scale=l Scale=2 Scale=4 

Scale=8 Scales 16 Scale=32 

Figure 4: Enhanced flow display to show flow esti- 
mation at scales 1,2,4,8,16 and 32 (top left to bottom 
right) 

ment (suSt, svSt)). This assumption is less likely to 
hold witli the increase of scale and can lead to viola- 
tions of brightness constancy. Let the range of scales 
over which flow is to be estimated be l,...,n. Ex- 
panding Equation (1) using a Taylor series approx- 
imation (assuming locally constant flow) and drop- 
ping terms results in 

0 = s{r,ix, xj,t)u + Vyix, y,t)v + rt{x, y, t))  (2) 

where F is the s-th frame (forward in time relative 
to I) of the sequence, and F^^Fy and Ft are the 
spatial and temporal derivatives of image F relative 
to /. 

Since Equation (2) is underconstrained for computa- 
tion of {u,v), it is ordinarily posed as a minimization 
of the least-squares error of the flow over a very small 
neighborhood, iJ, of (a;, j/), leading to 

E{u,v,s)=    Y,   {s{F,u^FyV^Ft)f     (3) 

We have n equations of the form of Equation (3), one 
for each scale. The scale-generalized error is defined 
as 

ED{U,V)=   Y,      E   is{I\n + FyV + Ft)f (4) 
s€l...n (x,y)eR 

Notice that Equation (4) biases the error term to- 
wards coarser scales due to the multiplication by s. 
Therefore, we normalize the error terms so that the 
minimization is in the form^ 

EDiu,v)=   Y     E   iI'.u + FyV + Ft)f  (5) 
s€l...n(a;,!/)ei? 

^The same effect could have been achieved by dividing 
the right side of Equation (2) by s for all scales, prior to 
error summation. 

Equation (5) gives equal weight to the error values 
of all scales. Since it is expected that at each point 
{x,y) the accuracy of instantaneous motion estima- 
tion will be scale-dependent, we introduce a weight 
function W{u, v, s) designed (see below) to minimize 
the influence of the residuals of the relatively inac- 
curate scales. Equation (5) now becomes 

EDiu,v)=   J2 E   iW{I%u + I%v + I%)f 
s61   .'1      (x,y)eR 

(6) 
Instead of the least-squares minimization in Equa- 
tion (6) we choose a robust estimation approach as 
proposed in [4], resulting in 

EDiu,v)=   Y E 
s£l...n  (x,y)eR 

p{W(FrU+F\v+F\),a,} 

(7) 
where p is a robust error norm that is a function 
of a scale parameter a^. Since the weight function 
W{u,v,s) should also reflect the degree of accuracy 
of the flow estimation we redefine it to include a scal- 
ing parameter (T,„, W^(U, H, S, IT,,,). The choice of the 
weighting function W should satisfy the following 
constraints: 

• It should take on values in the range [0,..., c], c 
typically chosen as 1.0 for computational con- 
venience. 

• For a large a^, W should approach 1.0 regard- 
less of (w, v) and s. 

• Given (T„, large estimated flow {u,v) at point 
(x, y) should lead to higher weights for the lower 
scales of the error term Fa;U + FyV + Ft, while 
small flow should lead to higher weights for the 
higher scales. 

Figure 5 reflects qualitatively the desired shape of 
the weighting function for a fixed a^- It illustrates 
the weighting as a function of scale s and flow mag- 
nitude ||(M,t;)|| at {x,y). The following Gaussian 
function satisfies the above requirements: 

W{u,V,S,(Ti^) -i" («||(u,v)|p+1.0) r/2<T^ 
(8) 

where ||(u, t;)|p is the squared magnitude of the cur- 
rent flow estimate at {x,y), and a is a constant. 
Notice that when ||(w,t;)|p << 1.0 the maximal 
weight occurs at the highest scale n, while higher 
values of ||(w,v)|p lead to a maximal weight at 
lower scales; specifically, the Gaussian is centered at 

\\(u «^ll^-i-i 0' "^^^ scale parameter (j„; determines 
the width of the Gaussian, and the constants a and 
1.0 can be changed to further shift the maximal 
weight scale location. The application of the weight- 
ing function in the estimation is as follows: In the 
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Figure 5: The weighting function as a function of s 
and flow magnitude ||(M,V)|| 

first iteration, all scales are given equal weight (1.0) 
by selecting a large tr^. Afterwards, iteratively, the 
estimates are refined by decreasing aw. 

This temporal multi-scale procedure is accompanied 
by a spatial coarse-to-fine strategy [3] that con- 
structs a pyramid of the spatially filtered and sub- 
sampled images (for more information see [4]) and 
computes the flow initially at the coarsest level and 
then propagates the results to finer levels. The 
computational aspects of the multi-scale model fol- 
low, generally, the approach proposed by Black and 
Anandan [4, 5]. 

4    Experimental Results 

In the following figures we show the results of image 
flow computation when cr^ = 20.0 and is decreased 
at a rate of 0.85 for five iterations, and ag — 100.0 
and is also decreased at a rate of 0.85 for 40 itera- 
tions. The computation is performed over 16 scales. 

Figure 6 illustrates the weights at several scales dur- 
ing the computation of image flow (the brighter the 
intensity the higher the weight; weights across scales 
were normalized in these images to allow for com- 
parisons). At scale=l only the hand area is given 
high weights while the arm and the background are 
given very low weights. As the scale increases the 
weights are increased along the arm and the back- 
ground while a decrease on the hand gradually takes 
place. At the highest scale {scale =16) the hand's 
weight is very low while the arm and the background 
receive high weights. Figure 7 shows the effect of the 
iterative refinement of the weighting function W for 
scale =1 (the finest scale) on the relative weights for 
different regions. The values are normalized across 
the five images to allow comparison. Notice that the 
first iteration gives high weights to the hand, and 
the weights given to the arm and the background 
are somewhat significant. The fifth iteration also 
gives high weights to the hand while the arm and 
the background have the lowest weights, and they 
are much lower than after the first iteration. This 
behavior is reversed when we consider the coarsest 

Scale=10 Scale=13 Scale=16 

Figure 6: The weighting function W as computed 
at the scales 1,4,7,10,13 and 16 (top left to bottom 
right), expressed as an intensity image 

scale, scale =16 (see Figure 8). 

Weight Iter=l     Weight Iter=2     Weight Iter=3 

Weight Iter=4     Weight Iter=5 

Figure 7: The weighting function W at scale 1 (finest 
scale) as evolved in five iterations 

Figure 9 (top and middle rows) shows graphs of 
the individual scale flow magnitudes computed along 
a line drawn down the center of the arm (bottom 
right). These graphs correspond to the scale com- 
putations shown in Figure 3. Since the arm is ap- 
proximately moving like a pendulum with the hand 
simultaneously rotating around the wrist, the flow 
should increase slowly along the arm and then jump 
considerably on the hand. This is clearly visible in 
these graphs. The dip in these graphs (occurring 
between 125 and 145) is a result of the intensity dis- 
continuity associated with the four quadrants of the 
camera. Figure 9 also shows the multi-scale flow 
magnitude results (bottom left). The flow bound- 
ary is quite sharp.   The flow magnitude along the 

138 



Weight Iter=l      Weight Iter=2     Weight Iter=3 

Weight Iter=4     Weight Iter=5 

Figure 8:   The weighting function W at scale  16 
(coarsest scale) as evolved in five iterations 

Scales 1 
r 

/ 
J 

Scale=2 Scale=4 
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J 

/ 
/ 

^ J 

Scale=8 Scale=16 Scale=32 

Figure 9: The flow magnitude along a line (bottom 
right) computed using a single scale (s = 1,2,4, 8,16 
and 32; top and middle rows), the multi-scale flow 
magnitudes (bottom left), and the multi-scale flow 
magnitudes along the line (bottom center) 

line is also shown (bottom center); it reveals a very 
smooth change in the flow along the arm and a sig- 
nificant increase at the hand, with maximal flow at 
the finger. 
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Figure 10: A synthetic motion example that com- 
pares flow magnitudes on a real image of the calf 
of a walking person's leg. The image (see (b)) was 
warped and the flow magnitudes along a line (see 
(c)) are shown as a solid line (see (d)). The esti- 
mates of flow magnitudes using 1 and 12 scales over 
the same line are shown ((d), dotted and dashed 
lines, respectively). 

In order to compare the performance of single-scale 
{scale = 1) and multi-scale flow estimation, we gen- 
erated a sequence of images using a synthetic flow 
model where we have ground-truth data. Figure 10 
(top) shows an image of a person during a walk- 
ing activity. The synthetic sequence is generated by 
warping the image patch of the calf forward accord- 
ing to a multi-scale parameterized motion model for 
several frames (assuming constant velocity). The es- 
timated multi-scale (12 scales) flow magnitudes are 
also shown (top right). A quantitative comparison 
is shown, along a line on the calf, between the orig- 
inal flow (bottom, solid line), the single-scale flow 
(dotted line), and the multi-scale flow (dashed line). 
The multi-scale estimate is closer to the synthetic 
flow than the single-scale estimate. Accurate recov- 
ery of the flow is actually limited by interpolation 
side-effects in generating the synthetic motion. 

Figure 11 shows four images taken from a long se- 
quence of a person moving his arm around while ro- 
tating his face (consecutive images are four frames 
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Frame 1 Frame 5 Frame 10 Frame 15 

Figure 11: Images from a sequence showing simultaneous arm and head motion 

Figure 12:  Horizontal, vertical and magnitude of flow from two frames (left to right).   For horizontal and 
vertical flow, brighter value indicates greater motion leftward and upward, respectively. 

Figure 13: Multi-scale (s = 16) horizontal, vertical and magnitude of flow (left to right). For horizontal and 
vertical flow, brighter value indicates greater motion leftward and upward, respectively. 

Figure 14: The weights for scales 1,5,10 and 16 (dark indicates lower weight) 
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apart). The magnitudes of the motions of the arm 
and face vary significantly. Also, the flow along the 
arm varies, beginning with no motion at the shoul- 
der and increasing towards the hand. In Figures 
12-13 the single-scale and multi-scale flow and ac- 
celeration are shown (16 scales). The multi-scale 
result is more reflective of the image motion since it 
adaptively measures flow at the best scale while the 
single-scale algorithm uses parameters that lead to 
computing non-zero motion in the background. Fig- 
ure 14 shows the weights used in computation for 
scales 1,4,8,12 and 16. 

5    Estimation of Image Acceleration 

The scale-generalized brightness constancy assump- 
tion given in Equation (1) assumes constant flow at 
all scales. This can be extended to include accel- 
eration models. Let the image flow as a function 
of scale s be {u(s),v{s)). Then the brightness con- 
stancy assumption at scale s becomes 

I{x, y, t) = /(s+Xl u{s)ds, y+Y^ v{s)ds, t+s)  (9) 
s s 

As a special case, if the image motion is assumed 
to be subject to a constant acceleration, the flow is 
given by 

u{s) = iCo + XiS 

v{s) = X2 +X3S 

(10) 

(11) 

where Xi and X3 are the horizontal and vertical ac- 
celeration terms. Note that in the context of a long 
sequence this model supports a piecewise-constant 
acceleration assumption. If acceleration fluctuations 
within the scales involved in the estimation are small 
or fall within the performance range of the robust es- 
timator (about 35%-40% outliers), this model holds. 
This flow model leads to a brightness constancy as- 
sumption of the form 

I(x, y, t) = I{x -^  ^ (^0 + xii), 
!61...S 

2/+   5Z {x2 + X3i),i-\- s) (12) 
iei.-s 

Using a Taylor series expansion and dropping terms 
(including scale normalization), we arrive at 

0 = r^{xQ+xi'- ±l)+r^(^,+^3i±I)+r,  (13) 

The new scale-generalized error function is given by 

ED{U,V)=   J2     E   KM^(^%(^O (14) 
s€l--n(x,y)eR 

S + l 
+Xi -) 

B 
Scale=l Scale=3 Scale=4 Scale=6 

+ I%ix2 + X3^—) + rt),0-e) 

Figure 15: The weights (upper row) at scales 1, 3, 
4 and 6, respectively (out of 6 scales), and the flow 
magnitude and vertical and horizontal accelerations 
(bottom row, left to right) for a falling book. 

Figure 15 shows the dense flow and acceleration es- 
timated for a falling book sequence. The top row 
shows the weighting function values assigned for 
each scale (normalized to enhance the contrast). At 
low scales the book region is assigned high weight 
while the background is assigned very low weight. 
This is reversed as scale is increased; at the top scale 
the motion of the book is so large that little weight 
is given to the book area. The bottom row shows 
the dense velocity magnitude (left) and the verti- 
cal and horizontal accelerations (center and right, 
respectively). Notice that the estimated horizontal 
acceleration is almost uniformly zero. 

6    Discussion 

The proposed multi-scale approach to computing op- 
tical flow and acceleration introduces explicit tem- 
poral models for image intensity and flow changes. 
As demonstrated here for several image sequences, 
a multi-scale framework can increase the accuracy 
of the instantaneous motion estimates and recover 
simultaneously both flow and acceleration. 

Algorithms for motion estimation can be quite noisy 
since they are based on local operators applied 
over very small temporal neighborhoods. Temporal 
smoothing was proposed in [4] in a regularization 
framework; in contrast, our multi-scale approach 
employs well-understood scale-space concepts [7, 8] 
to create smooth estimates. Due to the integrative 
nature of the multi-scale estimation, motion smooth- 
ing is achieved through the estimation process. 

In this paper we have developed a new multi- 
temporal framework for computing flow and acceler- 
ation in images. Both dense and parameterized rep- 
resentations were employed and demonstrations on 
long image sequences were provided. This approach 
is an extension of the popular brightness-constancy 
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assumption to a temporal scale-space domain. It 
provides for higher accuracy over a wider range of 
flows, and thereby provides a useful tool for the anal- 
ysis of image sequences. 
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Abstract 

Many types of common objects, such as 
tools and vehicles, usually move in simple 
ways when they are wielded or driven: The 
natural axes of the object tend to remain 
aligned with the local trihedron defined by 
the object's trajectory. The alignment can 
be verified by analysis of the flow field gen- 
erated by the moving object; this is illus- 
trated here for three examples, involving a 
wrench, a saw and a van. 

1     Introduction 

An object moves because it is self-propelled (e.g., a 
vehicle) or because it is wielded (or thrown-"^) by an 
agent (e.g., a tool). Motion that efficiently performs 
a locomotional or mechanical function requires effi- 
cient energy transfer from the vehicle's engine or the 
agent's arm to the object, in order to efficiently over- 
come the constraints imposed by the environment in 
which the motion takes place (air resistance, friction, 
etc.). Assuming that an object has natural axes (e.g 
the long axis of a stick), efficient force transfer re- 
quires simple relationships between the natural axes 
of the object and the motion trajectory. These re- 
lationships insure that the object can perform its 
function efficiently. 

The most general model of object motion is unre- 
stricted rigid motion.   This type of motion is not 

The support of the Defense Advanced Research 
Projects Agency and the Office of Naval Research un- 
der Grant N00014-95-1-0521 is gratefully acknowledged 

'We assume in this paper that the propulsive force is 
applied to the object continuously, unlike the case of a 
projectile where it is applied only initially. We will not 
discuss projectiles further here. 

common in everyday life. Usually objects are sup- 
ported, and motion takes place when an object is 
in contact with a surface, another object, or an 
agent. In these cases (tool acting on a recipient 
object; ground vehicle) the motion becomes signifi- 
cantly constrained. 

In our work we consider the relationship between 
this constrained motion and the object's geometry. 
To analyze this relationship we use two frames: the 
object frame and the frame of the motion trajec- 
tory. "Efficient" motion calls for a simple rela- 
tionship between the object frame and the motion 
frame, and this relationship remains constant dur- 
ing the motion. Based on this observation we use 
a model called Frenet-Serrei motion which corre- 
sponds to the motion of a moving trihedron along 
a space curve [8]. The parameters of the motion are 
given by the curvature and torsion of the space curve 
along which the object moves. 

We use the relationship between the object frame 
and the motion frame to analyze image sequences. 
Given a sequence of images of the moving object, 
our analysis enables us to output the motion and 
trajectory parameters of the object. Knowing how 
the Frenet-Serret frame is changing relative to the 
observer gives us essential information for under- 
standing the object's motion. Our analysis can also 
handle constraints on the motion. For example, the 
parameters of the object's trajectory depend on its 
speed, mass, size, and on the medium through which 
it moves. These factors impose bounds on the cur- 
vature and torsion of the trajectory. 

In this paper we approach object motion under- 
standing through analysis of long image sequences. 
A key question in this context is how to relate short- 
sequence motion estimation to long-sequence motion 
estimation. Using the Frenet-Serret frame provides 

143 



us with an ability to understand motion over a long 
time period. We can derive the motion parameters 
from the parameters of the trajectory and obtain 
motion descriptions suitable for long sequence anal- 
ysis. Using these tools we can show, for example, 
that rotation becomes significant only in long se- 
quences, and that in a short sequence translation is 
usually dominant. We show that using simplified 
scene and imaging models we can get adequate local 
estimates (short sequence, 2-4 frames) by analyzing 
the images, and by observing these estimates over a 
long sequence we can accumulate them to describe 
the object's trajectory. Analysis of the trajectory 
parameters provides us with tools for understanding 
long-term object motion. 

2    Related Work 

Understanding object motion is based on extract- 
ing the object's motion parameters from an image 
sequence. Broida and Chellappa [1] proposed a 
framework for motion estimation of a vehicle using 
Kalman filtering. Weng et al. [15] assumed an ob- 
ject that possesses an axis of symmetry, and a con- 
stant angular momentum model which constrained 
the motion over a local frame subsequence to be a 
superposition of precession and translation. The tra- 
jectory of the center of rotation can be approximated 
by a vector polynomial. Changing the parameters of 
the model with time allows adaptation to long-term 
changes in the motion characteristics. Their work 
was based on correspondence; at least eight pairs of 
corresponding points were needed. 

Accumulating the information obtained from the 
motion analysis of the sequence to achieve an es- 
timate of the moving object's trajectory is another 
step toward understanding object motion. (A good 
survey of motion-based recognition was compiled by 
Cedras and Shah [5].) Bruckstein et al. [2, 3] as- 
sumed a known object model (a rigid rod or disk) 
and tried to recover the object's trajectory and ro- 
tation. They showed that five images are enough to 
recover the motion of a rod or a disk in accordance 
with physical laws. Techniques from algebraic geom- 
etry were used to establish the existence of solutions 
to the resulting polynomial equations. 

Engel and Rubin [9] (and similarly Gould and 
Shah [10]) used motion characteristics obtained by 
tracking representative points on an object to iden- 
tify important events corresponding to changes in 
direction, speed and acceleration in the object's mo- 
tion. 

Work has also been done on higher-level descriptions 

of object trajectories in terms of such concepts as 
stopping/starting, object interactions, and motion 
verbs[4, 11, 12]. This level of object motion descrip- 
tion will not be treated in this paper. 

In [6] Duric et al. tried to determine the function 
of an object from its motion. Given a sequence 
of images of a known object performing some func- 
tion, they attempted to determine what that func- 
tion was. They showed that the motion of an ob- 
ject, when combined with information about the ob- 
ject and its uses, provides strong constraints on the 
possible function being performed. Their flow-bcised 
analysis treated relatively short sequences. 

In this paper a model for object trajectory analysis 
is used, and a constant relationship between the ob- 
ject frame and the motion frame is established. The 
use of the Frenet-Serret frame provides a vocabulary 
appropriate for describing long motion sequences. 

3    ]VIotion JVTodels 

3.1    Rigid Body IVIotion 

To facilitate the derivation of the motion equations 
of a rigid body B we use two rectangular coordi- 
nate frames, one (Oxyz) fixed in space, the other 
(CxiyiZi) fixed in the body and moving with it. 
The coordinates Xi, Yi, Z\ of any point P of the 
body with respect to the moving frame are constant 
with respect to time t, while the coordinates X^Y ,Z 
of the same point P with respect to the fixed frame 
are functions of <. It is assumed that these functions 
are differentiable with respect to t. The position of 
the moving frame at any instant is given by the po- 
sition c?c = {Xc Yc Zc)'^ of the origin C, and by 
the nine direction cosines of the axes of the moving 
frame with respect to the fixed frame. Let i, j, and k 
be the unit vectors in the directions of the Ox, Oy, 
and Oz axes, respectively; and let Ti, j'^, and ky be 
the unit vectors in the directions of the Cxi, Cyi, 
and Cz\ axes, respectively. For a given position p of 
P in CxiyiZi we have the position ^ of P in Oxyz: 

where R is the matrix of the direction cosines (the 
frames are taken as right-handed so that det R= I). 
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If we differentiate (1) with respect to time and use 

the fact that p = R'^iip — dc), we obtain 

rp = Rp + dc = RR'^(vp - dc) + dc = fi(^ -dc) + dc. 

(2) 
The skew matrix fi = RR^ = —RR'^ is the ro- 

tational velocity matrix and dc is the translational 
velocity vector. Multiplying a vector (TJ, ~dc) by the 
skew matrix ft can be replaced by taking the cross 
product w X {rp — dc) where tJ = {ujx w^ Wz)"^ is the 
rotational velocity vector. 

3.2    Motion along a Smooth Curve 

Consider a moving frame Cxiyizi (fixed in a 
rigid body B), which moves with C along a space 
curve r while rotating so that the Cxi and Cyi axes 
concide with, respectively, the tangent and principal 
normal of T. This means that as C moves along F 
the CxiyiZi frame concides with the Frenet-Serret 
trihedron at C: Ctnb. This trihedron consists of the 
tangent t, the principal normal n, and the binor- 
mal b, which are mutually orthogonal (see Figure 1). 
The geometry of this motion is completely defined 
byP. 

Let dy{s) denote the position of C, in the fixed co- 
ordinate frame Oxyz, when it has moved along F 
through a total arc length of s. For any position p 
of a point P on ,6 in Ctnb, the position ^ in Oxyz 
is given by (1) with the matrix of direction cosines 
R suitably defined (see Figure 1). If t = (ti t2 ia)^, 

Figure 1: The Frenet-Serret coordinate frame moves 
along the path F. 

ii = (ni n2 ns)-^ and b = (6i 62 63)-^ are the unit 
vectors along Ct, Cn and Cb, differential geometry 
gives us 

where K is the curvature of F. Then we have 

R = 
tl "1 61 
t2 "2 62 
h "3 63 

(4) 

We have the Frenet-Serret formulas [13] 

t  = Kn,    n = —at + rb,    b  = —rn       (5) 

where r is the torsion of P.   Using (4) and (5), (2) 
can be written as 

Vp = Ljd'X {rp - d-^)-\-1 (6) 

where the Darboux vector uJd = Tt -\- nh is the ro- 
tational velocity vector and the unit tangent t of P 
is the translational velocity vector; the motion pa- 
rameter is the arc length s. If, instead of using arc 
length as a motion parameter, time t is used, the ro- 
tational velocity Wd and translational velocity t are 
scaled by the speed v — ds/dt of the point C. In 
that case the equation of motion becomes 

Vp = vuJd x {vp - d-y) -\- vi. (7) 

In the special case where P is a plane curve we have 
r = 0 (F is torsionless), and thus 10d = wb. Equa- 
tion (7) then becomes 

VKh X {r-p d-y)   +   Vt. (8) 

3.3    Simple Motions of Objects 

n = K b = t X n, (3) 

Objects move in reaction to forces which are being 
applied to them. When the forces acting on an ob- 
ject are added, the resultant force F determines the 
direction of motion and the moments of the forces 
(or the torques) determine the rotation of the object. 

If the force F is applied to the object B at the point 
P, the moment M is given hy M — rp x F where rp 

is the position of P relative to a point C. M has the 
same direction as the axis of the rotation of B that 
results from applying F. 

The engine of a vehicle needs to apply force to the 
vehicle in order to move it from one position to an- 
other. If the path is prespecified (as in the case of a 
ground vehicle on a road), efficient application of the 
force requires that the angle between the instanta- 
neous directions of the force and the directions of the 
path elements be small. The force differential gener- 
ates torques which help turn the vehicle around the 
axis of rotation normal to the (osculating) plane of 
the path. During a turn, the wheels rotate with dif- 
ferent speeds; the greater the distance between the 
wheels the larger their difference in speed. In order 
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to minimize this difference the distance between the 
wheels needs to be small. Also, when forces are ap- 
plied to the wheels the resulting torques are larger 
when the vehicle is moving along a short axis; but 
these torques need to be as small as possible to im- 
prove the handling of and minimize stresses on the 
vehicle. Because of all these factors the principal 
axis of inertia of the vehicle should be tangent to the 
path of the vehicle. It should be pointed out that [7] 
the translational velocity at any point on a ground 
vehicle is typically orders of magnitude larger than 
its rotational velocity (around the vehicle's center of 
mass). The rotational velocity becomes significant 
only when the vehicle is observed over a significant 
period of time (typically several frames). 

In the case of a moving tool the force is used not only 
to move the tool, but to act on a recipient object. 
Therefore, the required force depends on the task. 
For example, sawing involves continuously exerting 
a force perpendicular to the path of the saw; tight- 
ening with a wrench involves continuously exerting 
torque around the axis of rotation. (Note that the 
force may not be applied to the recipient object con- 
tinuously; for example, when we swing a hammer, 
the force is applied only when the head of the ham- 
mer hits the object.) Developing a general theory of 
tool motion is a subject of our continuing research. 

4    Computing Motion from Image 
Sequences 

For the purpose of estimating object motion from 
images we rewrite (2) in the following way: 

uj X (rp - dc) + ( T (9) 

where f = dc - to x dc = {U V WY is the trans- 
lational velocity expressed in the fixed (camera) co- 
ordinate frame Oxyz.   We will later show how the 

translational velocity dc can be recovered from T. 

4.1     The Imaging Models 

Let {X, Y, Z) denote the Cartesian coordinates of a 
scene point with respect to the fixed camera frame 
(see Figure 2), and let {x,y) denote the correspond- 
ing coordinates in the image plane. The equation of 
the image plane is Z = f, where / is the focal length 
of the camera. The perspective projection onto this 
plane is given by 

(10) 
fX fY 

,= —,    ,= —. 

For weak perspective projection we need a reference 
point {Xc,Yc,Zc)-   A scene point {X,Y,Z) is first 

projected onto the point {X,Y,Zc); then, through 
plane perspective projection, the point {X,Y,Zc) is 
projected onto the image point {x,y). The projec- 
tion equations are then given by 

X 
f,   y 

Y 
/. (11) 

Figure 2: The plane perspective projection image of 
P is F = f{X/Z, Y/Z, 1); the weak perspective pro- 
jection image of P is obtained through the plane per- 
spective projection of the intermediate point Pi — 
{X, Y, Zc) and is given by G = f{X/Z,,Y/Zc, 1). 

4.2    The Image Motion Field and the 
Optical Flow Field 

The instantaneous velocity of the image point [x, y) 
under perspective projection is obtained by taking 
the derivatives of (10) and using (9): 

.     _    XZ-XZ _ Uf-xW xy 
Z2        - z ""V 

X 

YZ-YZ      Vf-yW fy^   ,   , 
y   = ^2       =—^ "H7^^ 

(12) 

xy 

f 
+^y-ir +LOzX. (13) 

Similarly, the instantaneous velocity of {x,y) under 
weak perspective projection is obtained by taking 
derivatives of (11) and using (9): 

i    =    f 
XZc — XZc 

Z} 

Uf-xW 

y   =   /- 

Zc 
.YZr-YZ. 

+ f^yir "^''V'        (^^) 

z-i 
Vf-yW    ,    z 
 ^ /w^^ + w^a:.        (15) 
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Let I and / be the unit vectors in the x and y di- 
rections, respectively; r ~ xi-\- yj is the projected 
motion field at the point r = xi + yj. If we choose 
a unit direction vector Hr at the image point f and 
call it the normal direction, then the normal motion 
field at r is ?„ = {f-nr)nr. Here n^ can be chosen in 
various ways; the usual choice (as we shall now see) 
is the direction of the image intensity gradient. 

Let I{x,y,t) be the image intensity function, 
time derivative of I can be written as 

The 

{xt + yj) + It =VI -f+It 

where VI is the image gradient and the subscripts 
denote partial derivatives. 

If we assume dl/dt — 0, i.e. that the image intensity 
does not vary with time, then we have Vl-u + It = 0. 
The vector field u in this expression is called the 
optical flow. If we choose the normal direction n^ to 
be the image gradient direction, i.e. fir = V7/||V/||, 
we then have 

where M„ is called the normal flow. 

(16) 

It was shown in [14] that the magnitude of the differ- 
ence between Un and the normal motion field fn is 
inversely proportional to the magnitude of the image 
gradient. Hence r„ f« M„ when ||V/|| is large. Equa- 
tion (16) thus provides an approximate relationship 
between the 3-D motion and the image derivatives. 
We will use this approximation later in this paper. 

5    Tool Motion 

We assume that the tool is (approximately) planar 
and that its velocity is composed of a translational 
velocity in the plane of the tool and a rotational 
velocity around an axis orthogonal to the plane of 
the tool. 

5.1    The Image Motion Field of a 
Wielded Tool 

Let the normal to the plane be TV = [N^ Ny Nz)'^; 

the equation of the plane orthogonal to N which 
passes through the point (0, 0, ZQ) on the 2-axis of 
the Oxyz coordinate frame is given by 

XN, + YNy +iZ- Zo)Nz = 0. (17) 

If we assume a nondegenerate view (i.e., N^ > 0) for 
points on the plane we obtain from (17) and (10) 

1 

Z 

1 

Jz^ f + f 
ZN.. ZN, 

7^0 
gy) (18) 

where p = Nj:N~^ and q = NyN~^. From our 
asumption about rotational velocity it follows that 
we have oj = (pw^ qcuz ui^) for some w^. 

From (12-13) and (18) we obtain the equations of 
projected motion for points on the plane: 

Uf-xW 
fZo 

+quj 

Vf-yW 
fZo 

xy 

xy 
{f + px + qy)-puj,— 

2!" 
■^^y, (19) 

(f +px + qy) - pijjz 7-' 
(20) 

Equations (19-20) relate the image (projected) mo- 

tion field to the scaled translational velocity ZQ^T = 
Z^\U V Wf = (Uo Vo Wof, the rotational pa,- 
rameter w^, and the normal to the plane (p q i)^. 

Let 

/ ai \ ai 

012 

as 
04 

as 
06 

07 

as \as J 

n^y 
Uyf 

nyy 
-{na-xy + nyy'^)/f 
-{n^x'^ + nyxy)/f / 

(21) 

/  ci  \ 1 
C2 

C3 

C4 

C5 
= 

C6 

C7 

\   C8   / \ 

Uo + quiz 

Uop - Wo 
Uoq - u>z 
Vo - pujz 

Vop + u>z 
Voq - Wo 

Woq + puJz 
\  Wop - quJz 

\ 

(22) 

/ 

Given the point r = xi-\-yJan(\ the normal direction 
Uxt + nyj, from (19-20) and using (21-22) the normal 

motion field ?„ ■ n = n^x + riy-y is given by 

T n = a  c. (23) 

The column vector a is formed of observable quanti- 
ties only, while each element of the column vector c 
contains quantities which are not directly observable 
from the images. To estimate c we need estimates 
of r„ • n at eight or more image points. 
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5.2    Estimating Tool Motion from 
Normal Flow 

If we use the spatial image gradient as the normal di- 
rection Hr = V//||V/|| = Ux i + Uy Jand r„ ^ u„ we 
can obtain an approximate equation corresponding 
to (23) by replacing the left hand side of (23) by nor- 
mal flow —/t/||V/||. This equation involves the eight 
unknown elements of c. For each point (xj, j/,), i = 
1,..., m of the image at which \\VI(xi,yi,t)\\ is large 
we can write one such equation. If we have more 
than eight such points we have an over-determined 
system of equations Ac Ri b; the rows of the m x 8 
matrix A are the vectors a;, and the elements of the 
m-vector b are -{dI(xi,yi,t)/dt)/\\VI{xi,yi,t)\\. 

We seek the solution of the system for which ||b - 
Ac\\ is minimal. This solution is the same as the 
solution of the system A'^Ac = A'^h. We use linear 
least squares to obtain the parameter vector c. 

Since we have assumed that the translation is in the 
plane of the tool we have TV • T = 0, or equivalently 

{p q lf-{Uo Vo Wof = UoP+Voq + Wo = 0. (24) 

After estimating c we can use (22) and (24) to obtain 

Uo,Vo, Wo,Uz,P, and q. From (22) we have 

Uop+Voq-2Wo = C2 + C6; 

using (22) and (24) we obtain 

Wo    = 
C2 + CQ        ., 2C2 - C6 

3 

Voq    =     ^ ■ (^5) 

From (22) and (25) we obtain 

C7    =    Woq+pui,= q+p{Uoq-C3) 

C2 - 2C6 
-C3P-I q (26) 

Similarly we have 

C2 + C6 , ,,    X 
cs    =    yVoP - qiOz = 5—P - 9(c5 - Vop) 

Ce - 2c2 
-p- csq (27) 

From (26-27) we obtain p and q and by substituting 
their values into (22) and (25) we obtain Uo, Vo, and 
u!^. Finally, we obtain 

N = {pq  ifil+p^ + q')-^ 

and 

We have estimated the translational velocity T and 
the rotational velocity Co in the camera coordinate 
system Oxyz. We are interested in the translational 
and the rotational velocity expressed in the Frenet- 
Serret frame Otnb. By comparing equations (2), (8) 
and (9) we obtain 

uj — VKh,    h = Nsgnui;i,    ?;K = ||a;| (28) 

where sgn stands for the 'sign of function.   Also, 
from (2), (8) and (9) we have 

(Uo Vo Wo)'^    =    Z-'f = Zo\dc -wx cQ 

ZQ ^(!)t — Co X d-^ 

and thus 

vt 
{Uo Vo Wof + 

X d~^ 
(29) 

Note that in equation (29) the quantities Zo and 

d-y (the position of the point C, the origin of the 

Otnh frame) are not known. However, let d^ = 
[Xc Vc ZcY be the position of C and let (x'cj/c) 
be the image of C (either the tip or the center of 
mass of the tool). From (18) we obtain 

fZo      j. . , 
—- = / + px,, -h gj/c 

so that (29) can be written as 

— = [Uo Vo WoY + T^w X ^  

= (Uo Vo Wof + ^/^J^-^;-^)"". (30) 
f + pxc + qyc 

From (30) we obtain the unit vector in the tangent 
direction t by normalizing vt/Zo. Finally, we obtain 
the unit vector in the normal direction using 

n = b X t. (31) 

il^ll = \/ujf+]Kif+qhJ^. 

Equations (28), (30) and (31) define the Frenet- 
Serret frame Otnb expressed in the camera coordi- 
nate system. Equation (28) gives us the curvature K 

up to an unknown factor v (linear velocity). We con- 
clude that the Frenet-Serret motion can be recovered 
up to the speed v; note that the translational veloc- 
ity vi/Zo does not help here because of the unknown 

depth Zo- 

Finally, we need to recover the orientation of the tool 
coordinate frame (its long and short axes) in the 
Otnb frame. We find the long and the short axes 
of the tool as the principal axes of the set of tool 
points. The long axis / of the tool and the origin O 
of the fixed (camera) coordinate frame Oxyz define a 
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plane H;. Since the image /' of / lies in this plane we 
can find Pii using /' in place of /. Because we have 
assumed a nondegenerate view we have two cases: 
(i) if the tangent vector t lies in 11; the motion is 
along /; (ii) if the normal vector ii lies in H; the 
motion is orthogonal to /. 

We check if the vector lies in the plane II; using the 
following simple algorithm. Let pj = {xi j/i f)'^ 

and P2 = {x2 2/2 fY be the positions of two end- 

points on the image /' of /. The normal N-a of the 
plane II; is given by 

TVn =Pi xp2- 

If the vector t lies in the plane II; we have N\i xt « 0. 
So to find the relative orientation of the tool frame 
and the Otnb frame we only need to find which one 
of the inner products |iVn -tl and \NYI ■vi\ is smaller. 
(Note that while one of the vectors t and ii lies in the 
plane II; the other vector is not always orthogonal 
to H; .) 

6    Vehicle Motion 

We assume that the motion of the vehicle is planar 
and that it has a small rotational velocity around the 
axis orthogonal to the plane of motion. The trans- 
lational velocity is dominant and at any time t the 
motion can be approximated by pure translational 
motion. 

6.1    The Image Motion Field of a 
Moving Vehicle 

From (14-15) we obtain the (approximate) equations 
of projected motion for points on a vehicle under 
weak perspective: 

y 

Uf-xW 

Vf-yW 

(32) 

(33) 

Equations (32-33) relate the image (projected) mo- 

tion field to the scaled translational velocity Z~^T — 
Z;\U V Wf. 

Let 

a    — (34) 

(35) 

Given the point r = xi-\-yjdMd the normal direction 
rixt + nyj, from (32-33) and using (34-35) the normal 

motion field rjj ■ n = n^ji -|- rij^j) is given by Vn ■ n = 
8^c. The column vector a is formed of observable 
quantities only, while each element of the column 
vector c contains quantities which are not directly 
observable from the images. To estimate c we need 
estimates oi % ■ n at three or more image points. 

6.2    Estimating Vehicle Motion from 
Normal Flow 

As in Section 5.2 we use linear least squares to esti- 
mate parameter vector c from the normal flow. 

In the case of a moving vehicle the parameters of 
interest are the vehicle's trajectory and its rate of 
approach. The rate of approach 

u = 

(measured in sec~^) is equivalent to the inverse of 
the time to collision and corresponds to the rate 
with which an object is approaching the camera (or 
receding from it). The rate v = 0.1/sec means that 
every second the object travels 0.1 of the distance 
between the observer and its current position. A 
negative rate of approach means that the object is 
going away from the camera. 

The direction of motion c gives us the tangent vector 
t = c/\\c\\ of the Frenet-Serret frame. If the direction 
of motion changes over time we can use the Frenet- 
Serret formulas (5) to recover the (scaled) curvature 
VK of the trajectory. Given the tangent direction to 
at time t and the tangent direction ti at time t + ^t 
we have 

tl — to 
no 

At 
(36) 

The unit vector in the direction no at time t is the 
normal vector of the Otnb frame and the scaled cur- 
vature is given by VK = ||no||. Finally, we obtain 

b = t X n. (37) 

Equations (36) and (37) give us the normal b to 
plane of motion and the rotational velocity of turn- 
ing (yaw) w = vnh. 

7    Experiments 

7.1     Motions of Tools 

We tested our motion analysis algorithm under full 
perspective on two image sequences of tools in mo- 
tion.   The first sequence, two frames of which are 
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shown in Figure 3, was a 200-image sequence of the 
movement of a wrench tightening a bolt. 

Figure 3: An experiment using a wrench: frames 30 
and 100. Top images: the input images. Bottom 
images: results of flow computation. 

Figure 4: Results of experiments on the wrench se- 
quence. The graph shows rotational velocity in ra- 
dians/sec. 

The motion of the wrench was a rotation (to turn 
the bolt) around an axis approximately orthogonal 
to the plane of the image. The rotational velocity 
is shown in Figure 4; it is given in radians/sec and 
it corresponds to the scaled curvature VK. Figure 5 
shows the orientation of the principal axis of the 
wrench and the instantaneous translational velocity 
vector of its centroid (obtained using equation (30)), 
both measured in radians. As we see, the transla- 
tional velocity vector remains approximately orthog- 
onal to the principal axis throughout the motion se- 
quence. The Frenet-Serret frame has its binormal 
b in the direction of the negative of the 2--axis, its 
tangent t in the image plane and orthogonal to the 
principal axis of the wrench, and its normal n in the 

Figure 5: Results of experiments on the wrench se- 
quence. The solid line corresponds to the orientation 
(in radians) of the instantaneous direction of trans- 
lation of the centroid of the wrench, and the dashed 
line corresponds to the orientation (in radians) of 
the principal axis of the wrench. 

image plane and oriented from the centroid of the 
wrench toward the bolt. 

Figure 6: An experiment using a saw: frames 30 and 
100. Top images: the input images. Bottom images: 
results of flow computation. 

We also tested our motion analysis algorithm on a 
200-image sequence of a saw doing a periodic mo- 
tion. Figure 6 presents part of the sequence. Flow 
results are given below each image. The motion of 
the saw was pure translation (||w|| = 0). As can 
be seen from Figure 7 the motion is mostly fronto- 
parallel (the z component of the translational ve- 
locity is small). As Figure 8 shows, the motion is 
periodic in the direction of the principal axis of in- 
ertia. It is a simple case of a (periodic) straight line 
motion with the Frenet-Serret frame corresponding 
to the principal axes of the saw; t corresponds to the 
longest axis, and b to the shortest axis. 
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Figure 7: Results of experiments on the saw se- 
quence. [/, V, W are the scaled (by an unknown 
distance Z^^) components of the relative transla- 
tional velocity. 

7.2    Motions of Vehicles 

In this experiment we used an image sequence of a 
van taken from another vehicle following the van, 
and we used the algorithms for weak perspective. 
The sequence consisted of 56 frames (slightly less 
than two seconds). Figure 9 shows frames 5, 25, 
and 45 as well as the corresponding normal flow on 
the van. Figure 10 shows estimated values oiUZ~^, 
VZ~'^, and WZ~^. These values correspond to the 
relative translation of the van and the vehicle car- 
rying the camera (observer coordinate system). Be- 
cause of our choice of the coordinate system the rate 
of approach p corresponds to the negative of WZ~ ^, 
i.e. v = —WZ~^. The graph shows that there is an 
impending collision (rate of approach greater than 1 
sec"^). Around the 20th frame the rate of approach 
becomes zero (as do all the velocity components) and 
after that it becomes negative because the van starts 
pulling away from the vehicle carrying the camera. 

These graphs show that the motion components have 
a simple behavior; before they reach their extremal 
values they can be approximated by straight lines, 
indicating constant relative accelerations. 

8    Conclusions 

Many types of common objects, such as tools and 
vehicles, usually move in simple ways when they are 
wielded or driven: The natural axes of the object 
tend to remain aligned with the local trihedron de- 
fined by the object's trajectory. In this paper we 
have considered the relationship between this con- 
strained motion and the object's geometry. To ana- 
lyze this relationship we have used two frames: the 

Figure 8: Results of experiments on the saw se- 
quence. The solid line corresponds to the orientation 
(in radians) of the instantaneous direction of motion 
of the saw, and the dashed line corresponds to the 
orientation (in radians) of the principal axis of the 
saw. 

Figure 9; Frames 5, 25, and 45 of the van sequence. 
The normal flow results are shown below the corre- 
sponding image frames. 

object frame and the frame of the motion trajec- 
tory. Assuming a constant relationship between the 
object frarne and the motion frame during the mo- 
tion, we have used Frenet-Serret motion as a motion 
model. Using the Frenet-Serret frame has provided 
us with an ability to understand motion over a long 
time period, 

We have derived equations for describing the mo- 
tions of tools and vehicles under full and weak per- 
spective. We have recovered descriptions of an ob- 
ject's motion and the space curve along which the 
object moves, using relatively long image sequences. 
The motion and trajectory parameters provide a 
low-level description for understanding the motions 
of vehicles. For understanding tools in motion one 
needs additional knowledge about the tool and the 
context. This is a direction for further research. 

It is the need for efficient force transfer that imposes 
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Figure 10: Results of experiments on the van se- 
quence. U, V, W are the scaled (by an unknown 
distance Z^^) components of the relative transla- 
tional velocity. 

a simple and constant relationship between the nat- 
ural axes of the object and the motion trajectory. 
We have used this functional constraint in analyzing 
the motions of tools and ground vehicles. Expand- 
ing this analysis to other classes of objects (e.g. air 
vehicles) is another direction for future research. 
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Abstract 
Due to the aperture ■problem, local motion between 

two images can be precisely computed only at corners 
while at other points only partial information is avail- 
able. Therefore the motion is often represented as a 
2-D Gaussian random variable. The motivation for 
using this representation is that the Kalman filter and 
other methods can easily be used. However, as we show 
in this paper, the Gaussian approximation is valid only 
in special cases and often causes severe loss of data. 
As an alternative, we introduce a method to extract 
and represent displacement as a probability distribu- 
tion matrix, and introduce a filter and other tools that 
works directly on these matrices. Using these tools, we 
implement a 2-D real-time tracking system. A more 
detailed version of this paper can be found in [5]. 

1    Introduction 
Computing local motion is an essential stage in 

many computer vision tasks, such as object track- 
ing, image registration and structure from motion. In 
many cases, the algorithm tracks a set of points be- 
tween two or more frames. However, an exact tracking 
of the point's location is possible only when the point 
lies on a corner. In other cases, only partial informa- 
tion can be extracted. The prevalent solution is to rep- 
resent the displacement of the feature point as a 2-D 
random Gaussian variable, where the covariance ma- 
trix contains the directional edge information[8][l][3]. 
The advantage of this representation is its simplicity 
and the possibility to use efficient tools such as the 
Kalman filter. 

In [8] a Gaussian representation and a Kalman filter 
is used to compute an optical flow map in a video 
sequence. In [6] [2], Kalman filter is used for obtaining 
structure from motion. In [1] a 3-D tracking system is 
implemented using spatial and temporal filters. 

In many cases, this Gaussian assumption is not 
valid, and leads to errors and information loss. 
Consider Fig. 1, two points are given and the motion 
between two frames is to be found. We take a small 
window around each point and compute the correla- 
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Figure 1: The probability matrices of points that can- 
not be approximated as Gau.ssians. First row: The 
matrices of the points within the circle (a, b). The 
product matrix (c). Second row: Gaussian approxi- 
mation 

tion between the two frames. A and B in the first row 
of Fig. 1 are the correlation results and in the second 
row, their Gaussian approximations are shown. It can 
be seen that the Gaussian approximation does not rep- 
resent the distribution, especially in B. A consequence 
of trying to impose this approximation is that if the 
two points belongs to one scene moving uniformly and 
we want to find the probability distribution matrix of 
the whole motion using these two measurement, we 
should superimpose the probability matrices and nor- 
malize them. The product matrix is shown in C. It can 
be shown that although each point does not contains 
enough information about the scene's motion, we get a 
better idea about it from the product matrix. Trying 
the same with the Gaussian approximations gives the 
matrix C in the second row. The result is a Gaussian 
with a mean value of (2, 1) which is far from the true 
motion of (0,0). This result simulates what happens 
when we use the Kalman filter. Thus, we can conclude 
that using Gaussian approximations and the Kalman 
filter is in many cases erroneous. Generally speaking, 
the Gaussian approximation is reasonable only when 



the probability matrix is symmetric. 
Another problem with Gaussian approximations 

concerns point tracking. When a point is not a corner, 
there is not enough information in the point's matrix 
to compute the point's displacement unambiguously. 
When approximating the matrix with a Gaussian, the 
mean is taken as the point's motion. But looking at 
Fig. 1,B one can see that the mean value is not a 
reasonable choice, because it does not coincide with 
a likely region of the matrix. Using this value as the 
point's displacement will cause the point to miss the 
tracked feature. 

These examples demonstrate why the Gaussian 
approximation is not always valid. An alternative 
method suggested in this paper, is to represent the 
point's local motion as a probability distribution ma- 
trix. This will be demonstrated in a 2-D tracking sys- 
tem. 

Tracking a set of points from an object can be used 
in order to track the whole object. Most methods 
aggregate the points motion by first making a deci- 
sion about each single point, this is problematic as 
the single point's motion cannot usually be computed 
reliably without using information from all the other 
tracked points. Using the matrix representation, we 
have implemented a motion detection and tracking 
system which overcome these problems. The system 
works in real-time with live video input, even when the 
camera rotates. In this paper we will not describe the 
whole system due to space limitations. The system is 
used to demonstrate the matrix representation with 
the additional tools. This will be done by describing 
the main module in the tracking system. 

Section 2 introduces the probability matrix formu- 
lation of a displacement and shows how a displace- 
ment's confidence can be computed from this matrix. 
Section 3 shows how temporal filtering can be com- 
puted directly from these matrices. Section 4 describes 
the computation of the object's mean motion directly 
from the matrices and how to compute each point's 
motion using this mean motion. Section 5 shows ex- 
perimental results. A more detailed version of this 
paper can be found in [5]. 

2    Displacement as a probability distri- 
bution matrix 

As we have shown, the displacement of a tracked 
point cannot be represented as a particular single 
value or as a Gaussian variable. The method we in- 
troduce is based on cross-SSD (sum of squared differ- 
ences). The displacement is represented as a discrete 
probability distribution where no assumption is made 
about the shape of the distribution. 
Formulation of the problem: Two images ipi{i,j) 
and ip2ih j) are taken from a video sequence of a dy- 
namic scene. Given a point p in V"!, let W be a window 
surrounding this point, and assume that all the pix- 
els inside W have the same displacement as p. We 
want to compute the probability distribution of the 

displacement of p between the two frames. 
Let the displacement be d = (w, v) and let Wi be 

the window around p in tpi and W2 be the window 
around p -I- d in V'2- Let F(W2 | Wi, d) be a known 
function of the probability distribution of Wo given d 

and Wi. 
In many cases it can be assumed that the possi- 
ble values for d = {u,v) are within the range: 

Umin--Umax, Vmin--Vmax. Let Y be defined as 

Y„,„=P(>V2  |>Vl,d = (H,t')) 

Using Hayes' law: 

^(Wo) 

where: 

P{W2) = Y, ^(^2 I >Vi, d)P{d) 

154 

After substituting ¥„,„ = P(W2 | Wi,d = (», (••)) we 

get: 

(2) 
P(d = {u,v)) is the apriori probability that the dis- 
placement is d. If no prior information is available, 
we take P(d) to be constant. 

It is still necessary to compute P(yV2 | H'l, d). Let 
us assume that the displacement of p is known to be 
d = {u,v). Given the window Wi in the first image, 
the match between it and W2 is not perfect because of 
noise. The noise is generated by several sources: the 
camera noise, rotations, quantization errors etc. The 
probability distribution of the overall expected noise 
is very hard to compute, we present a simple method 
to compute the probability matrix, but other methods 
can work as well. 

Given the displacement d = («,'(') 1 the sum of 
squared differences of W between the two windows 

is: 

SSD{d) =   Y^   {i>2{i + d^,j + dy) - i'li'iJ)f 
»j6Wi 

We model the distribution of W2 as a function of 

the SSD: 

P(W2|d) = /(5S'D(d),<72) 

Assuming that the only factor that can be measured 
or estimated is the mean SSD value a^, the Maximtim 
Entropy Criteria gives: 

P(W2|d) = c exp{-SSDid)/a'') 

where c is a normalization factor. 
To conclude, we have introduced a method of rep- 

resenting the displacement as a probability distribu- 
tion matrix using SSD measurements.   An example 



for the probability matrices is depicted in Fig. 1. The 
lower row shows the Gaussian approximation of the 
distribution, and as can be seen, this approximation 
eliminates almost all the available information of the 
matrix. 

If the motion also contains rotations, this will be 
interpreted as more system noise, and the probability 
distribution will be less sharp. However, if the rotation 
is not too large, the matrix still contains enough infor- 
mation to be useful. The effect of rotation is smaller 
as the window size is smaller. 

3    Using temporal filtering in tracking 
a point 

Many systems use temporal filtering to improve 
point tracking. When the local motion is represented 
as a Gaussian, the Kalman filter can be utilized. How- 
ever, the Kalman filter cannot handle the probability 
matrix representation described above. In this section 
we represent an alternative filter implementation that 
use the probability matrix P as an input. The tech- 
nique implemented here can be formalized as a filter 
which is a generalization of the Kalman filter for any 
distribution [4]. 

Let the process X be a moving point where the 
state xt is the point's 2-D velocity vector at time 
t. The probability distribution of Xt is the matrix 
Px( where each entry (w, v) is the probability that 
the point's velocity is d = {u,v). This is a square 
matrix with size 2dmax + 1- Assume for the mo- 
ment that the point's motion has a constant veloc- 
ity. At each time interval t, a new frame ^2 from 
the video sequence is available. We refer to it as 
the measurement. From the new frame, the ma- 
trix Y(u, v) = P{W2 I d = (u, v)) is computed, (see 
Section 2). 

Using Eq. 2, the posteriori probability distribution 
of the process given the measurement is: 

p+ (u V)- p^.i-^-)nm\A = {u,v)) 
'"^    '    ^~ P{W2) ^^ 

where -t- stand for posteriori distribution, and — for 
the apriori. 

Equation 3 is equivalent to computing the matrix 
P~^(w, v) P(H'2 I d = (u, v)) and normalizing the ms,- 

trixtogiveX;E-P5^(".^') = 1- 
This simple procedure is the temporal filtering step. 

The problem is that it is very restrictive to assume 
that every point moves with a constant velocity. A 
better assumption is that: a) the point moves with 
roughly a constant velocity, and b) that this is true 
only for short time intervals. 

The process noise. The assumption of a roughly 
constant velocity can be interpreted as noise in the 
process, that is: Xt = x<_i -f- n where n is noise. 

Px. = Px,_, ® Pn 

where Pn is the noise distribution matrix. 

The filter adaptivity. Equation 3 gives equal 
weight for all the measurements. As it is assumed, 
the constant velocity assumption is valid only for 
short time intervals, so the filter must be adaptive. 
The adaptivity can be achieved by giving newer mea- 
surement more weight than older ones. An accepted 
method is to use exponential weighting where a mea- 
surement with an age A< (At = 1,2,3,...) is given a 
weight of w{M) = X^*   [7] 
Given the process current probability matrix Px,, 
This weighting can be implemented as follows. For 
each element {i,j) in Px,: 

^x,(^i) = ^x,(^,i ,1/A 
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and normalize the matrix. A determines the filter 
memory length. For example, a value of A = 1.1 causes 
the seventh previous measurement to have half the 
weight as the new measurement. This way, the filter 
'forgets' previous measurements and becomes adap- 
tive. 

An example of the filter implementation can be seen 
in Fig. 3. In the left column are the probability ma- 
trices before filtering, and in the middle column - after 
filtering. The temporal filtering sharpens the proba- 
bility distribution and enhances the information about 
the point's motion. 

4 Combining information from sev- 
eral points to implement 2D object 
tracking 

Object tracking is implemented by randomly choo,s- 
ing N points on the object and tracking them. We 
do not assume that the points are on edges or cor- 
ners. Besides, the object can be non-rigid and can 
have any motion in 3-D space. The tracking scheme 
implemented here is 2-D tracking, where the object's 
motion is defined as the mean translation of the A^ 
tracked points on it. 

A simple but problematic way to implement such 
a tracking, is first to decide the motion of each of the 
tracked points, and then to calculate the mean mo- 
tion. The problem is that the exact motion of each 
tracked point cannot usually be decided directly from 
its matrix. This is possible only for corner points, but 
we do not want to limit ourselves to such points. 

Our method is as follows: in the first stage, the 
object's mean motion is calculated directly from the 
tracked points' filtered probability matrices. In second 
stage, the translation of each point is calculated using 
its probability matrix, and using the calculated mean 
object motion. (Section 4.1). In the third stage, a 
correction is made for each point's location in order 
to prevent drift. (Sections 4.2). 

Let Pj be the distribution matrix of the i-th tracked 
point. Define the matrix Psum as the sum of the dis- 
tribution matrices of the N points, where the {x,y) 



entry of this matrix has the value: 

N 

P,um{x,y) =''^Pi{x,y) 
i = l 

For each value (u, v), the expected squared error is 

MSE{u,v) = 
_ E. Ey Psumjx, y)[{x - uy + {y- vf] 

Zvx A^y ■'sum\X, J/j 

(u, v) minimizes MSE, where: 

T.^,y Psum{x, y) X     _ _  ^^y Psum{x,y) y 

2-ix,y Psum\X, y) l^x.y "sum(X, y) 

Choose (w, v) as the object's motion. 
Using this method it is possible to track an object 

by tracking some points on it even though the points 
are not on corners or edges. Next we will see how we 
can use the total motion information to compute the 
motion of each single point. 

4.1     Updating the tracked point's location 
The object's mean motion is computed directly 

from the probability distribution matrices of the 
tracked points. However, in order to track the points 
to the next frame, the point's displacement needs to 
be computed. This can be done locally only for corner 
points. In our tracking system we choose the motion 
of every point so that it is as close as possible to the 
object's mean motion. 

The method is first to find the set of entries for the 
matrix Px, that satisfy: 

S={seS   I    Px,(s)/Px, mar>£} (4) 

and from this set choose the entry s = (u, v) with 
minimal size of (u — M)^ + {V — V^ as the displacement 
d. 
4.2     The drift problem 

With the method described here the local motion 
is computed up to one pixel accuracy. This can cause 
the tracked points to drift from its initial position after 
a few frames. In order to prevent drift we need a 
computation method whose mean computation error 
over a long sequence of frames is always zero, but can 
still have instantaneous errors. In [5] we show how to 
achieve such an accuracy using entropy measurements 
on the point's distribution matrices. 

5     Experimental results 
We have implemented the tracking system de- 

scribed in the above sections. Before the tracking, 
twenty points were randomly chosen on the tracked 
object. Notice that most of the points are not on 
edges, and therefore are more difficult to track. The 
tracking was carried out for forty frames. The video 
was taken with a moving camera, so that both the 
object and the background are moving. In Fig. 2, 
eight out of the forty frames are depicted.  It can be 

Figure 2: Tracking a moving person with a moving 
camera. Eight frames are shown out of forty. Points 
marked as X detect motion. The big cross is tiie 
points' center of mass. 

seen that most of the points where successfully tracked 
through the sequence. 

In the figure, points marked as X are those where 
motion was detected, and the points marked as +, are 
where no motion was detected. The motion detector is 
implemented very simply by checking the probability 
of the entry (0,0) in the process's probability matrix 

Px<. 
The process's noise distribution matrix P,, was cho- 

sen as A/"(0,0.75). The adaptivity factor is k = 0.7, 
The matrices size are (-8..8,-8..8) so that transla- 
tion up to 8 pixels between frames can be detected, 
the window size was 5x5 pixels. In Fig. 3, the prob- 
ability matrices are depicted. The left column is a 
sequence of measurement matrices Y belonging to the 
tracked point marked with a circle in Fig. 2. It can 
be seen that the distributions are not always similar 
to a Gaussian. The middle column is the probabil- 
ity matrix of the process Px,, i.e. the motion distri- 
bution after filtering. The filter efl'ect can be seen as 
the probabilities are sharper than in the instantaneous 
measurement matrix. 

In the right column, the sequence of the sum ma- 
trices TsumiXjy), which represents the motion of all 
the points is shown. The matrices' entries with a point 
inside represents entries with probability close to max- 
imum, i.e. the entries belongs the set S. The Jiiotion 
of each tracked point is chosen from this set as the 
one closest to the object's mean motion, as discussed 
in 4.1. 

This example demonstrates how by using the tools 
developed in this paper, a real-time tracking can be 
implemented relatively easily.    Tracking is achieved 
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Figure 3: The probability matrices of the first four 
frames. The current measurement between the last 
two frames (left), after temporal filtering (middle) and 
the sum matrix from all the tracked points (right). 
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with only a small number of tracked points, with- 
out feature detection. It works even when the object 
cannot be considered rigid, (for example - the hand 
motion which is different than the body motion), and 
when the object has rotation. The tracking works well 
with live video on a PC in real-time. 

For comparison, we have tried to repeat the track- 
ing when we approximate the matrices with Gaussians 
and using the Kalman filter. The results are described 
in [5]. 

6    Summary 
It has been shown that local motion cannot be rep- 

resented as a Gaussian and that a better approach is 
to represent it with a distribution matrix. A filter and 
other tools for manipulating these matrices are de- 
rived. A 2-D tracking system was implemented using 
these tools. The distribution matrix representation al- 
lowed us to implement the tracking of the whole object 
without forcing us to make a prior decisions about sin- 
gle points which made the system much more robust. 

We believe that the matrix representation can be 
used to solve other computer-vision tasks such as op- 
tical flow, image registration, structure from motion 
and 3-D tracking. 
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Abstract 

Smart video cameras analyze the video stream and 
translate it into a description of the scene in terms 
of objects, object motions, and events. This paper 
describes a set of algorithms for the core computa- 
tions needed to build smart cameras. Together 
these algorithms make up the Autonomous Video 
Surveillance (AVS) system, a general-purpose 
framework for moving object detection and event 
recognition. Moving objects are detected using 
change detection, and are tracked using first-order 
prediction and nearest neighbor matching. Events 
are recognized by applying predicates to the graph 
formed by linking corresponding objects in succes- 
sive frames.The AVS algorithms have been used to 
create several novel video surveillance applica- 
tions. These include a video surveillance shell that 
allows a human to monitor the outputs of multiple 
cameras, a system that takes a single high-quality 
snapshot of every person who enters its field of 
view, and a system that learns the structure of the 
monitored environment by watching humans move 
around in the scene. 

1 Introduction 

Video cameras today produce images, which must 
be examined by humans in order to be useful. Fu- 
ture 'smart' video cameras will produce infor- 
mation, including descriptions of the environment 
they are monitoring and the events taking place in 
it. The information they produce may include im- 

The research described in this report was sponsored in part by 
the DARPA Image Understanding Program. 

ages and video clips, but these will be carefully 
selected to maximize their useful information con- 
tent. The symbolic information and images from 
smart cameras will be filtered by programs that ex- 
tract data relevant to particular tasks. This filtering 
process will enable a single human to monitor hun- 
dreds or thousands of video streams. 

In pursuit of our research objectives [Flinchbaugh, 
1997], we are developing the technology needed to 
make smart cameras a reality. Two fundamental ca- 
pabilities are needed. The first is the ability to 
describe scenes in terms of object motions and in- 
teractions. The second is the ability to recognize 
important events that occur in the scene, and to 
pick out those that are relevant to the current task. 
These capabilities make it possible to develop a va- 
riety of novel and useful video surveillance 
applications. 

1.1 Video Surveillance and Monitoring 
Scenarios 

Our work is motivated by a several types of video 
surveillance and monitoring scenarios. 

Indoor Surveillance: Indoor surveillance provides 
information about areas such as building lobbies, 
hallways, and offices. Monitoring tasks in lobbies 
and hallways include detection of people deposit- 
ing things (e.g., unattended luggage in an airport 
lounge), removing things (e.g., theft), or loitering. 
Office monitoring tasks typically require informa- 
tion about people's identities: in an office, for 
example, the office owner may do anything at any 

159 



time, but other people should not open desk draw- 
ers or operate the computer unless the owner is 
present. Cleaning staff may come in at night to vac- 
uum and empty trash cans, but should not handle 
objects on the desk. 

Outdoor Surveillance: Outdoor surveillance in- 
cludes tasks such as monitoring a site perimeter for 
intrusion or threats from vehicles (e.g., car bombs). 
In military applications, video surveillance can 
function as a sentry or forward observer, e.g. by 
notifying commanders when enemy soldiers 
emerge from a wooded area or cross a road. 

In order for smart cameras to be practical for real- 
world tasks, the algorithms they use must be ro- 
bust. Current commercial video surveillance 
systems have a high false alarm rate [Ringler and 
Hoover, 1995], which renders them useless for 
most applications. For this reason, our research 
stresses robustness and quantification of detection 
and false alarm rates. Smart camera algorithms 
must also run effectively on low-cost platforms, so 
that they can be implemented in small, low-power 
packages and can be used in large numbers. Study- 
ing algorithms that can run in near real time makes 
it practical to conduct extensive evaluation and 
testing of systems, and may enable worthwhile 
near-term applications as well as contributing to 
long-term research goals. 

1.2 Approach 

The first step in processing a video stream for sur- 
veillance purposes is to identify the important 
objects in the scene. In this paper it is assumed that 
the important objects are those that move indepen- 
dently. Camera parameters are assumed to be fixed. 
This allows the use of simple change detection to 
identify moving objects. Where use of moving 
cameras is necessary, stabilization hardware and 
stabilized moving object detection algorithms can 
be used (e.g. [Burt et al, 1989, Nelson, 1991]. The 
use of criteria other than motion (e.g., salience 
based on shape or color, or more general object 
recognition) is compatible with our approach, but 
these criteria are not used in our current 
applications. 

Our event recognition algorithms are based on 
graph matching. Moving objects in the image are 

tracked over time. Observations of an object in suc- 
cessive video frames are linked to form a directed 
graph (the motion graph). Events are defined in 
terms of predicates on the motion graph. For in- 
stance, the beginning of a chain of successive 
observations of an object is defined to be an EN- 
TER event. Event detection is described in more 
detail below. 

Our approach to video surveillance stresses 2D, 
image-based algorithms and simple, low-level ob- 
ject representations that can be extracted reliably 
from the video sequence. This emphasis yields a 
high level of robustness and low computational 
cost. Object recognition and other detailed analy- 
ses are used only after the system has determined 
that the objects in question are interesting and mer- 
it further investigation. 

1.3 Research Strategy 

The primary technical goal of this research is to de- 
velop general-purpose algorithms for moving 
object detection and event recognition. These algo- 
rithms comprise the Autonomous Video 
Surveillance (AVS) system, a modular framework 
for building video surveillance applications. AVS 
is designed to be updated to incorporate better core 
algorithms or to tune the processing to specific do- 
mains as our research progresses. 

In order to evaluate the AVS core algorithms and 
event recognition and tracking framework, we use 
them to develop applications motivated by the sur- 
veillance scenarios described above. The 
applications are small-scale implementations of fu- 
ture smart camera systems. They are designed for 
long-term operation, and are evaluated by allowing 
them to run for long periods (hours or days) and 
analyzing their output. 

The remainder of this paper is organized as fol- 
lows. The next section discusses related work. 
Section 3 presents the core moving object detection 
and event recognition algorithms, and the mecha- 
nism used to establish the 3D positions of objects. 
Section 4 presents applications that have been built 
using the AVS framework. The final section dis- 
cusses the current state of the system and our 
future plans. 
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2 Related Work 

Our overall approach to video surveillance has 
been influenced by interest in selective attention 
and task-oriented processing [Swain and Strieker, 
1991, Rimey and Brown, 1993, Camus et al., 
1993]. The fundamental problem with current vid- 
eo surveillance technology is that the useful 
information density of the images delivered to a 
human is very low; the vast majority of surveil- 
lance video frames contain no useful information 
at all. The fundamental role of the smart camera 
described above is to reduce the volume of data 
produced by the camera, and increase the value of 
that data. It does this by discarding irrelevant 
frames, and by expressing the information in the 
relevant frames primarily in symbolic form. 

2.1 Moving Object Detection 

Most algorithms for moving object detection using 
fixed cameras work by comparing incoming video 
frames to a reference image, and attributing signifi- 
cant differences either to motion or to noise. The 
algorithms differ in the form of the comparison op- 
erator they use, and in the way in which the 
reference image is maintained. Simple intensity 
differencing followed by thresholding is widely 
used [Jain et al., 1979, Yalamanchili et al., 1982, 
Kelly et al., 1995, Bobick and Davis, 1996, Court- 
ney, 1997] because it is computationally 
inexpensive and works quite well in many indoor 
environments. Some algorithms provide a means of 
adapting the reference image over time, in order to 
track slow changes in lighting conditions and/or 
changes in the environment [Karmann and von 
Brandt, 1990, Makarov, 1996a]. Some also filter 
the image to reduce or remove low spatial frequen- 
cy content, which again makes the detector less 
sensitive to lighting changes [Makarov et al., 
1996b, Roller etal., 1994]. 

Recent work [Pentland, 1996, Kahn et al., 1996] 
has extended the basic change detection paradigm 
by replacing the reference image with a statistical 
model of the background. The comparison operator 
becomes a statistical test that estimates the proba- 
bility that the observed pixel value belongs to the 
background. 

Our baseline change detection algorithm uses 
thresholded absolute differencing, since this works 
well for our indoor surveillance scenarios. For ap- 
plications where lighting change is a problem, we 
use the adaptive reference frame algorithm of Kar- 
mann and von Brandt [1990]. We are also 
experimenting with a probabilistic change detector 
similar to Pfinder [Pentland, 1996. 

Our work assumes fixed cameras. When the cam- 
era is not fixed, simple change detection cannot be 
used because of background motion. One approach 
to this problem is to treat the scene as a collection 
of independently moving objects, and to detect and 
ignore the visual motion due to camera motion 
[e.g. Burt et al., 1989] Other researchers have pro- 
posed ways of detecting features of the optical flow 
that are inconsistent with a hypothesis of self mo- 
tion [Nelson, 1991]. 

In many of our applications moving object detec- 
tion is a prelude to person detection. There has 
been significant recent progress in the development 
of algorithms to locate and track humans. Pfinder 
(cited above) uses a coarse statistical model of hu- 
man body geometry and motion to estimate the 
likelihood that a given pixel is part of a human. 
Several researchers have described methods of 
tracking human body and limb movements [Gavri- 
la and Davis, 1996, Kakadiaris and Metaxas, 1996] 
and locating faces in images [Sung and Poggio, 
1994, Rowley et al., 1996]. Intille and Bobick 
[1995] describe methods of tracking humans 
through episodes of mutual occlusion in a highly 
structured environment. We do not currently make 
use of these techniques in live experiments because 
of their computational cost. However, we expect 
that this type of analysis will eventually be an im- 
portant part of smart camera processing. 

2.2 Event Recognition 

Most work on event recognition has focussed on 
events that consist of a well-defined sequence of 
primitive motions. This class of events can be con- 
verted into spatiotemporal patterns and recognized 
using statistical pattern matching techniques. A 
number of researchers have demonstrated algo- 
rithms for recognizing gestures and sign language 
[e.g., Stamer and Pentland, 1995]. Bobick and 
Davis [1996] describe a method of recognizing ste- 
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Reference Image Video Frame Difference Image Thresholded Image 

Figure 1: Image processing steps for moving object detection. 

reotypical motion patterns corresponding to 
actions such as sitting down, walking, or waving. 

Our approach to event recognition is based on the 
video database indexing work of Courtney [1997], 
which introduced the use of predicates on the mo- 
tion graph to represent events. Motion graphs are 
well suited to representing abstract, generic events 
such as 'depositing an object' or 'coming to rest', 
which are difficult to capture using the pattern- 
based approaches referred to above. On the other 
hand, pattern-based approaches can represent com- 
plex motions such as 'throwing an object' or 
'waving', which would be difficult to express using 
motion graphs. It is likely that both pattern-based 
and abstract event recognition techniques will be 
needed to handle the full range of events that are of 
interest in surveillance applications. 

3 AVS Tracking and Event Recognition 
Algorithms 

This section describes the core technologies that 
provide the video surveillance and monitoring ca- 
pabilities of the AVS system. There are three key 
technologies: moving object detection, visual 
tracking, and event recognition. The moving object 
detection routines determine when one or more ob- 
jects enter a monitored scene, decide which pixels 
in a given video frame correspond to the moving 
objects versus which pixels correspond to the back- 
ground, and form a simple representation of the 
object's image in the video frame. This representa- 
tion is referred to as a motion region, and it exists 
in a single video frame, as distinguished from the 
world objects which exist in the world and give rise 
to the motion regions. 

Visual tracking consists of determining correspon- 
dences between the motion regions over a 
sequence of video frames, and maintaining a single 
representation, or track, for the world object which 
gave rise to the sequence of motion regions in the 
sequence of frames. Finally, event recognition is a 
means of analyzing the collection of tracks in order 
to identify events of interest involving the world 
objects represented by the tracks. 

3.1 Moving Object Detection 

The moving object detection technology we em- 
ploy is a 2D change detection technique similar to 
that described in Jain et al. [1979] and Yalaman- 
chih et al [1982]. Prior to activation of the 
monitoring system, an image of the background, 
i.e., an image of the scene which contains no mov- 
ing or otherwise interesting objects, is captured to 
serve as the reference image. When the system is in 
operation, the absolute difference of the current 
video frame from the reference image is computed 
to produce a difference image. The difference im- 
age is then thresholded at an appropriate value to 
obtain a binary image in which the "off pixels rep- 
resent background pixels, and the "on" pixels 
represent "moving object" pixels. The four-con- 
nected components of moving object pixels in the 
thresholded image are the motion regions (see Fig- 
ure 1). 

Simple application of the object detection proce- 
dure oudined above results in a number of errors, 
largely due to the limitations of thresholding. If the 
threshold used is too low, camera noise and shad- 
ows will produce spurious objects; whereas if the 
threshold is too high, some portions of the objects 
in the scene will fail to be separated from the back- 
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ground, resulting in breakup, in which a single 
world object gives rise to several motion regions 
within a single frame. Our general approach is to 
allow breakup, but use grouping heuristics to 
merge multiple connected components into a single 
motion region and maintain a one-to-one corre- 
spondence between motion regions and world 
objects within each frame. 

One grouping technique we employ is 2D morpho- 
logical dilation of the motion regions. This enables 
the system to merge connected components sepa- 
rated by a few pixels, but using this technique to 
span large gaps results in a severe performance 
degradation. Moreover, dilation in the image space 
may result in incorrectly merging distant objects 
which are nearby in the image (a few pixels), but 
are in fact separated by a large distance in the 
world (a few feet). 

If 3D information is available, the connected com- 
ponent grouping algorithm makes use of an 
estimate of the size (in world coordinates) of the 
objects in the image. The bounding boxes of the 
connected components are expanded vertically and 
horizontally by a distance measured in feet (rather 
than pixels), and connected components with over- 
lapping bounding boxes are merged into a single 
motion region. The technique for estimating the 
size of the objects in the image is described in sec- 
tion 3.4 below. 

3.2 TVacking 

The function of the AVS tracking routine is to es- 
tablish correspondences between the motion 
regions in the current frame and those in the previ- 
ous frame. We use the technique of Courtney 
[1997], which proceeds as follows. First assume 
that we have computed 2D velocity estimates for 
the motion regions in the previous frame. These ve- 
locity estimates, together with the locations of the 
centroids in the previous frame, are used to project 
the locations of the centroids of the motion regions 
into the current frame. Then, a mutual nearest- 
neighbor criterion is used to establish 
correspondences. 

Let P be the set of motion region centroid loca- 
tions in the previous frame, with p- one such 
location. Let p'jhe the projected location of Pj in 

the current frame, and let be the set of all such 
projected locations in the current frame. Let C be 
the set of motion region centroid locations in the 
current frame. If the distance between p'- and 
Cy e C is the smallest for all elements of C, and 
this distance is also the smallest of the distances 
between c^ and all elements of P' (i.e., p'- and c- 
are mutual nearest neighbors), then establish a cor- 
respondence between p^ and c- by creating a 
bidirectional strong link between them. Use the dif- 
ference in time and space between p- and c- to 
determine a velocity estimate for c-, expressed in 
pixels per second. If there is an existing track con- 
taining p ■, add Cj- to it. Otherwise, establish a new 
track, and add both p- and c- to it. 

The strong links form the basis of the tracks with a 
high-confidence of their correctness. Video objects 
which do not have mutual nearest neighbors in the 
adjacent frame may fail to form correspondences 
because the underlying world object is involved in 
an event (e.g., enter, exit, deposit, remove). In or- 
der to assist in the identification of these events, 
objects without strong links are given unidirection- 
al weak links to the their (non-mutual) nearest 
neighbors. The weak links represent potential am- 
biguity in the tracking process.The motion regions 
in all of the frames, together with their strong and 
weak links, form a motion graph. 

Figure 2 depicts a sample motion graph. In the fig- 
ure, each frame is one-dimensional, and is 
represented by a vertical line (FO - F18). Circles 
represent objects in the scene, the dark arrows rep- 
resent strong links, and the gray arrows represent 
weak links. An object enters the scene in frame Fl, 
and then moves through the scene until frame F4, 
where it deposits a second object. The first object 
continues to move through the scene, and exits at 
frame F6. The deposited object remains stationary. 
At frame F8 another object enters the scene, tem- 
porarily occludes the stationary object at frame 
FIO (or is occluded by it), and then proceeds to 
move past the stationary object. This second mov- 
ing object reverses directions around frames F13 
and F14, returns to remove the stationary object in 
frame F16, and finally exits in frame F17. An addi- 
tional object enters in frame F5 and exits in frame 
F8 without interacting with any other object. 

As indicated by the striped fill patterns in Figure 2, 
the correct correspondences for the tracks are am- 

163 



ENTER ENTER EXIT 

FO F4     F5     F6V F7     F8^ F9    F10   F11   F12   F13   F14   F15   F16   F17  F18 

EXIT ENTER 
Figure 2: Event detection in the motion graph. 

biguous after object interactions such as the 
occlusion in frame FIO. The AVS system resolves 
this ambiguity where possible by preferring to 
match moving objects with moving objects, and 
stationary objects with stationary objects. The dis- 
tinction between moving and stationary tracks is 
computed using thresholds on the velocity esti- 
mates, and hysteresis for stabilizing transitions 
between moving and stationary. 

Following an occlusion (which may last for several 
frames) the frames immediately before and after 
the occlusion are compared (e.g., frames F9 and 
Fll in Figure 2). The AVS system examines each 
stationary object in the pre-occlusion frame, and 
searches for its correspondent in the post-occlusion 
frame (which should be exactly where it was be- 
fore, since the object is stationary). This procedure 
resolves a large portion of the tracking ambiguities. 
General resolution of ambiguities resulting from 
multiple moving objects in the scene is a topic for 
further research. The AVS system may benefit 
from inclusion of a "closed world tracking" facility 
such as that described by Intille and Bobick 
[1995a, 1995b]. 

3.3 Event Recognition 

Certain features of tracks and pairs of tracks corre- 
spond to events. For example, the beginning of a 
track corresponds to an ENTER event, and the end 
corresponds to an EXIT event. In an on-line event 
detection system, it is preferable to detect the event 

as near in time as possible to the actual occurrence 
of the event. The previous system which used mo- 
tion graphs for event detection [Courtney, 1997] 
operated in a batch mode, and required multiple 
passes over the motion graph, precluding on-line 
operation. The AVS system detects events in a sin- 
gle pass over the motion graph, as the graph is 
created. However, in order to reduce errors due to 
noise, the AVS system introduces a slight delay of 
n frame times (n=3 in the current implementation) 
before reporting certain events. For example, in 
Figure 2, an enter event occurs on frame Fl. The 
AVS system requires the track to be maintained for 
n frames before reporting the enter event. If the 
track not maintained for the required number of 
frames, it is ignored, and the enter event is not re- 
ported, e.g., if n > 4, the object in Figure 2 which 
enters in frame F5 and exits in frame F8 will not 
generate any events. 

A track that splits into two tracks, one of which is 
moving, and the other of which is stationary, corte- 
sponds to a DEPOSIT event. If a moving track 
intersects a stationary track, and then continues to 
move, but the stationary track ends at the intersec- 
tion, this corresponds to a REMOVE event. The 
remove event can be generated as soon as the re- 
mover disoccludes the location of the stationary 
object which was removed, and the system can de- 
termine that the stationary object is no longer at 
that location. 
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Figure 3: Establishing the image to map coordinate transformation 

In a manner similar to the occlusion situation de- 
scribed above in section 3.2, the deposit event also 
gives rise to ambiguity as to which object is the de- 
positor, and which is the depositee. For example, it 
may have been that the object which entered at 
frame Fl of Figure 2 stopped at frame F4 and de- 
posited a moving object, and it is the deposited 
object which then proceeded to exit the scene at 
F6. Again, the AVS system relies on a moving vs. 
stationary distinction to resolve the ambiguity, and 
insists that the depositee remain stationary after a 
deposit event. The AVS system requires both the 
depositor and the depositee tracks to extend for n 
frames past the point at which the tracks separate 
(e.g., past frame F5 in Figure 2), and that the de- 
posited object remain stationary; otherwise no 
deposit event is generated. 

Also detected (but not illustrated in Figure 2), are 
REST events (when a moving object comes to a 
stop), and MOVE events (when a RESTing object 
begins to move again). Finally, one further event 
that is detected is the LIGHTSOUT event, which 
occurs whenever a large change occurs over the en- 
tire image. The motion graph need not be consulted 
to detect this event. 

3.4 Image to World Mapping 

In order to locate objects seen in the image with re- 
spect to a map, it is necessary to establish a 
mapping between image and map coordinates. This 
mapping is established in the AVS system by hav- 
ing a user draw quadrilaterals on the horizontal 

surfaces visible in an image, and the corresponding 
quadrilaterals on a map, as shown in Figure 3. A 
warp transformation from image to map coordi- 
nates is constructed using the quadrilateral 
coordinates. 

Once the transformations are established, the sys- 
tem can estimate the location of an object (as in 
Flinchbaugh and Bannon [1994]) by assuming that 
all objects rest on a horizontal surface. When an 
object is detected in the scene, the midpoint of the 
lowest side of the bounding box is used as the im- 
age point to project into the map window using the 
quadrilateral warp transformation [Wolberg, 1990]. 

4 Applications 

The AVS core algorithms described in section 3 
have been used as the basis for several video sur- 
veillance applications. Section 4 describes three 
applications that we have implemented: situational 
awareness, best-view selection for activity logging, 
and environment learning. 

4.1 Situational Awareness 

The goal of the situational awareness application is 
to produce a real-time map-based display of the lo- 
cations of people, objects and events in a 
monitored region, and to allow a user to specify 
alarm conditions interactively. Alarm conditions 
may be based on the locations of people and ob- 
jects in the scene, the types of objects in the scene, 
the events in which the people and objects are in- 
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Name   : JDeposit Briefcase fTable A| 

Events:   J enter J eKit J  loiter W deposit J remove J move J rest J lightsout J lightson 

Objects:  J parson _( box If briefcase J notebook J monitor J object J unknown 

Days of week: m Konday W Tuesday W Wednesday W Thursday W Friday J Saturday J Sunday 

lima oi day: from 5:00 pm -' until 7:00 am -« 

Regions:  J Table3 J Table_C P" Table.A 

Duration: jS 

Actions:  J beep J popup J log J plot W voice 

cancel I OK 

Figure 5: User interface for 

volved, and the times at which the events occur. 
Furthermore, the user can specify the action to take 
when an alarm is triggered, e.g., to generate an au- 
dio alarm or write a log file. For example, the user 
should be able to specify that an audio alarm 
should be triggered if a person deposits a briefcase 
on a given table between 5:00pm and 7:00 am on a 
weeknight. 

The architecture of the AVS situational awareness 
system is depicted in Figure 4. The system consists 
of one or more smart cameras communicating with 
a Video Surveillance Shell (VSS). Each camera has 
associated with it an independent AVS core engine 
that performs the processing described in section 3. 
That is, the engine finds and tracks moving objects 
in the scene, maps their image locations to world 
coordinates, and recognizes events involving the 
objects. Each core engine emits a stream of loca- 
tion and event reports to the VSS, which filters the 
incoming event streams for user-specified alarm 
conditions and takes the appropriate actions. 

Smart Camera 1 

Smart Camera 2 

Smart Camera 3 

Map 
Disp ay 

Video 
Surveillance 

/ 

\ 

Shell 
(VSS) 

l-UJ     r 
monitors 

41 
audio output 

event filtering 

\ 
Object 

Analysis 
Module 
(0AM) iog files 

object recognition 

Figure 4: The situational awareness system 

specifying a monitor in AVS 

In order to determine the identities of objects (e.g., 
briefcase, notebook), the situational awareness sys- 
tem communicates with one or more object 
analysis modules (OAMs). The core engines cap- 
ture snapshots of interesting objects in the scenes, 
and forward the snapshots to the 0AM, along with 
the IDs of the tracks containing the objects. The 
OAM then processes the snapshot in order to deter- 
mine the type of object. The OAM processing and 
the AVS core engine computations are asynchro- 
nous, so the core engine may have processed 
several more frames by time the OAM completes 
its analysis. Once the analysis is complete, the 
OAM sends the results (an object type label) and 
the track ID back to the core engine. The core en- 
gine uses the track ID to associate the label with 
the correct object in the current frame (assuming 
the object has remained in the scene and been suc- 
cessfully tracked). 

The VSS provides a map display of the monitored 
area, with the locations of the objects in the scene 
reported as icons on the map. The VSS also allows 
the user to specify alarm regions and conditions. 
Alarm regions are specified by drawing them on 
the map using a mouse, and naming them as de- 
sired. The user can then specify the conditions and 
actions for alarms by creating one or more moni- 
tors. Figure 5 depicts the monitor creation dialog 
box. The user names the monitor and uses the 
mouse to select check boxes associated with the 
conditions that will trigger the monitor. The user 
selects the type of event, the type of object in- 
volved in the event, the day of week and time of 
day of the event, where the event occurs, and what 
to do when the alarm condition occurs. The moni- 
tor specified in Figure 5 specifies that a voice alarm 
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Figure 6: Tracking an object in the scene on the map 

will be sounded when a briefcase is deposited on 
Table_A between 5:00pm and 7:00am on a week- 
night. The voice alarms are customized to the event 
and object type, so that when this alarms is trig- 
gered, the system will announce "deposit box" via 
its audio output. Figure 6 shows a person about to 
trigger this alarm. 

5 Best-View Selection for Activity Logging 

In many video surveillance applications the goal of 
surveillance is not to detect events in real time and 
generate alarms, but rather to construct a log or au- 
dit trail of all of the activity that takes place in the 
camera's field of view. This log is examined by in- 
vestigators after a security incident (e.g., a theft or 
terrorist attack), and is used to identify possible 
suspects or witnesses. 

In order to gain experience with this type of appli- 
cation, we have used the tracking and event 
detection capabilities described in section 3 to con- 
struct a program that monitors and records the 
movements of humans in its field of view. For ev- 
ery person that it sees, it creates a log file that 
summarizes important information about the per- 
son, including a snapshot taken when the person 
was close to the camera and (if possible) facing it. 
The log files are made available to authorized users 
via the Worid-Wide Web. 

5.1 Architecture 

The application makes use of the AVS core algo- 
rithms to detect and track people. Upon detection 
of a track corresponding to a person in the input, 
the tracker associates a data record with the track. 
The data record contains a summary of information 
about the person, including a snapshot extracted 
from the current video image. As the person is 
tracked through the scene, the tracker examines 
each image of that person that it receives. If the 
new image is a better view of the person than the 
previously saved snapshot, the snapshot is replaced 
with the new view. When the person leaves the 
scene, the data record is saved to a file. 

Each log entry file records the time when the per- 
son entered the scene and a list of coordinate pairs 
showing their position in each video frame. Each 
log entry file also contains the snapshot that was 
stored in the track record for the person when they 
exited the scene. Because of the way snapshots are 
maintained, the final snapshot is the best view of 
the person that the system had during tracking. Fi- 
nally, the log entry file contains a pointer to the 
reference image that was in effect when the snap- 
shot was taken. This information forms an 
extremely concise description of the person's 
movements and appearance while they were in the 
scene. 

Selecting the best view: The system uses simple 
heuristics to decide when the current view of a per- 
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monitors the hallway and printer alcove. 

son is better than the previously saved view. First, 
the new view is considered better if the subject is 
moving toward the camera in the current frame, 
and was moving away in the previously saved 
view. This causes the system to favor views in 
which the subject's face is visible. If this rule does 
not apply, the new view is considered better if the 
subject appears to be larger (subtends a larger visu- 
al angle). This causes the system to prefer views in 
which the subject is close to the camera. Other pos- 
sible view selection heuristics are discussed in 
Kelly etal. [1995]. 

Handling background change: The test environ- 
ment experiences significant lighting variation 
during the day due to window lighting, opening 
and closing doors etcetera. In addition, during the 
day people frequently deposit, remove, or reposi- 
tion objects in the scene. This creates permanent 
regions of difference between the scene and the 
reference image. Without some mechanism for up- 
dating the reference image, the system would 
continue to track these difference regions as ob- 
jects. Therefore, the tracker was instructed to 
discard the current tracks and grab a new reference 
image whenever it determined that all objects in 
the scene were stationary, and that no object had 
moved for several seconds. 

User Interface 

Log files are saved in a directory tree associated 
with the camera that produced the data. Along with 
the log files, the monitoring application creates 
HTML documents that allow a web browser to 
navigate the directory tree and access the log en- 

tries. Log entries are displayed by a Java applet that 
displays the best snapshot of the person in the con- 
text of the reference image, and overlays the 
person's path through the scene on the image. The 
applet runs as an independent thread that checks 
periodically to see if any new log entries have been 
created. Thus if the user is browsing the entries for 
the current day, new entries become available to 
the browser as soon as they occur. 

5.2 Experiments 

The system described above was tested in a hall- 
way of our laboratory. Figure 7 shows the hallway 
floor plan. The camera is mounted in the hallway 
ceihng and looks west toward a window-lit corri- 
dor that runs around the perimeter of the building. 
The hallway experiences heavy traffic, because it 
contains a laser printer, a copier, and the office wa- 
ter cooler. The hallway passes under the camera 
and continues to the east out of the field of view. 

The system was allowed to run for a total of 118 
hours over a period of a week. Most laboratory per- 
sonnel were unaware that .a test was in progress, so 
the system was exposed to normal daily activity. 
During the test the system recorded a total of 965 
log entries. Figure 8 shows the browser display for 
a typical log entry. In this sequence the subject en- 
tered the scene from the cross corridor at rear and 
came down the hallway on his way to the copier, 
out of view at lower right. His path is shown as a 
line on the floor, which appears red when viewed 
with a color browser. 
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Figure 8: Log entry browser interface. The line drawn on the floor in the upper image shows the sub- 
ject's path from entry to exit. The list entry selected at left is the time at which the image was talcen. 

Figure 9 demonstrates the effect of the system's 
preference for frontal views. In this sequence the 
subject entered at the bottom of the scene and 
walked away from the camera. He turned around 

and took a few steps back toward the camera, then 
turned away again and continued down the hall- 
way, eventually exiting via the first door on the left. 
Although the subject's back was toward the camera 
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most of the time, the view preference heuristics se- 
lected a view taken while he was facing the 
camera. 

Performance Evaluation 

In order to assess the performance of the monitor- 
ing application, all of the log entries for the 
experiment period were examined and scored by 
one of the authors. Entries were classified as 
follows: 

Face/Non-face: Entries containing a view of a sub- 
ject's head were classified as FACES if the 
subject's face (specifically, subject's nose) was vis- 
ible, otherwise they were classified as 
NONFACES. 

False Alarm: Images which contained no human 
and appeared to be caused by noise were classified 
as FALSE ALARMS. 

Bad Path: Entries in which the floor trace is clear- 
ly corrupt in some way were classified as BAD 
PATHS. 

Bad Choice: In some cases it is clear from the 
floor trace that the system made a poor choice of 
which image of a person to save in the log entry. 
These entries were classified as BAD CHOICE. 

False Negative: In some cases it is clear that the 
system failed to take a usable picture of a person 
who was in the scene. These were classified as 
FALSE NEGATIVES. About half of the false neg- 
atives occurred when the system selected a view in 
which the subject's head is not visible, typically 
because they were in the act of passing through a 
doorway. The others occurred when the system be- 
came confused by occlusion, and incorrectly 
grouped two people into a single log entry. Note 
that we do not have ground truth for the observa- 
tion period, so there may have been other detection 
failures that were not detected. However, monitor- 
ing by the authors during the daytime revealed no 
failures of this type. We believe that the FALSE 
NEGATIVE count is a good estimate of the num- 
ber of detection failures. 

Table 1 shows the classification counts for the test 
period. Assuming that the false negative count is 
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Figure 9: Log entry showing the effect of the view^selection heuristic preference for frontal views. The 
subject was walking away from the camera for most of this sequence, but the system was able to cap- 

ture a view while he was facing the camera. 
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Table 1: Long-term monitoring system 
performance 

log entry type Number of 
entries 

FACE 493 

NONFACE 380 

FALSE ALARM 62 

FALSE NEGATIVE 44 

BAD PATH 112 

BAD CHOICE 29 

TOTAL ENTRIES 965 

valid, the system achieved a detection rate of 
95.2% with a false alarm rate of 6.4%. The record- 
ed path of the subject was correct (or at least 
plausible) in 88.4% of entries, and the system 
made conspicuously bad choices of what image to 
save in only 3% of entries. 

Of the valid images of humans, 56.6% showed the 
subject's face, vs. 43.4% that did not. Note that in 
most cases where the image does not show the 
face, the subject entered the scene from below the 
camera and walked away from it, so there was nev- 
er an opportunity for a frontal view. Earlier 
experiments without the frontal view heuristic cap- 
tured FACE and NONFACE images with roughly 
equal frequency, so the it is clear that the heuristic 
helps. 

At the end of the experiment, the camera directory 

occupied 34.5 megabytes, or about seven mega- 
bytes per day of monitoring. Almost all of the 
storage consists of image files, so presumably com- 
pression with an image-specific algorithm would 
produce substantial savings. Use of an MPEG-like 
algorithm on the reference images would be ex- 
tremely effective, since the reference images are all 
very nearly identical, and lossless compression 
would not be necessary. 

6 Learning Environment Structure 

The AVS tracking and event recognition software 
uses corresponding rectangles in image and world 
coordinates to compute an approximate image-to- 
world mapping. These rectangles are created by a 
human when the camera system is set up. In many 
situations it would be preferable to eliminate even 
this minimal calibration step, in order to reduce 
setup cost to a minimum. 

We have developed a system that leams the image- 
to-world mapping by watching humans move 
around in the scene. Changes in the apparent size 
and position of humans in the image provide infor- 
mation about the existence and depth of world 
surfaces. Appearance and disappearance of hu- 
mans provides information about occlusion 
boundaries and locations where humans can enter 
or exit the scene. 

6.1 Method 

The computation assumes weak perspective pro- 
jection, i.e. that objects in the scene are first 
projected orthographically to a plane passing 
through a reference point on the object and parallel 
to the image plane, and then projected to the image 
plane using true perspective. It is also assumed that 
humans are usually in contact with a world surface 
that supports them, that the camera is in an upright 
position (has roll angle zero), and that the internal 
calibration parameters of the camera are known. 

More precisely, assume front projection with the 
camera focal point at the origin and looking down 
the Z axis of a left-handed coordinate system. Sup- 
pose the camera observes a person in the world 
with head at world point H = (Xfj, Yfj, Z^) and feet 

at world point F. Let F be the reference point for 
weak perspective projection. Then the apparent 
height of the person in the image is given by 

yn-yp 
f (YH-YF) = f\H-F\cosQ 

where 0 is the camera tilt angle relative to the lo- 
cal vertical direction. Solving for depth gives 

r\H-F\^ Z^ = /cosG 
yh-yf 

The person's height |// - F\ has a known probabili- 
ty distribution, and the tilt angle term cos 6 can be 
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Figure 10: Apparent height data collected in the 
experiment. Cell intensity is the median of the 
image heights of observed humans when their 
feet were imaged in the cell. Dark grey regions 

contain no data. 

estimated from the appearance of the person, or 
simply ignored for the shallow tilt angles typical of 
security camera installations. Given enough obser- 
vations, the equation can be used to estimate the 
distance from the camera to points in the world 
where people commonly walk. 

The idea of recovering structure from observed siz- 
es of humans is conceptually related to shape- 
from-texture work in which the texture is made up 
of discrete elements that are uniform in size and 
shape [Aloimonos and Swain, 1988, Blostein and 
Ahuja, 1989]. In this case the texels (people) do not 
lie in the imaged surface, and their size in the 
worid is known. This makes depth recovery sub- 
stantially easier than it is in general shape-from- 
texture work. 

6.2 Mapping the Environment 

The equation derived above has been used in a pro- 
gram that learns the structure of its environment by 
watching humans move around in it. The program 
makes use of the AVS core algorithms to detect and 
track people. Over time, it builds up an image in 
which pixel value represents depth to the nearest 
world surface in the corresponding direction. 

The camera image is partitioned into a grid of 
16x16-pixel squares, each of which is associated 
with a histogram. Whenever the program detects a 
person in the scene, it locates the histogram associ- 

ated with the place where they are standing, i.e., 
the one associated with the square containing the 
bottom center of the motion region for the person. 
The apparent height of the person is recorded in 
that histogram. Over time, the histogram for each 
location in the image builds up a sample distribu- 
tion for the apparent (image) height of humans at 
that location. This can be used with the equation 
derived previously to estimate the depth at that 
point. 

The program was allowed to operate for twenty- 
four hours during a typical working day. Input was 
provided by the hallway camera used in section 5. 
Figure 10 shows the raw output of the program. In 
the figure pixel intensity corresponds to the median 
observed height for the corresponding location. 
Dark grey pixels are those for which no observa- 
tions were recorded. The program was instructed to 
discard observations in which the motion region 
for the person touched the upper or lower image 
border, since the apparent height is invalid in that 
condition. For this reason, there are no counts for 
the end of the hallway. 

The height data of Figure 10 were converted to 
depths using the equation derived above. Vertical 
pixel pitch was taken from the camera technical 
manual, and the nominal lens focal length was used 
to approximate the true focal length. Histogram 
cells for which fewer than ten total observations 
were recorded were discarded. 

Figure 11 shows the final depth map superimposed 
on the image. The range estimates cover image re- 
gions corresponding to the floor, and vary 
smoothly over most of the image. Anomalously 
large values occur in several locations at right cen- 
ter below the small printer and workstation. These 
errors occur because the office chair is frequently 
moved around in this region, and the system some- 
times mistakes it for a person. Since it is 
significantly smaller than a real person, the system 
interprets it as evidence that the floor supporting it 
is further away than it actually is. A similar prob- 
lem produces the anomalously high value of 8.9 
meters at left center, at the base of the doorway. It 
frequently happens that as a person exits the hall 
via the doorway, their head goes out of sight while 
their body and feet are still visible. The system 
records the height of the visible portion of the per- 
son in the cell at the base of the doorway. Since this 
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Figure 11: Depth map recovered from the height data of figure 10. Depths are in meters. 

Figure 12: Ground truth range values for comparison with figure 11. 

value is smaller than the true height of the person, 
that cell appears to be further away than it really is. 

In order to assess the accuracy of the recovered 
depth map, we measured the distance from the 
camera to seven points on the floor. The seven 
points and their distances from the camera are 

shown superimposed on the image in figure 12. Ta- 
ble 2 shows the estimated and actual ranges to the 
test points, as well as the error in meters. The aver- 
age absolute error for the seven test points is 26cm, 
which is less than 5% of the average distance. 
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Table 2: Estimated vs. Actual Range 
(meters) to ground truth points 

point 
estimate 
(meters) 

actual 
(meters) 

error 
(meters) 

A 4.70 4.80 -0.10 

B 5.00 5.40 -0.40 

C 5.90 5.89 0.01 

D 6.10 6.45 -0.35 

E 6.80 7.26 -0.46 

F 7.70 8.18 -0.48 

G 9.80 9.85 -0.05 

7 Conclusion 

The goal of our research is to develop algorithms 
and systems that can be used to describe a video 
sequence in terms of moving objects and events. 
These algorithms will enable a generation of smart 
cameras that deliver information about scenes rath- 
er than raw images. We have created a set of core 
algorithms comprising the Autonomous Video Sur- 
veillance (AVS) system, including routines for 
moving object detection, tracking, and abstract 
event recognition. The AVS system has been used 
to create several surveillance applications, includ- 
ing a video surveillance shell, a program that 
creates concise logs of activity in the field of view, 
and a program that learns scene structure by watch- 
ing humans moving around in the environment. 

Our future work on AVS will address weaknesses 
in the current system, and will add new capabilities 
that support more complex applications. Work is 
planned in three main areas: 

Robust Change Detection and TVacking: Experi- 
ments have shown that errors in the moving object 
detection computation are the most common cause 
of errors in our applications. This is particularly a 
problem in outdoor environments. We plan to de- 
velop new change detection algorithms based on 
dynamic background models that capture the way 
the background changes over time. We will also 
exploit contextual information to predict the ex- 

pected size and appearance of moving objects in 
the scene. 

Improved Event Recognition: We will extend our 
motion-graph-based event recognition algorithms 
to a broader range of events, and will develop 
methods of specifying and recognizing compound 
events and event sequences. 

Applications: We will extend the existing video 
surveillance shell to make use of authentication 
sensors, and to distinguish between authorized and 
unauthorized individuals. We will continue to use 
AVS technology to develop applications that ad- 
dress military and other government video 
surveillance needs. 
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Abstract 

The need for robust self-contained and low-latency 
vision systems is growing: high speed visual servo- 
ing and vision-based human computer interface. 
Conventional vision systems can hardly meet this 
need because 1) the latency is incurred in a data 
transfer and computational bottlenecks, and 2) 
there is no top-down feedback to adapt sensor per- 
formance for improved robustness. In this paper we 
present a tracking computational sensor — a VLSI 
implementation of a sensory attention. The track- 
ing sensor focuses attention on a salient feature in 
its receptive field and maintains this attention in the 
world coordinates. Using both low-latency mas- 
sive parallel processing and top-down sensory 
adaptation, the sensor reliably tracks features of 
interest while it suppresses other irrelevant features 
that may interfere with the task at hand. 

1. Introduction 

The computational sensor paradigm [Kanade and 
Bajcsy, 1993] has the potential to greatly reduce 
latency and provide top-down sensory adaptation 
to vision systems. By integrating sensing and pro- 
cessing on a VLSI chip, both transfer and computa- 
tional bottlenecks can be alleviated; on-chip 
routing provides high throughput transfer, while an 
on-chip processor could implement massively-par- 
allel fine-grain computation, thus providing high 

1. This research has been sponsored by Office of Naval 
research (ONR) under Contract N00014-95-1-0591. The 
views and conclusions contained in this document are those of 
the authors and should not be interpreted as representing the 
official policies, either expressed or implied, of ONR or the 
U.S. Government. 

processing capacity which readily scales up with 
the image size. In addition, the tight coupling 
between processor and sensor allows for efficient 
top-down feedback that can control and adjust sen- 
sor for further acquisition based on the preliminary 
results of the processing. Our recent work has been 
concerned with efficient implementation of global 
operations over a large group of image data using 
the computational sensor paradigm [Brajovic and 
Kanade, 1994]. We have formulated two mecha- 
nisms for implementing global operations in com- 
putational sensors: (1) intensity-to-time 
processing paradigm [Brajovic and Kanade, 1996], 
and (2) sensory attention presented in this paper. 

2. Approach 

The sensory attention is based on the premise that 
salient features within the retinal image represent 
important global features of the entire image. By 
selecting a small region of interest around the 
salient feature for subsequent processing, the sen- 
sory attention eliminates extraneous information 
and allows the processor to handle small amounts 
of data at a time. We have implemented sensory 
attention by fabricating and testing tracking com- 
putational sensor. The tracking computational sen- 
sor optically receives a saliency map and 
continuously selects and tracks the peaks in it. The 
location and intensity of the selected peaks is 
reported on few output pins with low latency. 
These quantities are also used internally in a top- 
down fashion to aid tracking of the attended loca- 
tion. The chip is a 28 x 28 array of 60|J. x 60|a. cells, 
and is fabricated on a 2.2mm x 2.2mm die. 

The sensory attention follows the model of visual 
attention in brains. This analogy is attractive for 
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two reasons. First, the main argument that has been 
used to explain the need for selective visual atten- 
tion in brains is that there exist some kind of pro- 
cessing and communication limitation in the visual 
system. So it does in machines. Attention "fun- 
nels" only relevant information and protects the 
limited communication and processing resources 
from the information overload. Second, it has been 
shown that the visual attention improves perfor- 
mance, and is needed for maintaining coherent 
behavior while interacting with the environment 
(i.e., attention-for-action) [Allport, 1989]. Unlike 
eye movement (i.e., overt shifts), the attention 
shifts (i.e., covert shifts) do not require any motor 
action, but occur internally on a fixed retinal 
image. For this reason, attention shifts are faster 
and play an important role in low-latency vision 
systems. 

It is interesting to note that foveating computa- 
tional sensors [Kanade and Bajcsy, 1993] try to 
emulate this kind of data compression. For exam- 
ple. Van der Spiegel's log-polar sensor samples 
images within fovea with high acuity, while main- 
taining sparse representation at the periphery. This 
sensor simulates overt shifts, since it requires 
motor action for foveating. Kosonocky's foveating 
sensor allows programmable fovea within the reti- 
nal image; therefore, it eliminates the need for 
mechanical action and simulates covert shifts. 
Another related solution is random access to the 
image data. For example, Laval's MAR sensor 
attends to, and reads only, a small local portion of 
the retinal image, the part that is necessary for the 
local convolution performed in the global off-chip 
processor. However, these computational sensors 
act as special cameras and the mechanism which 
guides the location of the attention is missing. 

To apply attention selection in machines, several 
issues must be solved: (1) the problem of selecting 
an "interesting" location, (2) the problem of shift- 
ing to another location, and (3) the problem of 
transferring local data for further processing. In a 
very influential paper [Koch and Ullman, 1987], 
Koch and Ullman address these issues. The selec- 
tion process utilizes a saliency map that encodes 
conspicuousness or the level of interest throughout 
the retinal image. The saliency map can be derived 
from image features, including: intensity, color, 
spatial and temporal derivatives, motion, and orien- 
tation. For selecting a location of the attention 

within the saliency map, winner-take-all (WTA) 
mechanism has been suggested. The WTA is not 
responsible for information processing; rather it 
determines only which area of the retinal image 
should be relayed to the global processor for fur- 
ther inspection. 

The problem of shifting to another location is 
somewhat more challenging. It is observed in 
humans that interesting visual stimulation initially 
(i.e., during the first 100ms) captures the attention; 
later (i.e., after 300ms) it has inhibitory effects 
which can last up to 1.5 seconds [Milanese, 1993]. 
The inhibitory effect prevents the subject from 
returning to previously visited locations. The inhi- 
bition is "stored" in environmental coordinates 
rather than in image coordinates; therefore, reliable 
operation is maintained even in the presence of 
ocular or object movement. The attention shifts can 
be initiated on a voluntary basis by telling the 
observer the location of a target, or they can be 
automatic caused by the onset of a visual stimulus. 
For shifting to another location, Koch and Ull- 
man's model allows the saliency of the currently 
attended location to decay, even if the visual stim- 
uli creating the saliency remain present. This will 
release the WTA mechanism and allow it to con- 
verge to another location. Either a local or central 
inhibition mechanism for initiating decay is possi- 
ble. The local mechanism causes the saliency to 
decay some time after the WTA has converged to a 
particular location. In the central mechanism, once 
the attended portion of the retinal image is relayed 
to the central processor, a signal, which inhibits the 
conspicuousness of the currently attended location, 
is sent back. The local inhibition mechanism mim- 
ics the automatic attention shift, while the central 
mechanism can initiate voluntary attention shifts. 

Recently, Morris et al. [Morris and DeWeerth, 
1996] reported an analog VLSI circuit implemen- 
tation of covert attention shifts as suggested by the 
Koch and Ullman model. A one-dimensional 19 
cell circuit implements: l)saliency map normaliza- 
tion, 2)WTA location selection with preference for 
spatial proximity shifts, 3)inhibition of return con- 
trol and 4) position detection for producing the 
location of attention as the output. Depending on 
the biasing condition, the circuit is able to roam 
between the peaks in the stationary saliency map. 

In the attention-for-action model, Allport sug- 
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gested that attention goes beyond protecting the 
limited processing resources during complex 
object recognition: attention is needed to ensure 
behavioral coherence [Allport, 1989]. Since visual 
perception is the means for allowing a subject to 
interact with the environment (e.g., manipulate, 
avoid, etc.), it must produce actions consistent with 
the subject's goals. Selective processing is neces- 
sary in order to isolate the information that defines 
parameters for the appropriate action. For example, 
to catch a moving object, among many other mov- 
ing and stationary objects, the information specific 
only to that object determines the action. Informa- 
tion about other objects in the visual field must be 
kept from interfering with the goal of catching the 
target object, even though other objects may influ- 
ence how the target object is caught. In other 
words, attention aids the target goal by masking the 
irrelevant information's interference, but allows the 
action to be modified or diverted if new, important 
events occur. 

The attention-for-action model is in close agree- 
ment with our goal of producing reliable low- 
latency computational sensors which provide use- 
ful information for the coherent interaction with 
the environment. It is not hard to imagine that if the 
attention is allowed to arbitrarily roam from one 
location to another, as suggested by Koch and Ull- 
man's model and implemented in [Morris and 
DeWeerth, 1996], it may take a long time before 
the global processor encounters the relevant infor- 
mation for an appropriate action. We need more 
control over attention shifts, possibly by employing 
the central inhibition mechanism in combination 
with the voluntary focus of attention directed 
toward desired goals. For robust operation, such 
shifts must maintain the location of attention in the 
presence of ocular or object motion [Milanese, 
1993]. 

3. Implementation 

In the prototype implementation of the sensory 
attention proposed by this work, our concern is not 
how to compute the saliency map, but rather how 
to quickly and reliably locate and maintain an 
interesting location in the saliency map. We call 
this embodiment of the sensory attention tracking 
computational sensor because, when the saliency 
map is  a natural  image —the trivial  saliency 

map — the features that attract attention are bright 
spots in the environment. The tracking computa- 
tional sensor selects and tracks those spots while 
ignoring the background. 

3.1. Location Selection 

An image representing a saliency map is focused 
onto the array of photo detectors: photodiodes or 
photo transistors. The generated photo currents are 
fed to the winner-take-all (WTA) circuit which is 
responsible for the detection of the maximum 
point. The selected location is called in feature. Our 
design is based on a WTA circuit originally pro- 
posed in [Andreou et al. 1992] and [Lazzaro et al., 
1988] shown is Figure 1. Currents /j .../^ are the 
input photo currents, while currents J^...J^ are 
the outputs of the WTA circuit. The cell receiving 
the largest photo current /^ = maxil^.-.I^^) 
responds with non-zero output current 
y^ = I^'^O, while other cells respond with zero 
currents, i.e., J^ = 0, for iiAk . The peak photo 
current establishes and holds the common voltage 
V^. For small input currents, like those produced by 
light detection, the transistor operates in the sub- 
threshold region. In that case, the voltage V^ is the 
logarithm    of    the    winning    input    current: 
^c ~ ^o'°S(^l^^o)' where /„ is the process 
parameter and V^ = kT/qK. Therefore, the 
intensity of the winner is accessed globally by 
monitoring the voltage on the common wire. 

Figure 1: Schematic diagram of the winner-take- 
all circuit. Boxed area indicates one cell. 

Since only the winning cell responds with non- 
zero current, the WTA effectively provides 1-of-N 
binary encoding of the winner's position. A digital 
on-chip decoder easily converts this code to any 
other binary code such as a natural binary or BCD 
code. In addition, there are efficient analog means 
for winner localization [DeWeerth, 1992]. In one 
example, the outputs from each WTA cell are con- 
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nected to nodes of a linear resistive network. The 
network behaves as a current divider sphtting cur- 
rent If. into two peripheral components, each pro- 
portional to the position of the current injection. By 
reading these peripheral components, the location 
of the winning cell is found. The WTA cells can be 
physically laid out in a two-dimensional array. 
Using the method of projections [Horn, 1986], the 
position of this current in two dimensions is found 
by solving two one-dimensional problems. Two 
copies of the output current are summed into the 
horizontal and vertical bus, respectively. The total 
current in these buses represents the desired projec- 
tions onto the x and y axes. Then, two linear resis- 
tive networks are used at the periphery of the array 
to locate the winner in a A: and y direction. 

3.2. Location Shifts 

The two dimensional WTA circuit locates the abso- 
lute maximum in the entire saliency map. In practi- 
cal applications, there are often several strong 
features in the saliency map which are candidates 
for attracting the attention. For implementation of 
the attention-for-action model, we need to direct 
attention toward a feature that is useful for the task 
at hand. This corresponds to voluntary attention 
shifts, i.e., "telling" the sensor where to "look." 
Once the feature is selected, we need a mechanism 
that will track the feature and thus maintain the 
location of attention in the environmental coordi- 
nates even in the presence of ocular motion. Our 
implementation inhibits portions of the saliency 
map and restricts the activity of the WTA circuit 
within a programmable active region within the 
whole array of photo receptors. The active region is 
programmed by appropriate row and column 
addressing, and corresponds to the central inhibi- 
tion control suggested by Koch and Ullman. 

There are two modes of operation: (1) select mode, 
and (2) track mode. In the select mode, the active 
region is defined by the external addressing 
(Figure 2a). The active region can be of arbitrary 
size and location. The sensor selects the absolute 
maximum within this region. In the tracking mode 
the sensor itself dynamically defines a small (e.g., 
3 X 3 in our implementation) active region centered 
around the most recent location of the attention 
(Figure 2b). 

The select mode directs the attention towards a fea- 
ture that is useful for the task at hand. For example, 
a user may want to specify an initial active region, 
aiding the sensor to attend to a relevant local peak 
in the saliency map. Then, the tracking mode is 
enabled for locking onto the selected feature. The 
ability of the sensor to define its own active region 
is an example of the top-down sensory adaptation 
presently missing from conventional vision sys- 
tems. 

select/track select/track 

column address • 

wta 

fr^, 
irray 

I T3 

-o 
column address 

J 
\ /ta array u 

=1^ 
wmncr 

) 

(a) (b) 

Figure 2: Modes of operation for the sensory 
attention computational sensor: (a) select 
mode, and (b) tracking mode. 

The active region is programmed by inhibiting par- 
ticular WTA cells under the external control. A cir- 
cuit diagram of the WTA cell with inhibition is 
shown in Figure 3. The shunting path for the photo 
current is provided through the transistors Tj and 
Tg. To maintain the cell active both col and row 
signals must be asserted (i.e. must be zero). 

col ̂ cm^ 

Figure 3: WTA cell with inhibition. (Shadowed 
area indicates components for cell inhibition.) 

The control of active region is achieved from the 
periphery of the two-dimensional WTA array. The 
peripheral logic across three columns is shown in 
Figure 4. Similar logic is implemented for row 
addressing. In the select mode, the active column 
band is programmed by the content of the shift reg- 
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ister. There are no restrictions on the width or loca- 
tion of the band, as any bit pattern can be entered 
into the shift register. 

^ 

T) 

I 

c/v: current-to-vktage '     WTA Array 

s/1: select/track signal 
'     coH[ 

Figure 4: Peripheral logic for central control of the 
active region. The boxed area indicates one 
column. Similar logic is used for row 
addressing (not shown). 

In the track mode, the active region is programmed 
by the WTA array and is dependent on the location 
of the feature being tracked. A particular column is 
enabled if the winning feature is on that column, or 
on one of the two immediate neighbors. In con- 
junction with the row inhibition (not shown), the 
tracking mode programs a 3 x 3 active region cen- 
tered on the most recent feature. If that feature 
starts moving, one of the eight active neighbors 
will receive the winning feature and automatically 
update the position of the 3x3 active region. It is 
now clear that the salient feature is not necessarily 
the absolute maximum in the field-of-view, but 
rather it is a local peak in the retinal image. If for 
any reason the tracking mode starts on a location 
which is not a local peak, the 3x3 active region will 
"slide" along the intensity gradient until it locks 
onto a nearby peak, 

user s/t 

top_edge 
bottom_edge 

right_edge 
left_edge 

Figure 5: Logic for automatic switching between 
select and track modes. 

With moving objects, the feature which is being 
tracked may reach the sensor's edge and fall out of 
the field of view. In order to ensure coherent transi- 

tion in these situations, the logic shown in Figure 5 
is implemented. The user may define the select 
mode by asserting signal user_s/t. However, when 
the user enables the tracking mode, the active 
region will be of size 3 by 3 as long as the tracked 
feature is not on one of the four edges of the array. 
When the feature reaches one of the four edges, the 
sensor automatically goes to a select mode. For a 
moment, the active region specified in the shift reg- 
isters is enabled, and the absolute maximum is 
selected therein. If the newly selected feature is no 
longer on the edge, the sensor automatically goes 
back to the tracking mode, shrinks the active region 
to a 3 by 3 size, and continues feature tracking. 

3.3. Transferring Local Data 

Once the relevant conspicuous point has been 
localized in the saliency map, the local data from 
the attended vicinity must be transferred to the glo- 
bal processor for decision making. The local data 
originate from any early representation including: 
image data, early features used for building the 
saliency map, or the saliency map itself. The circuit 
for sensory attention described so far only receives 
and has access to the saliency map. However, with 
the suggested implementation, the local informa- 
tion from the saliency map can be easily trans- 
ferred to the global processor. In fact, the 
magnitude of the localized feature in the saliency 
map is continuously reported to the global proces- 
sor, as it is inherently measured by the WTA cir- 
cuit. If the surrounding points are also needed, the 
global processor can program a trivial 1x1 active 
region at the desired location. The global processor 
inhibits all inputs of the saliency map except the 
programmed cell, and forces the WTA circuit to 
choose that particular point as the winner and 
report its magnitude on the global wire. We 
scanned the 1 x 1 active region throughout the 
array and collected several images (Figure 6). 

Figure 6: Images from the tracking sensor 
(24x24 pixels). 

4. Experimental Evaluation 

Two tracking sensors prototypes — 1D and 2D — 
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have been built and tested for static and dynamic 
performance. The static performance has been 
tested on an early ID prototype with 20 cells fabri- 
cated in 2|X CMOS technology. The findings have 
been reported earlier in [Brajovic and Kanade, 
1994]. 

The temporal response of the WTA circuit is 
important vi'hen tracking moving features within 
dynamic saliency map. The dynamics of the circuit 
is a function of the parasitic capacitance at the 
input node VI comprising capacitance of the photo 
detector and capacitances of the gates and drains 
attached to this node. For a cell to win or lose this 
capacitance must be charged and discharged with 
the photocurrent. For average room illumination 
the photo currents are very small, much less then 
InA. Therefore, the WTA circuit in its original 
configuration is slow. To improve the dynamic per- 
formance of the WTA circuit, several measures can 
be taken: (1) increase the photo current, (2) 
decrease parasitic capacitance C, and (3) reduce 
the voltage swing on the capacitance C. A modified 
WTA cell that implements all three of these mea- 
sures is shown in Figure 7. The photo transistor 
amplifies the photo current, T^ isolates capacitance 
of the photo detector, and T4 acts as a pull-up and 
limits the voltage swing. 

^ 

r  I 

(~3V) 
I  

'flA — +- 1 
T  I LV4~3V) 

1 

Figure 7: WTA cell with improved dynamic 
performance. (Fenced area indicates additions 
to the original WTA cell.) 

The dynamic performance is evaluated for a 
28x28-cell two-dimensional tracking computa- 
tional sensor. Each cell is 62\i square. The photo 
transistor occupies about 30% of the cell's area. In 
the experimental set up, a scanning mirror reflects 
a beam of light onto a white cardboard. This pro- 
duces a dot which travels along a straight line. The 
tracking sensor images the scene and tracks the 

moving dot. The rows of the sensor are approxi- 
mately aligned with the trajectory of the laser dot, 
so that only x position needs to be observed. The 
mirror is driven from a sinusoidal oscillator whose 
frequency is adjustable. The maximum instanta- 
neous velocity is attained at the middle of the tra- 
jectory. The goal is to observe how quickly the 
tracking sensor can shift attention, that is, how 
quickly it can update the feature's location as the 
feature travels across the array of cells. From the 
geometry of the set up, we can derive feature 
velocity from the frequency of the scanning mirror 
and then express it in image coordinates. 
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Figure 8: Tracking performance a) without the 
current buffer and without the pull-up. 
f=33Hz., b) without the current buffer and 
without the pull-up. f=83Hz., c) Tracking 
performance with the current buffer but 
without the pull-up. f=83Hz., d) Tracking 
performance with both the current buffer and 

The effects of the current buffer and the pull-up 
can be turned on or off by biasing Vj and V^. With- 
out the buffer and the pull-up, the sensor was reli- 
ably tracking up to the scanning frequency of 33Hz 
or 2,303.6 cells/second. Figure 8a shows two mea- 
sured waveforms: (1) the feature's position x as 
reported by the tracking sensor, and (2) the sinu- 
soid driving the mirror. If the frequency of the mir- 
ror is further increased, the reported position 
begins to distort. This is illustrated in Figure 8b for 
the scanning frequency of 83Hz. The tracking 
capability of the sensor starts to break down in the 
middle of the trajectory, as the velocity of the fea- 
ture is the greatest there. Then, the current buffer is 
turned on by biasing Vj. The dynamic performance 
improved:  the  maximum tracking  frequency  is 
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increased from 33Hz to about 83.3Hz or from 
2303.6 to 5793.9 cells/second. This is shown in 
Figure 8c; previously distorted waveform for the 
feature's position now better resembles the sinu- 
soid. Finally, the pull up transistor is turned on by 
biasing V4. The dynamic performance is slightly 
improved as shown in Figure 8d — the feature 
tracking is improved from 83Hz to about lOOHz, or 
to 6980.6 cells/second. 

Another set of experiments is performed to evalu- 
ate how the intensity of the feature influences the 
dynamic performance. Using neutral density filters 
placed in front of the sensor's lens, the light is con- 
trollably attenuated. For each filter, the frequency 
of the mirror is increased until the waveform of the 
feature's position begins to distort. In this way, the 
maximum frequency is estimated for each inten- 
sity. Two sets of experiments are performed: (1) 
without the buffer and the pull-up, and (2) with the 
buffer and the pull-up. The results are graphed in 
Figure 9. 
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Figure 9: Maximum angular velocity of the 
attention shifts as a function of the relative 
feature intensity. 

5. Conclusion 

The proposed implementation for the sensory 
attention exhibits several interesting features. It 
performs a global operation over the saliency map 
and produces few global results: the position and 
magnitude of the selected saliency feature. These 
global results can be routed off-chip with low 
latency via few output pins. Furthermore, in the 
tracking mode, the global results are used inter- 
nally for programming a 3 x 3 active region. This a 
top-down feedback secured robust performance in 
tracking the feature of interest while ignoring inter- 
ference from other potentially stronger sources. 
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Abstract 
A physics-based algorithm for recovering fluid 
flow from video imagery has been developed. 
The physical basis comes about as constraints 
from fluid mechanics are folded into an optical 
flow algorithm. A series of empirical studies are 
presented that evaluate the performance of this 
algorithm in the face of both synthetic and nat- 
ural imagery. In these experiments, the fluids 
are seeded with tracer particles so that the flow 
is visible. For cases where the expected flow 
can be predicted analytically, the recovered ve- 
locity fields are in good accord with theory. For 
complex flows, where the results cannot be pre- 
dicted analytically, the recovered velocity fields 
agree with qualitative expectations. 

1    Introduction 

Constraints derived from physical considera- 
tions are often used to provide the basis for well 
motivated computer vision algorithms. One do- 
main where this methodology is likely to be 
of value is the measurement of fluid flow from 
video imagery. Here, applicable physical con- 
straints come naturally from fluid mechanics. 
Further, it is standard practice in experimental 
fluid mechanics to seed flows with tracer parti- 
cles for the sake of visualization and analysis. 
Video of these flows is rich in image detail and 
therefore well suited to computer vision tech- 

*The research described in this paper was supported 
by DARPA/ETO under contract No. DABT63-95-C- 
0057. 

niques. Following this motivation, a physics- 
based algorithm for recovering fluid flow from 
video imagery has been developed. This paper 
presents the results of a series of empirical stud- 
ies that illustrate the algorithm's performance. 

The recovery of optical flow, i.e., the apparent 
motion of image intensity patterns, has been 
the subject of a great deal of research [Beu- 
chemin and Barron, 1995]. Typically, opti- 
cal flow algorithms are based on the bright- 
ness constancy constraint [Horn, 1986]. This 
constraint dictates that the algorithms estab- 
lish a mapping between two images based di- 
rectly on the similarities of image intensities. 
Most closely related to the algorithm that is 
the subject of the current paper are previ- 
ous approaches that employed constraints based 
on fluid flow continuity equations [Del Bimbo 
et ai, 1993, Fitzpatrick, 1995, Schunk, 1986, 
Song and Leahy, 1991]. Surprisingly, this body 
of research did not apply the resulting algo- 
rithms to the domain of fluid flow recovery. 

Previous research from the computer vision 
community that has been concerned with the 
recovery of fluid flow from images has not 
made direct use of constraints derived from 
fluid mechanics [Jahne and Waas, 1989, Maas 
et ai, 1994]. Investigators from fluid mechan- 
ics also have developed approaches to making 
flow measurements from images. Methods in 
that domain have concentrated on image corre- 
lation techniques (occasionally with extensions) 
or simple particle trackers [Adrian, 1991]. 
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2    Description of algorithm 

Let E{x,y,t) be an image, a function of spatial 
coordinates, {x,y), and time, /. Suppose that 
this image depicts a fluid flow in such a way 
that the essential physical characteristics of the 
flow are captured. In particular, suppose that 
the imaged intensities observe the conservation 
of mass just as does the fluid density. For exam- 
ple, the 2D transmittance image of a 3D fluid 
flow that respects conservation of mass in 3D 
is a 2D flow that respects the conservation of 
mass in 2D [Wildes et al, 1997]. This is true 
provided that there is no material loss due to 
normal flow at the boundaries of the flow. In 
this case the 2D (imaged) flow is the density 
weighted average of the 3D flow, taken along 
imaging rays. Correspondingly, application of 
the conservation of mass flow continuity equa- 
tion to a temporally varying image yields 

interest to yield a problem of the form 

V • (Ev) + Et = 0 (1) 

where v = (u(x,y,t),v(x,y,t)) is the imaged 
flow, V = (^;^) is tli6 spatial gradient op- 
erator and subscripts denote partial differentia- 
tion [Streeter and Wylie, 1985]. This continu- 
ity equation will be taken as the fundamental 
constraint for relating image intensity measure- 
ments to fluid flow. In practice, to allow for 
imperfect data, strict enforcement of the conti- 
nuity constraint is replaced with minimization 
of 

c, = {S7-{Ev) + Etf (2) 

with respect to v over an image domain of in- 
terest. 

To ameliorate the effects of noise, a second con- 
straint is imposed that encourages smoothness 
in the recovered flow. This notion is captured 
by minimizing the spatial variation of the flow, 
i.e., 

Cs = ul + ul + vl + vl. (3) 

Without imposition of this constraint, it was 
found that imagery of interest was too noisy to 
yield coherent flow flelds. 

Following [Horn and Schunk, 1981], the mea- 
sures of continuity (2) and smoothness (3) can 
be combined and evaluated over a domain of 

mm 
//<^ 

Cc -f Cs) dx dy, (4) 

with A a weighting parameter that trades off 
adherence to the continuity constraint and 
smoothness of flow. The variational calculus 
[Courant and Hilbert, 1953] can be applied to 
this integrated constraint equation to derive 
necessary conditions for a minimum with re- 
spect to flow parameters, {u,v). The corre- 
sponding (Euler) partial differential equations 
relate image intensity measurements to permis- 
sible flows according to 

y2y _ -X(Etx + Exa;U + Eya:V + 2ExU:, 
+ EyVx + E^Vy + EVyx "f EU:cx)E 

y2^   =    -X[Ety   +   ExyU   +   EyyV   +   EyU^ 

+ ExUy   +   2EyVy   +   EU^y   +   EVyy)E, 

(5) 

where V^ = (^ + a^) i^ ^^e Laplacian oper- 
ator. Boundary conditions for these equations 
can be had via further appeal to physical prin- 
ciples. Along the edges of channels that contain 
the fluid, the flow is constrained to be tangen- 
tial to the channel walls; if the channel walls do 
not completely enclose the domain of interest 
(e.g., the apparent end of a channel as it runs 
off a side of the image), then natural boundary 
conditions are enforced. These conditions are 
appropriate for the flows studied in this paper; 
others might be required in different situations. 

A discrete, iterative solution to the Euler equa- 
tions, (5), can be had by letting J be the iden- 
tity matrix, 

A = E E:rx — E -'XX 

E xy 

^yx 

Eyy - E 

^   _    _^( Etx + 2ExAxUij + EyAxVij+ 
\       Ety   +   EyAxUi^J    +   ExAyUiJ + 

ExAyVij + EAyxVij + Eufj   \ 
2EyAyVij + EAxyUij + EVIJ ) ' 

with   i,j  image  position  indices,   AxUi^j    = 

(««+i,i .ij)/2    the    central    difference. 
^xyUi,j     =     (Ui+ij+i   -   Ui+lJ-1   -   Mi-l,i-hl   + 
,_ij_i)/4 the mixed difference, while u^^j = 
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{ui+ij + Ui-ij)/2 and Uij = (wi+ij + ^i-ij + 
Uij+i + M,j_i)/4 are averaging operators, etc., 
to arrive at 

V n+l (I+Ayl)T(v" + Ab), (6) 

where v"'+^ is the value of v = (u, v)^ computed 
at iteration n+l frona the value v" computed 
at iteration n and f denotes the matrix inverse. 
Further details on this derivation can be found 
in a companion paper [Wildes et ai, 1997]. 

The iterative solution for flow field components 
(6) has been embodied in a Gauss-Seidel re- 
laxation algorithm [Dahlquist and Bjork, 1974]. 
This algorithm accepts a pair of images as well 
as a region of interest map and recovers a cor- 
responding flow field. The initial values for u 
and V are taken as zero everywhere. For the 
sake of computational efficiency, this algorithm 
has been embedded in a hierarchical coarse-to- 
fine refinement control structure [Bergen et al., 
1991]. In the following experiments, coarse-to- 
fine processing proceeded up to five levels of 
resolution reduction. Algorithm iterations were 
calculated to allow the most distant pixels at 
the coarsest resolution to broadcast their infor- 
mation to one another. 

3    Empirical studies 

Two classes of empirical studies have been con- 
ducted. First, synthetic imagery has been used 
to evaluate the algorithm in the face of known 
"ground truth". Second, natural imagery has 
been used to evaluate the algorithm with real 
world data. Since the current target applica- 
tion for the algorithm is microfluidics, all stud- 
ies have been executed at microscopic scales. 
Nevertheless, the algorithm should exhibit sim- 
ilar performance at macroscopic scales. 

Synthetic images were generated to simulate 
the transmittance imagery that has served as 
the major source of empirical data to date. 
The basic experimental preparation consists of 
steady state fluid flow through cylindrical tubes. 
This preparation is of interest because the ex- 
pected flow can be predicted analytically ac- 
cording to the fully developed circular pipe flow 
model [Schichting, 1979];  therefore, recovered 

flows can be evaluated against model predic- 
tions. The pipe flow model dictates a parabolic 
displacement along the axis of the tube with the 

form 
2 V    _ r'^ 

(7) 

where R is the tube radius, r is the perpen- 
dicular distance of any point in the tube from 
the central axis, v^ax is the maximal displace- 
ment along the central axis and v is displace- 
ment along the tube axis at point r. Flow in 
the orthogonal direction is taken as zero. To 
make the flow visible, the fluids are composed 
of mixtures of liquids in the form of tiny droplets 
that result in spatially varying x-ray absorption. 
Image sequences of this device are captured via 
microradiography [Cosslett et al., 1957]. 

To mimic this set-up, spheres were generated 
and randomly dispersed in a cylinder. The den- 
sity and diameters of the spheres were chosen 
to be in accord with real experiments. A ray- 
tracer was used to simulate the transmission of 
x-rays through these structures according to a 

standard linear absorption model [Barrett and 
Swindell, 1981]. The simulated spatial resolu- 
tion was 2.8 microns/pixel. The grey-level res- 
olution was 16 bits. A second image was ray- 
traced after shifting the spheres according to the 
pipe flow model (7). The left panel of Figure 1 
shows an image from a simulation experiment. 

Simulated flow sequences were generated for 
tube diameters of 1000, 800 and 600 microns. 
For each tube, flow rates were simulated to yield 
a range of maximum image displacements. The 
flow recovery algorithm was executed on the re- 
sulting image sequences. In these experiments 
A = 0.01, an empirically selected value. To 
quantify performance, the root mean square er- 
ror was calculated between the recovered and 
simulated velocities in the direction of the tube 
axis. (The recovered velocities in the orthogonal 
direction were inconsequential.) The results are 
shown in the right panel of Figure 1. For small 
displacements the error is small for all tubes. 
With increased displacement the error rises, es- 
pecially for smaller tubes. While not apparent 
in these plots, the error typically comes as an 
underestimate of the true flow. The errors are 
due to the fact that the algorithm requires more 
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Figure 1: Root Mean Square (RMS) Error of Flow Recovered from Synthetic Imagery. The left 
panel shows a synthetic radiograph of emulsion particles flowing through a capillary 
tube. The right panel shows the RMS error of recovered vs. veridical displacements. 

spatial support in the recovery of larger dis- 
placements. The narrower tubes might not offer 
sufficient information to support the recovery of 
large displacements. 

Experiments with natural imagery involved flow 
sequences generated via microradiography or 
visible light microscopy of fluid emulsions driven 
through a variety of devices. The emulsions con- 
sisted of a contrast medium mixed with a fluid. 
After emulsification, the contrast medium was 
dispersed in the fluid as tiny droplets (1-20 mi- 
crons). By choosing a contrast medium with 
the same density as the fluid the droplets were 
made neutrally buoyant and followed the im- 
posed flow. The flow was generated by a me- 
chanically driven syringe pump that forced the 
fluid emulsion through the devices. 

The first series of natural image experiments 
involved microradiography of steady state flow 
through cylindrical quartz tubes. Images were 
generated by a collimated monochromatic x-ray 
source in conjunction with a phosphor screen 
and optics to image onto a CCD imager for digi- 
tization at 14 bit precision. Flow sequences were 
generated for tube diameters of 1000, 840, 750 
and 640 microns. For each tube, flows were in- 
jected at two rates, 0.004 and 0.008 microliters 

per second. The spatial resolution was 2.8 mi- 
crons/pixel with a temporal sampling rate of 
0.4 frames/second, and an exposure time of 500 
milliseconds/frame. An image from an experi- 
ment with a 1000 micron tube and flow rate of 
0.004 microliters/second is shown in the upper 

left panel of Figure 2. 

The flow recovery algorithm was executed on all 
of the resulting image sequences. In these ex- 
periments A = 0.0001, an empirically selected 
value. The recovered flow for the 1000 micron 
tube at the lower flow rate is shown as a vec- 
tor plot in the upper right panel of Figure 2. 
The average recovered velocity profiles in the 
direction of the tube axis are shown for the 840 
micron tube in the lower left panel of Figure 2. 
For comparison, the profiles predicted by fully 
developed pipe flow (7) averaged along imag- 
ing rays is plotted in the same figure. (Recall 
that the imaged flow should be an average of 
the 3D flow due to the properties of transmit- 
tance imaging.) The recovered flow is in good 
agreement with the predictions of the model for 
both flow rates. The lower right panel of Figure 
2 shows the recovered flow profiles for the 1000, 
840, 750 and 640 micron tubes collapsed into a 
single non-dimensional plot. The radius of the 

188 



zt 

TJ ?n 
m 
in 

E 1*^ 
^ 
>« 

8 10 
0) 

■> 

b 

■'\.xVi,9K-- 

'".' '■" y-''^.'/  '"„-.'■  ''^'''' '■>'i.S^'*'2v  'Vc        ^<t 

V. "ii./^' 

,,,, 

O.OOf ̂ ^l/se c 

<,,, , , , ,   ^ 

sS^ 

N. • 

/ 

^ 
■ 

; / .y" ■< ).004 ixl/se X \ ■ 

V % 
-400-300-200-100    0     100   200 300 400 

Radius(^m) 

Figure 2: Velocity Profiles Recovered from Natural Imagery of Fluid Flow through Capillary 
Tubes. The upper left panel shows a frame from a radiograph sequence of an emulsion 
flowing through a capillary tube. The upper right panel shows the recovered veloc- 
ity field from two successive frames. The lower left panel shows the average recovered 
vertical flow profiles through an 800 micron capillary tube for two different fiow rates. 
The corresponding analytically predicted fiow profiles for these experiments also are 
shown (solid line). The lower right panel shows in dimensionless coordinates the aver- 
age recovered vertical flow profiles for a range of tube diameters and flow rates. The 
corresponding analytically predicted flow profile for these experiments also is shown 
(solid line). 
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Figure 3: Velocity Field Recovered from Natural Imagery of Fluid Flow through a Ramped Step 
Channel. The left panel shows a frame from a radiograph sequence of an emulsion 
flowing through a ramped step channel etched in silicon and covered with Pyrex glass. 
The right panel shows the recovered velocity field from two successive frames. The 
recovered flow is in accord with one's visual impression upon viewing the image sequence. 

capillary tube, R, and the maximum velocity at 
centerline, Vmax, are used to non-dimensionalize 
the plot. A pipe flow velocity profile also is su- 
perimposed on this plot. In all cases, the re- 
covered profile is in good agreement with the 

theoretical prediction. 

A second set of studies involved microradiog- 
raphy of more complicated devices where an- 
alytic predictions of the flow were not avail- 
able. The first device was a ramped step chan- 
nel. The second device was a serpentine chan- 
nel. Both devices were etched in silicon and 
covered with Pyrex glass. Parameters for both 
studies were the same: Injected flows were 
0.004 microliters/second; spatial resolution was 
1.6 microns/pixel with temporal sampling 10 
frames/second and exposure time of 100 mil- 
liseconds/frame. A = 0.00001, an empirically 
selected value. An image of the ramped step 
channel and a recovered velocity field are shown 
in Figure 3. The results are in accord with one's 
visual impression: The flow is fastest at the 
upper inlet and looses speed while expanding 
thereafter; the speed is smallest near the chan- 

nel walls. An image of the serpentine channel 
and a recovered velocity field are shown in Fig- 
ure 4. Again, the results are in accord with one's 
visual impression: The flow follows the chan- 
nel's bends most closely along the boundaries 
and less so in the center; the speed is smallest 

near the channel walls. 

The final study returned to the circular pipe 
flow, but acquired with visible light microscopy. 
In this case the flow was injected at 0.08 micro- 
liters/second. Focus was used to isolate a thin 
layer of fluid flow for capture with a CCD cam- 
era and 8 bit digitization. The spatial resolution 
was 3.9 microns/pixel with temporal sampling 
at 30 frames/second and an exposure time of 
33 milliseconds/frame. A = 0.01, an empiri- 
cally selected value. An image from this exper- 
iment and a recovered velocity field are shown 
in Figure 5. A lack of precision in focus pre- 
cludes application of the pipe flow model (7) 
to yield an analytic prediction for comparison. 
However, the results are in accord with one's vi- 
sual impression and they exhibit the parabolic 
flow proflle characteristic of this geometry. 
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Figure 4: Velocity Field Recovered from Natural Imagery of Fluid Flow through a Serpentine 
Channel. The left panel shows a frame from a radiograph sequence of an emulsion 
flowing through a serpentine channel etched in silicon and covered with Pyrex glass. The 
right panel shows the recovered velocity field from two successive frames. The recovered 
flow is in accord with one's visual impression upon viewing the image sequence. 

Figure 5: Velocity Field Recovered from Natural Imagery of Fluid Flow through a Capillary Tube. 
The left panel shows a frame from a reflected light image sequence of an emulsion flowing 
through a capillary tube. The right panel shows the recovered velocity field from two 
successive frames. The recovered flow is in accord with one's visual impression upon 
viewing the image sequence. 
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4    Summary 

This paper has presented a series of empirical 
studies with a computer vision algorithm for re- 
covering fluid flow from video imagery. The al- 
gorithm is based on physical principles derived 
from fluid mechanics. Testing has made use 
of both synthetic and natural image sequences 
that depict fluids containing a contrast medium 
flowing through a variety of devices. For cases 
where the flow can be modeled analytically, 
the recovered velocity fields are in good agree- 
ment with predictions. For more complex flows, 
where analytic predictions cannot be made, the 
recovered velocity fields are in accord with qual- 

itative expectations. 
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Real-Time 3-D Tracking and Classification of Human Behavior 

Alex Pentland, Ali Azarbayjani, Nuria Oliver, Matt Brand 
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Abstract 
We describe a system for real-time 3-D estima- 

tion and classification of human behavior using only 
modest computational resources. The system is 
based on use of 2-D blob features, which are clus- 
ters of similar pixels in the image plane and can 
arise from similarity of color, texture, motion and 
other signal-based metrics. We use nonlinear mod- 
eling and a combination of iterative and recursive 
estimation methods to recover 3-D geometry from 
blob correspondences across multiple images. The 
3-D geometry includes the 3-D shapes, translations, 
and orientations of blobs and the relative orientation 
of the cameras. The system is self-calibrating and 
can track people's head and hands with RMS errors 
of 1-2 cm in translation and 2 degrees in rotation. 

Patterns of behavior (e.g., hand or face gestures) 
can then be classified in real-time using Hidden 
Markov Model (HMM) methods, importantly in- 
cluding the new Coupled HMM methods that we 
have recently developed (Brand, Oliver and Pent- 
land 1997). Typical classification accuracies are near 
100%. 

1    Introduction 
This paper describes a real-time, self-calibrating 

system for accurate 3-D person tracking using 2-D 
blob features. The 3-D and 2-D output of the track- 
ing is then used to reliably classify a wide variety 
of hand and face gestures, by use of either tradi- 
tional Hidden Markov Models (HMMs) and our new 
Coupled HMMs. All of the experimental appara- 
tus described here is real-time, at 20 to 30 frames 
per second, and runs on low-end SGI workstations 
without any special-purpose hardware. 

The notion of "blobs" as a representation for 
image features has a long history in computer vi- 
sion [4, 5, 3, 9]. The term "blob" is somewhat 
self-explanatory ("something of vague or indefinite 
form"), but a useful definition from a computational 
point of view might be that a blob is defined by some 
visual property that is shared by all the pixels con- 
tained in the blob and is not shared by surrounding 
pixels. This property could be color, texture, bright- 
ness, motion, shading, a combination of these, or any 
other salient spatio-temporal property derived from 
the signal (the image sequence). 

Our current interest in blob models is motivated 
by our discovery that they can be reliably tracked 
even in complex, dynamic scenes, and that they can 
be extracted in real-time without the need for special 
purpose hardware. These properties are particularly 
important in applications that require tracking peo- 

ple, and recently we have used 2-D blob tracking for 
real-time whole-body human interfaces [9] and real- 
time recognition of American Sign Language hand 
gestures [8]. 

Our success at 2-D tracking motivates this pa- 
per's investigation into recovering useful 3-D geome- 
try from these features. We begin by addressing the 
basic mathematical problem of estimating 3-D ge- 
ometry from blob correspondences in displaced cam- 
eras. The relevant unknown 3-D geometry includes 
the shapes and motion of 3-D objects and the rel- 
ative orientation of the cameras. The observations 
consist of the corresponding 2-D blobs, which can 
in general be derived from any signal-based similar- 
ity metric; in our experiments we use chrominance 
spectral similarity. 

We will then present experimental results on var- 
ious sub-problems required for human behavior in- 
terpretation, including self-calibrating the stereo rig, 
3-ID estimation of hand/head shape and motion, and 
recognition of hand and face gestures. Additional 
detail on the 3-D estimation can be found in Azer- 
bayejani and Pentland [1], on the mouth tracking 
and recognition in Oliver, Bernard, Coutaz, and 
Pentland [6], and on the coupled HMM formulation 
in Brand, Oliver, and Pentland [2]. 

2     Background: Blob features 
The notion of grouping atomic parts of a scene 

together to form blob-like entities based on proxim- 
ity and visual appearance is a natural one, and has 
been of interest to visual scientists since the Gestalt 
psychologists studied grouping criteria early in this 
century. 

In modern computer vision processing we seek to 
group pixels of images together and to "segment" 
images based on visual coherence, but the "features" 
obtained from such efforts are usually taken to be 
the boundaries, or contours, of these regions rather 
than the regions themselves. In very complex scenes, 
such as those containing people or natural objects, 
contour features often prove unreliable and difficult 
to find and use. 

The blob representation that we use was devel- 
oped by Kauth et al and Pentland [7, 4], for appli- 
cation to multispectral satillite (MSS) imagery. In 
this method feature vectors at each pixel are formed 
by adding {x,y) spatial coordinates to the spectral 
components of the imagery. These are then clus- 
tered so that color and spatial similarity combine to 
form coherent connected regions or "blobs". Essen- 
tially the same technique has been used recently in 
Wren et al [9] for real-time tracking of people in color 
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video. The spatial coordinates are combined with 
color and brightness channels to form a five-element 
feature vector at each point {x, y, Y, U, V). These are 
clustered into blobs which drive a "connected-blob" 
representation of the person. 

By using Expectation Maximization (EM) meth- 
ods to obtain Gaussian mixture models for the 
spatio-chrominance feature vector, very complex 
shapes and color patterns can be adaptively esti- 
mated from the image stream. In our system we 
use an incremental version of EM, which allows us 
to adaptively and continuously update the spatio- 
chromatic blob descriptions. Thus not only can we 
adapt to very different skin colors, etc., but also to 
changes in illumination. 

3    Estimating 3-D Geometry 
We can represent shapes in both 2-D and 3-D 

by their low-order moments. Clusters of 2-D points 
have 2-D spatial means and covariance matrices, 
which we shall denote q and Q, while 3-D shapes 
have 3-D spatial means and covariance matrices, de- 
noted p and Cp. 

The blob statistics can be interpreted as repre- 
senting uniform, Gaussian, or some other second- 
order distribution of occupancy. The distribution is 
not terribly important because the physical location 
and orientation are independent of distribution and 
are encoded in the mean and covariance. The scale 
of the shape parameters with respect to the variance 
will vary across distributions, but the relative shape 
will remain the same. A Gaussian interpretation is 
chosen, therefore, for computational convenience. 

Like other representations used in computer vi- 
sion and signal analysis, including superquadrics, 
modal analysis, and eigen-representations, blobs 
represent the global aspects of the shape and can 
be augmented with further moments to attain more 
detail if the data supports it. The reduction of de- 
grees of freedom from individual pixels to blob pa- 
rameters is a form of regularization which allows the 
ill-conditioned problem to be solved in a principled 
and stable way. 

For both 2-D and 3-D blobs, there is a useful 
physical interpretation of the blob parameters. The 
mean represents the geometric center of the blob 
area (2-D) or volume (3-D). The covariance, being 
symmetric, can be diagonalized via an eigenvalue de- 
composition 

C = $i$^ (1) 

where $ is orthonormal and L is diagonal. 
The diagonal L matrix represents the size of the 

blob along independent orthogonal object-centered 
axes and $ is a rotation matrix that brings this 
object-centered basis in alignment with the coordi- 
nate basis of C. 

This decomposition and physical interpretation is 
important for estimation, because the shape L is 
constant (or slowly varying) while the rotation $ 
is dynamic. The parameters must be separated so 
they can be treated appropriately. 

3.1     Parameterization 
To estimate 3-D geometry from 2-D images, we 

consider the nonlinear forward model and try to 

solve the inverse problem. That is, we consider the 
function 

2/ = /W (2) 
where y consists of 2-D observations and x consists 
of the 3-D state. We observe y and try to recover j;. 

The observation vector y consists of a {q, Cq) pair 
for each observation: 

y={{q,Cq)t,k],i = l...M,k = l...N     (3) 

where t is the frame index and k is the blob index. 
The covariance matrix Cq has three free parame- 

ters, thus any pertubation by is of dimension bMN 
where M is the number of blobs and N is the num- 
ber of images being observed {N = 2 for stereo, e.g). 
Thus, the corresponding observation perturbation is 

6y    =    {{6qu,6qy,6al,6(Tl,6auv)t,k}       (4) 
t = l...M,k=l...N 

The state vector x consists of the 3-D blob param- 
eters (p, Cp) and the 3-D transformation (T, R, /?) to 
each camera, where T is a 3-D translation vector, R 
is a 3-D rotation (unit quaternion), and /? is inverse 
effective focal length (1//). In order to facilitate the 
physical interpretation, the 3-D covariance is decom- 
posed as in Equation 1. Thus, for M blobs and N 
cameras, x is 

X = {(p, $, L)k, {T, R, /?)(} ,t^l...M,k=l...N 

and the corresponding state perturbation is 

6x    =    {i6px,6py,6pz,6^x,S'^y,6uiz,6lx,6ly,Sh)k, 
{8t^ ,6ty,6tz, 8io^, 6ujy, (5cj^, 6(3)t}, 

t = l...M,k = l...N (6) 

where the 6iJ terms are angular perturbations on the 
respective rotations and the 61 terms are perturba- 
tions on the elements of the diagonal matrix L. 
3.2     Forward process model 

The forward model begins with the perspective 
projection equation: 

qu 

= c{p) 

1 I    Px 
i+PzP V Py 

(7) 

(8) 

where p is a 3-D point, q is the corresponding im- 
age point, the origin is at the center of the image 
plane, and the center of projection is at coordinates 
(0,0,-1//?). .      . 

Three-dimensional Gaussian distributions do not 
perspectively project exactly to 2-D Gaussian distri- 
butions, but if we have a rough estimate of the 3-D 
mean, we can use the linearized projection equation 
which does project 3-D Gaussians to 2-D Gaussians. 
It is easy to get a good initial value po for the 3-D 
mean from the 2-D observations {qi} to facilitate 
this linearization; this is covered in the next section. 

(Possible drawbacks to using the linearized pro- 
jection equation are that it will introduce a system- 
atic modeling error in the results and that it requires 
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iterative re-computation ofpo- However, the model- 
ing error is small and most applications, particularly 
the human interface applications we are interested 
in, do not need higher precision. Our experimental 
results and applications developed using our system 
support this position. With regards to calculating 
po, it is an extremely cheap computation that we 
currently solve using a linear technique.) 

Here we assume we have computed po and lin- 
earize the projection equation 

q = c{po) + Jc{x){p - Po) + (9) 

where Jc is the Jacobian matrix of partial derivatives 
idc/d6p). 

With the linearized system the 3-D mean projects 
to the 2-D mean, thus we have 

q = c{p) (10) 

To get the covariance observations, define 6q = 
q — q and 6p = p — p. Since q is c{p) we have the 
linear relationship 

6q = Jc6p (11) 

where now 6q describes a zero-mean Gaussian distri- 
bution with covariance Cq and 6p describes a zero- 
mean Gaussian distribution with covariance Cp. 

A Gaussian distribution with covariance Cfp un- 
dergoing a linear transformation Jc will have covari- 
ance JcCpjJ. The Jacobian Jc is a function of the 
state, Jc{x), as is Cp{x), thus we can write Cq{x) 
as a composite function of the state, completing the 
specification of the forward model y = f{x). 

For the numerical solution, we shall also re- 
quire the Jacobian of the forward model, J{x) = 
[df{x)/d6x], which can be determined analytically 
and evaluated numerically when needed. 
3.3    Initialization and estimation 

For performing the inversion of this nonlinear sys- 
tem, we need an initial state value at which to start. 
From stereo, we can recover an excellent starting 
state using linear techniques. 

The initial 3-D position is obtained via linear least 
squares from the 2-D means (the closest approach of 
the two image rays). The initial rotation is taken 
as a rotation about the 2-axis only, in concordance 
with the image-plane rotation of one of the 2-D blob 
observations, say the left image. Finally, the initial 
shape is matched in the x-y plane to that of the left 
image (remember the initial 3-D blob is only rotated 
in z) and the z size is chosen to be the smaller of the 
two principal dimensions of the x-y plane. 

Conceptually, then, we have back-projected the 
2-D blob from the left image into a plane parallel to 
the left image at a depth determined by the corre- 
spondence of the 2-D blob means from the left and 
right images. We have then given the initial shape 
based on one projection and a heuristic notion of 
regularity. 

The nonlinear estimation can now proceed in 
many ways. We have a forward model, y = f{x), 
so we can develop a cost function based on the error 

e{x, y) = y — f{x). We also have the Jacobian J{x) 
analytically, so we have available to us many forms 
of nonlinear estimation techniques. 

We use a form of the Levenberg-Marquardt (LM) 
algorithm for the static self-calibration problem and 
a form of the extended Kalman filter (EKF) for the 
dynamic problem of tracking motion and shape. We 
have also experimented with combining the iterative 
properties of LM with the recursive modeling of EKF 
to perform the two tasks together, but these results 
are still forthcoming. 

4    Experimental analysis 
4.1     3-D Tracking Performance 

The motivating application for us has been under- 
standing human behavior in uncontrived situations 
such as an office environment. We have developed 
a simple blob tracker based on the ideas presented 
in [9] that gives us reliable 2-D blobs of a person's 
face and hands in real-time. This tracker operat- 
ing independently on two cameras in a wide-baseline 
configuration gives us correspondences that we can 
use to self-calibrate the stereo system and track peo- 
ple's movement and gestures at the same time. We 
present here some experimental results on 3-D track- 
ing accuracy taken from our real-time system, which 
operates at 20-30 Hz using a single SGI 02 work- 
stations. 

4.1.1 Self-caHbration 

When a person first enters the space, the stereo cal- 
ibration is obtained by collecting a set of three blob 
correspondences (face, left hand, right hand) over 
a number of frames (50-100 total correspondences) 
and computing the stereo calibration using the LM 
estimator on the batch of correspondences. Figure 1 
shows a typical data set at system startup that cal- 
ibrates the stereo rig. 

The stereo pair shows the first image with over- 
layed blobs and large white boxes marking the cur- 
rent feature locations, and small white boxes repre- 
senting the subsequent feature tracks. 

The calibration points are collected in a time span 
of roughly 5 sec and the estimation requires less than 
2 sec. In this case, the subject waved his arms up 
and down to generate data and the system quickly 
converged to the state shown in the bottom portion 
of Figure 1, which is a roughly overhead view show- 
ing the location of the cameras (COP and virtual 
image plane for each) and the 3-D trajectories of 
the hands and head. 

4.1.2 Calibration Error Analysis 

There is no absolute 3-D ground truth for self- 
calibration, but residual error can be analyzed in 
the image plane and relative error can be evaluated 
in 3-D. 

The residual error approach consists of using the 
recovered camera parameters and blob locations to 
re-synthesize the feature locations and compare to 
the actual measurements. Over dozens of calibra- 
tion sequences, the RMS image plane residual is ,1.5 
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Stereo sequence for self-calibration Right hand moving roughly tinearty across 120cm (4 cycles) 

3-D view of self-calibration sequence 

Figure 1: The blob representation can be used to 
facilitate stereo self-calibration. Here we illustrate 
the self-calibration of a stereo rig in real time, simply 
from watching a person moving. The stereo pair 
shows the feature tracks on the person. The 3-D 
view shows a roughly overhead view of the space 
including the recovered cameras and the 3-D feature 
tracks. RMS residual error is 1.5 pixels; RMS 3-D 
errors are on the order of 2.25cm. 

pixels. The image size is (320,256) and the major 
blob axis diameters range from 20 to 35 pixels. The 
sources of residual errors include both measurement 
error (noise) and modeling error. 

Relative 3-D error is evaluated after self- 
calibration by using the right hand as a 3-D pointer 
and traversing a trajectory of known shape and di- 
mensions. In our case, a user moyed his hand lin- 
early along the edge of a table back and forth com- 
pleting 4 cycles. The recovered 3-D trajectory is de- 
picted in Figure 2, in which the three coordinates are 
plotted against frame number. The digitized hand 
locations are clustered along a 3-D line segment with 
known length (120cm). A line segment is fit to the 
cluster using 3-D regression and the coordinates are 
scaled to the known length. 

The resulting RMS error from this analysis is 
2.25cm. The relative error of reconstruction of hand 
position over this trajectory is therefore 1.8 percent. 
The sources of error include not only noise and mod- 
eling error, but also hand movement error, since the 
trajectory followed by the person was not exactly 
linear and the hand shape changes. Thus only a 
fraction of this relative error should be counted as 
computational error. 

100        120 
FRAME NUMBER 

Figure 2: Translation of the right hand back and 
forth along a linear trajectory after self-calibration. 
Reconstruction of hand position has an RMS error 
of 2.25cm, resulting in a relative error of 1.8% over 
this trajectory. 

4.1.3 3-D Person-tracking and shape recov- 
ery 

The self-calibration can in principle take place si- 
multaneously with shape and motion estimation, but 
for the purposes of performing our experiments they 
have been implemented separately. This makes it 
easier to isolate the sources of error for each compo- 
nent of the estimation. 

Thus, in this section we are concerned with the 
steady-state characteristics of shape and motion es- 
timation after self-calibration has converged. Again, 
since absolute motion parameters are impossible to 
know, we evaluate relative error by formulating some 
hand motions with known qualitative parameters. 

4.1.4 3-D Tracking Error Analysis 

The first test case consists of a linear motion where 
the user tries to keep his hand shape and orientation 
constant while sliding his hand along the straight 
edge of a rigid box. This is similar to the previous 
test case for self-calibration except that rotation and 
shape are measured. 

Figure 3 shows a stereo pair and 3-D blob esti- 
mates for one frame of the sequence. Analysis on 
the translation was performed by fitting the 3-D lo- 
cation estimates to a line and computing the RMS 
error of translation, which was 1.5cm, resulting in 
a similar relative error metric to the self-calibration 
analysis. Analysis on the rotation and shape were 
performed by computing the mean values and RMS 
errors, which were about 2 degrees and 5% relative 
error respectively. Sources of error include measure- 
ment noise and modeling error. The comparatively 
high relative error in shape is probably due to the 
fact that the shape parameters are the least well- 
conditioned parameters in the state. 

A second test case addresses the dynamic behav- 
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Figure 3: Real-time estimation of position, orienta- 
tion, and shape of moving liuman head and hands. 
We find RMS errors of 1.5cm, 2 degrees, and 5% on 
translation, rotation, and shape, respectively along 
a linear 3-D trajectory. 

ior of the rotation parameters. In this case, the user 
was told to rotate his hand from pointing directly 
forward to pointing roughly leftward and to cycle 
through this movement four times. The recovered 
angle of rotation is depicted in Figure 4, where a 
qualitative view of the estimation noise can be seen. 
Since the absolute ground truth is not known, the 
only way to quantitatively evaluate the error is to 
assume something about the trajectory. 

In this case, we assume the actual trajectory was 
smooth, so we synthesize a set of error vectors by 
smoothing the trajectory and taking the difference 
between the actual and the smoothed trajectories. 
We use a 7-tap approximate Gaussian low-pass filter 
to smooth the trajectory. The RMS of the synthe- 
sized error is 1.98 deg, which results in a 2.2 per- 
cent relative error. The source of this error measure 
is primarily only the high-frequency components of 
measurement noise. Additional error may be present 
and may arise from low-frequency measurement er- 
rors or modeling errors. 

4.2     Recognizing Gestures 
We have used the recovered 3-D geometry for sev- 

eral different gesture recognition tasks, including a 
real-time person-independent American Sign Lan- 
guage reader [8], and a system that recognizes T'ai 
Chi gestures (and trains the user to perform them 
correctly!) [9]. 

Although we have been able to use standard 
HMM's to recognize such gestures with near-perfect 
accuracy, we have found the training of such models 
to be labor-intensive and difficult.  This is because 

20 40 60 80 100 120 140 160        180        200 
FRAME NUMBER 

Figure 4: Rotation of the left hand back and forth 
through roughly 90 deg. An analysis of the jitter in 
the angular signal results in measures of 2 deg RMS 
error, or roughly 2.2 percent relative error. 

use of HMMs to describe multi-part signals (such 
as two-handed gestures) requires large amounts of 
training and even so the HMM parameter estima- 
tion process is typically unstable. 

To improve on this situation, we have developed 
a new method of training a more general class of 
HMM, called the Coupled Hidden Markov Model. 
Coupled HMM's allow each hand to be described 
by a separate state model, and the interactions be- 
tween them to be modeled explicitly and econom- 
ically. The consequence is that much less training 
data is required, and the HMM parameter estima- 
tion process is much better conditioned. In Fig- 
ure 4.1.4 shows recognizing T'ai Chi moves using 
the Coupled HMM method; for additional detail see 
Brand, Oliver, and Pentland 1997 [2]. 

5    Mouth   Shape   Extraction,   Track- 
ing, and Classification 

In our system the mouth is modeled using the 
same blob methods that were used to find the head 
and hands, i.e. through a second-order models of the 
chromatic and spatial distribution. However for the 
mouth region it is critical that we employ a relatively 
sophisticated, multi-modal mixture model in order 
to achieve adequate performance. 

We have developed thus a mixture-of-Gaussians 
shape/color model, that makes use of both positive 
and negative modeling. For the positive model we 
learn a description of the reddish lip region and the 
dark interior of the mouth; for the negative model 
we construct a description of the surrounding face 
area. We can then form a likelihood ratio that com- 
pares each pixel of the mouth region with both the 
positive and negative models, and achieve a good 
classification of the mouth shape. All of these mod- 
els are learned on-the-fly using an incremental EM 
algorithm, allowing them to adapt to different skin 
types and different illumination conditions. Perfor- 
mance of this segmentation system is illustrated in 
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Hi Figure 7: Recognized mouth configurations: smile- 
open, sad, open and smile 

Figure 6:  Head and mouth tracking with rotations 
and facial hair 

Figure 6. 
For recognition purposes the mouth shape is char- 

acterized by a feature vector consisting of the the 
area, the spatial eigenvalues of the mouth region 
and the x-y position of four extrema points. Ro- 
tation invariance is achieved by computing the face 
rotation angle and backprojecting the mouth region. 
Therefore the mouth always appears nearly horizon- 
tal during the recognition phase of processing, even 
though the user might turn their head. 

5.1     Active Camera Control 
For facial analysis it is neccessary to have a high- 

resolution view of the face. This view is provided 
by a third, active camera. The current estimation 
of the position and size of the user's face provides 
a reference signal to a PD controller which deter- 
mines the tilt, pan and zoom of the camera so that 
the target (face) has the desired size and is at the 
desired location. Our system uses an abstraction of 
the camera parameters, in such a way that in the 
current version two different cameras (Canon VCCl 
and Sony EVI-D30) can be successfully used in a 
totally transparent manner. 

The zoom control is relatively simple, because 
it just has to be increased or decreased until the 
face reaches the desired size. Note however that the 
speed with which the camera zoom must be adjusted 
depends on the size of the target in the image. The 
relation between the zoom speed and the current 
camera zoom position follows a non-linear law which 
is approximated by a second-order polynomial func- 
tion. 

Pan and tilt speeds are controlled by: 

14 = 
C,*Fs*E + Cd* dE 

dt (12) 

where Ce and Cd are camera-dependant constants, 
Fs is the system's running frequency, E is the the 
distance between the face current position and the 
face target position (e.g., the center of the image), 
F^ is the camera zoom factor, and Sc is the final 
speed transmitted to the camera. 

The system's running frequency is a key factor 
to be considered in order to stabilize the camera 
against frequency variations. Thus the control sig- 
nals are low-pass filtered to ensure that they stay 
within Nyquist rate. 

5.2     Expression Recognition 
Our approach to temporal interpretation of facial 

expressions uses Hidden Markov Models (HMMs) 
to recognize different patterns of mouth movement. 
HMM's have been prominently and successfully used 
in speech recognition, which makes them quite ap- 
propriate to this task. We have developed a real- 
time HMM system that computes the maximum like- 
lihood of the input sequence with respect to all the 
models during the testing or recognition phase. This 
HMM based system runs in real time on an SGI Indy, 
with the low-level vision processing occurring on a 
separate Indy, and communications occurring via a 
socket interface. 

Using the mouth shape feature vector described 
above, we trained 5 different HMM's for each of 
the following mouth configurations (illustrated in 
figure 7): neutral or default mouth position, ex- 
tended/smile mouth, sad mouth, open mouth and 
extended-|-open mouth (such as in laughing). 

The neutral mouth acted to separate the vari- 
ous expressions, much as a silence model acts in 
speech recognition. The final HMM's we derived 
for the non-neutral mouth configurations consisted 
of 4-state forward HMM's. The neutral mouth was 
modeled by a 3-state forward HMM. 

Recognition results for a eight different users 
making over 2000 expressions are summarized in ta- 
ble 1. The users were divided in different groups for 
training and testing purposes. The first of the recog- 
nition tasks shown in table 1 corresponds to a train- 
ing and testing with all the eight users. The total 
number of examples is denoted by N, having a total 
N=2058 instances of the mouth expressions (N=750 
for training and N=1308 for testing). The number 
of correctly recognized expressions is denoted by H. 

6    Discussion 
We have developed a real-time system for recov- 

ering 3-D object shape and motion and multiple- 
camera geometry from 2-D blob features. The 3-D 
objects and 2-D features are both represented using 
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Recognition Results On training On testing 

All Users %Correct=97.73 
\H = 733, N = 750] 

%Correct=95.95 
\H = 1255,7\T = 1308] 

Single Users %Correct=100.00 
[F = 120, TV = 120] 

%Correct=100.00 
\H = 240, N = 240] 

Table 1: Recognition results on both training and testing data 

moment-based physical models called blobs. Non- 
linear optimization techniques are used for estima- 
tion; the Levenberg-Marquardt technique is used for 
static parameters and the extended Kalman filter is 
used for dynamic estimation. 

Experimental results verify that we can obtain 
good quantitative 3-D physical descriptions from 
these coarse 2-D image observations of people. We 
have experimentally demonstrated that this method 
can be used to self-calibrate stereo cameras from 
watching people move and subsequently to deter- 
mine the location, orientation, and shape of parts of 
a person to an accuracy of a 2 cm, 2 degrees and a 
few percent, respectively (RMS errors). 

These 3-D estimates have then been used as input 
to our HMM and Coupled HMM gesture recognition 
systems. Using this approach we have been able to 
obtain high accuracy at recognizing a wide variety 
of hand and face gestures, again in real-time using 
only modest computational resources. 

Perhaps the most important performance evalu- 
ation, however, is that we have been able to build 
a person-tracking system using this technique which 
has run reliably for dozens of hours, with dozens of 
different subjects, in several different locations, and 
in real time (20-30 fps) using only standard worksta- 
tions. The key to the robust, real-time performance 
is that the 2-D blob features on which the estima- 
tion relies can be reliably and efficiently extracted 
and matched in a bottom-up fashion. 

We feel that use of this type of feature is a signif- 
icant departure from the traditional notions of im- 
age features (e.g., points, lines) and image cues (e.g., 
motion fields, shading), and can lead to a basis for 
practical 3-D vision systems in application domains 
where traditional approaches have not had a great 
deal of success. Although the blob models provide 
only rigid motion and coarse shape information, they 
are fast and extremely reliable; thus futher preci- 
sion and higher levels of details, if desired, can be 
safely bootstrapped from this level of representation, 
potentially leading to a powerful "coarse-to-fine" or 
"subsumption" approach to 3-D shape and motion 
analysis. 
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Abstract 
We describe our research toward building systems 

that include a complex, multi-state model of human 
dynamic behavior. This can allow us to predict hu- 
man behavior over short periods of time, in order to 
create control systems that intelligently complement 
the human's action. To accomplish this requires in- 
ferring the internal state of the human, and then 
correctly adapting the remainder of the system to 
achieve optimal performance. We describe methods 
for achieving this goal, and report an initial experi- 
ment in which we were able to achieve 95% accuracy 
at predicting automobile driver's actions from their 
initial preparatory movements. 

1    Introduction 
Our approach is to modeling human behavior is 

to consider the human as a Markov device with a 
(possibly large) number of internal 'mental' states, 
each with its own particular control behavior, and 
inter-state transition probabilities (e.g., in a car the 
states might be passing, following, turning, etc.). A 
simple example of this type of human model would 
be a bank of standard quadratic controllers, each us- 
ing different dynamics and measurements, together 
with a network of probabilistic transitions between 
them. 

To integrate this human model into an optimal 
control system encopassing both human and ma- 
chine it is necessary to know which controller is 
currently "in charge," and to predict transitions 
between controllers, so that the remainder of the 
system (e.g., a car) can configure itself to achieve 
its best overall performance. However the internal 
states of the human are not directly observable, so 
they must be determined through an indirect esti- 
mation process. One efficient and robust method 
of accomplishing this is to use the expectation- 
maximization methods developed for use of Hidden 
Markov Models (HMM) in speech processing. 

By using these methods to identify a user's cur- 
rent internal (intentional) state, and to predict the 
most-likely subsequent internal state, we expect to 
be able to design systems that are able to dynami- 
cally reconfigure themselves to better fit the situa- 
tion. This can potentially allow for higher perfor- 
mance than is possible with a fixed model of the 
human (assuming similar controller complexity). 

2    Simple Dynamic Models 
Among the simplest non-trivial models that have 

been considered for modeling human behavior are 
single dynamic processes 

Xk+i = {{Xk,At)+m (1) 

where the function f models the dynamic evolution 
of state vector Xt at time k, and let us define an 
observation process 

Yk=h{Xk,At) + r,it) (2) 

where the sensor observations Y are a function h of 
the state vector and time. Both ^ and rj are white 
noise processes having known spectral density ma- 
trices. 

Using Kalman's result, we can then obtain the 
optimal linear estimate Xj, of the state vector X/,. 
by use of the following Kalman filter: 

X, =Xj+Ki(Yfc-h(X^f)) (3) 

provided that the Kalman gain matrix Kt, is chosen 
correctly [12]. At each time step k, the filter algo- 
rithm uses a state prediction X^, an error covariance 
matrix prediction P]^, and a sensor measurement Y^ 
to determine an optimal linear state estimate Xj;, er- 
ror covariance matrix estimate Pj;, and predictions 
^ifc+i! f*A+i fo"" *'h^ ^^^^ ^™® step. 

The prediction of the state vector XJ_|_j at the 
next time step is obtained by combining the optimal 
state estimate Xjt and Equation 1: 

'■it+i Xi+f(Xi,A<)A< (4) 

In our application this prediction equation is also 
used with larger times steps, to predict the human's 
future state. For instance, in a car such a prediction 
capability can allow us to maintain synchrony with 
the driver by giving us the lead time needed to alter 
suspension components, etc. 

Finally, given the state vector X^ at time k we 
can predict the measurements at time k-\-A.thy 

Y,+At = h(X,,AO (5) 

and the predicted state vector at time k-\-At\s given 
by 

Xk+^t=Xl+i{Xk,M)M (6) 
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3    Multiple Dynamic Models 
Human behavior, in all but the simplest tasks, is 

not as simple as a single dynamic model. The next 
most complex model of human behavior is to have 
se?)era/alternative models of the person's dynamics, 
one for each class of response. Then at each instant 
we can make observations of the person's state, de- 
cide wrhich model applies, and then make our re- 
sponse based on that model. This is known as the 
multiple model or generalized likelihood approach, 
and produces a generalized maximum likelihood es- 
timate of the current and future values of the state 
variables [13]. Moreover, the cost of the Kalman 
filter calculations is sufficiently small to make the 
approach quite practical. 

Intuitively, this solution breaks the person's over- 
all behavior down into several "prototypical" be- 
haviors. For instance, in the driving situation we 
might have dynamic models corresponding to a re- 
laxed driver, a very "tight" driver, and so forth. We 
then classify the driver's behavior by determining 
which model best fits the driver's observed behav- 
ior. 

Mathematically, this is accomplished by setting 
up a set of states S, each associated with a Kalman 
filter and a particular dynamic model: 

r{i) X*('^-fKW(Y,-h«(X*^'\i))     (7) 

where the superscript (i) denotes the i*'' Kalman 
filter. The measurement innovations process for the 
i*'' model (and associated Kalman filter) is then 

T^P = Y,-h^'\xf\t) (8) 

The measurement innovations process is zero-mean 
with covariance TZ. 

The i*^ measurement innovations process is, in- 
tuitively, the part of the observation data that is 
unexplained by the i"' model. The model that ex- 
plains the largest portion of the observations is, of 
course, the model most likely to be correct. Thus, 
at each time step, we calculate the probability Pr^'^' 
of the nj-dimensional observations Yk given the f*'' 
model's dynamics. 

Pr^'\Yk) 
exp i-i ,r'->^iz- ir(')^ 

(27r)'"/2Det(7^)l/2 (9) 

and choose the model with the largest probability. 
This model is then used to estimate the current value 
of the state variables, to predict their future values, 
and to choose among alternative responses. 

Note that when optimizing predictions of mea- 
surements At in the future, Equation 8 must be 
modified slightly to test the predictive accuracy of 
state estimates from At in the past. 

r« = Y, - hW(X*« , +f«(x« A,-AOAi.O) 

by substituting Equation 6. 
(10) 

3.1     Results   Using   Multiple    Dynamic 
Models 

We have used this method to accurately remove 
lag in a high-speed telemanipulation task by con- 
tinuously re-estimating the user's arm dynamics 
(e.g., tense and stifi", versus relaxed and inertia- 
dominated) [3]. 

In this case, the state vector Xk consists of the 
true position, velocity, and acceleration of the hand 
in each of the x, y, and z coordinates, and the ob- 
servation vector Yjt consists of the position readings 
for the X, y, and z coordinates. We found that us- 
ing this multiple-model approach we were able to 
obtain significantly better predictions of the user's 
hand position that was possible using a single dy- 
namic or static model. 

4    Hidden Markov Dynamic Models 
In the above multiple dynamic model, all the 

processes have a fixed likelihood at each time step. 
However, this is uncharacteristic of most situations, 
where there is a fixed sequence of internal states 
each with its own dynamics. Consider driving 
through a curve; the driver may be modeled as 
having transitioned through a series of states A = 
(si,S2,---Sk),SieS, for instance, entering a curve, in 
the curve, and exiting a curve, and other. Tran- 
sitions between these states happened only in the 
order indicated, with a final transition from other to 
entering the curve. 

Thus in considering state transitions among a set 
of dynamic models we should make use of our cur- 
rent estimate of the driver's internal state. We can 
accomplish this fairly generally by considering the 
Markov probability structure of the transitions be- 
tween the different states. The input to decide the 
person's current internal state (e.g., which dynamic 
model currently applies) will be the measurement in- 
novations process as above, but instead of using this 
directly in Equation 9 we will instead also consider 
the Markov inter-state transition probabilities. 

While a substantial body of literature exists on 
HMM technology [5, 6, 8, 11], we will first briefly 
outline a traditional discussion of the algorithms. 
After outlining the fundamental theory in training 
and testing of a discrete HMM, we will generalize 
these results to the continuous density case appli- 
cable to switching between dynamic models. For 
broader discussion of the topic, [6, 9] are recom- 
mended. 

A time domain process demonstrates a Markov 
property if the conditional probability density of the 
current event, given all present and past events, de- 
pends only on the f^ most recent events. If the cur- 
rent event depends solely on the most recent past 
event, then the process is a first order Markov pro- 
cess. 

The initial topology for an HMM can be deter- 
mined by estimating how many different states are 
involved in the observed phenominon. Fine tuning 
this topology can be performed empirically. Figure 
1, for instance, shows a four state HMM with skip 
transitions that we have used to classify complex 
hand motions. 
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Figure 1: The four state HMM used for recognition, 
from [4]. 

There are three key problems in HMM use. These 
are the evaluation, estimation, and the decoding 
problems. The evaluation problem is that given an 
observation sequence and a model, what is the prob- 
ability that the observed sequence was generated by 
the model (Pr(Y|A)) (notational style adapted from 
[6])? If this can be evaluated for all competing mod- 
els for an observation sequence, then the model with 
the highest probability can be chosen for recognition. 

The Viterbi algorithm provides a quick means of 
evaluating a set of HMM's in practice as well as 
providing a solution for the decoding problem. In 
decoding, the goal is to recover the state sequence 
given an observation sequence. The Viterbi algo- 
rithm can be viewed as a special form of the forward- 
backward algorithm where only the maximum path 
at each time step is taken instead of all paths. This 
optimization reduces computational load and addi- 
tionally allows the recovery of the most likely state 
sequence. The steps to the Viterbi are 

• Initialization. For all states i, 6i{i) = 7rj-6j(yi); 

M^ = 0 
• Recursion. From / = 2 to ^ and for all states 

j, 6tij) = maxi[6t-i{i)aij]bj{Yt); tptij) = 
argmax,[(5t_i(i)aij] 

• Termination. P = maxse5[i5j;(s)]; sj, = 
argmax,,5[(5j;(s)] 

• Recovering the state sequence. From t = k — I 
to 1, St = V'i + l(S( + l) 

Note that since Viterbi only guarantees the max- 
imum of ^^(Y, 5|A) over all state sequences S (as a 
result of the first order Markov assumption) instead 
of the sum over all possible state sequences, the re- 
sultant scores are only an approximation. However, 
[8] shows that this is often sufficient. 

4.1     The Continuous Case 
So far this discussion of HMMs has assumed some 

sort of quantization of feature vectors into classes, 
wheras the innovations processes that wil drive our 
inter-state transitions are continuous. Consequently, 
instead of using vector quantization, we must employ 
the actual probability densities for the innovations 
processes. Fortunately, Baum-Welch parameter es- 
timation, the Viterbi algorithm, and the forward- 
backward algorithms can be modified to handle a 
variety of characteristic densities [7]. In this paper, 
however, the densities will be assumed to be Gaus- 
sian. Specifically, from Equation 9, 

bj{Yt) = 
exp (-ir«-K- n 

(27r)W2Det(7e)i/2 (11) 

Initial estimations of fi and a may be calculated 
by dividing the evidence evenly among the states of 
the model and calculating the mean and variance 
in the normal way. Whereas flat densities were used 
for the initialization step before, the evidence is used 
here. Now all that is needed is a way to provide new 
estimates for the output probability. This can be 
accomplished by the Kalman filter update equations. 

5    An    Experiment    Using     Hidden 
Markov Dynamic Models 

We are now using this approach to identify auto- 
mobile driver's current internal (intentional) state, 
and their most-likey subsequent internal state. In 
the case of driving the macroscopic actions are 
events like turning left, stopping, or changing lanes. 
The internal states are the individual steps that 
make up the action, and the observed behaviors will 
be changes in heading and acceleration of the car. 

The intuition is that even apparently simple driv- 
ing actions can be broken down into a long chain of 
simpler subactions, A lane change, for instance, may 
consist of the following steps (1) a preparatory cen- 
tering the car in the current lane, (2) looking around 
to make sure the adjacent lane is clear, (3) steering 
to initiate the lane change, (4) the change itself, (5) 
steering to terminate the lane change, and (6) a fi- 
nal recentering of the car in the new lane. In our 
current study we are statistically characterizing the 
sequence of steps within each action, and then us- 
ing the first few preparatory steps to identify which 
action is being initiated. 

To recognize which action is occuring one com- 
pares the observed pattern of driver behavior to hid- 
den Markov dynamic models of each action, in order 
to determine which action is most likely given the ob- 
served pattern of steering and acceleration/braking. 
This matching can be done in real-time on current 
microprocessors, thus potentially allowing us to rec- 
ognize a drivers' intended action from their prepara- 
tory movements. 

If the pattern of steering and acceleration is mon- 
itored internally by the automobile, then the ability 
to recognize which action the driver is beginning to 
initiate can allow intelligent cooperation by the ve- 
hicle. If heading and acceleration is monitored ex- 
ternally via video cameras, as in Figures 2 and 3 (the 
'blob' processing algorithm that extracts the vehicle 
parameters from video is described in Boer, Fernan- 
dez, Pentland, and Liu 1996 [2]), then we can more 
intelligently control the traffic flow. 

5.1     Experimental Design 
The goal is to test the ability of our frame- 

work to characterize driver's steering and accelera- 
tion/braking patterns in order to classify the driver's 
intended action. The experiment was conducted 
within the Nissan Cambridge Basic Research driv- 
ing simulator, shown in Figure 4(a). The simulator 
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Figure 2: Video data of Central Square, Cambridge MA. 

Figure 3: Vehicle tracks extracted from spatially-rectified video data. 
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Figure 4:   (a) Nissan Cambridge Basic Research simulator, (b) part of the simulated world seen by the 
subjects. 

consists of the front half of a Nissan 240SX convert- 
ible and a 60 deg (horizontal) by 40 deg (vertical) 
image projected onto the wall facing the driver. The 
240SX is instrumented to record driver control input 
such as steering wheel angle, brake position, and ac- 
celerator position. 

Eight adult male subjects were instructed to use 
this simulator to drive through an extensive com- 
puter graphics world, illustrated in Figure 4(b). 
This world contains a large number of buildings, 
many roads with standard markings, and other mov- 
ing cars. Each subject drove through the simulated 
world for approximately 20 minutes, during which 
time the driver's control of steering angle and steer- 
ing velocity, car velocity and car acceleration were 
recorded at 1/10*'' second intervals. 

From time to time during this drive text com- 
mands were presented on-screen, whereupon the 
subjects had to assess the surrounding situation, for- 
mulate a plan to carry out the command, and then 
act to execute the command. The variables of com- 
mand location, road type, surrounding buildings, 
and traffic conditions were varied randomly though- 
out the experiment. 

The commands included: (1) stop at next inter- 
section, (2) turn left at next intersection, (3) turn 
right at next intersection, (4) change lanes, (5) pass 
the car in front of you, and (6) drive normally with 
no turns or lane changes. A total of 72 stop, 262 
turn, 47 lane change, 24 passing, and 208 drive- 
normal episodes were recorded. The time needed to 
complete each command varied from approximately 
5 to 10 seconds, depending upon the complexity of 
both the action and the surrounding situation. 

Using the steering and acceleration data recorded 
while subjects carried out these commands, we 
built three-state models of each type of driver ac- 
tion (stopping, turn left, turn right, lane change, 
car passing, and drive-normal) using the estima- 
tion tools provided by the Entropic's HTK computer 
software [11]. 

To assess the classification accuracy of these mod- 
els we combined them with the Viterbi recogni- 
tion algorithm, and examined the stream of drivers' 
steering and acceleration innovations in order to de- 

tect and classify the driver's actions. We then ex- 
amined the computer's classifications immediately 
after each command, and recorded whether or not 
the computer had correctly labeled the action. 

Recognition results were tabulated at one second 
after the presentation of a command to the subject. 
Note that the minimum response time to a command 
is approximately 0.5 seconds, so that the one-second 
point is at most one-half second after the beginning 
of the driver's action. The one-second point, there- 
fore, is roughly I/IO"* of the way through the action. 

To obtain unbiased estimates of recognition per- 
formance, we employed the "leaving one out" 
method. In this method models are trained on seven 
subjects and then tested on the eighth subject. This 
is then repeated eight times, each time leaving out 
a different one of the eight subjects, and the eight 
sets of recognition statistics are averaged. 

5.2     Results 
At one second after the command presentation 

(?» 0.5 seconds after the beginning of action, and 
roughly 10% of the way through the action) mean 
recognition accuracy was 95.24% ±3.1%. These re- 
sults demonstrate that many types of driving be- 
havior are sufficiently stereotyped that they are re- 
liably recognizable from observation of the driver's 
preparatory movements. 

To test whether our sample is sufficiently large to 
adequately encompass the range of between-driver 
variation, we compared these results to the case in 
which we train on all subjects and then test on the 
training data. In the test-on-training case the recog- 
nition accuracy was 98.8%, indicating that we have 
a sufficiently large sample of driving behavior in this 
experiment. 

While these results are very promising, caution 
must be taken in transferring them to real-world 
driving. It is possible, for instance, that there are 
driving styles not seen in any of our subjects. Sim- 
ilarly, the driving conditions found in our simulator 
do not span the entire range of real driving situ- 
ations. We belive, however, that our simulator is 
sufficiently realistic that compariable accuracies can 
be obtained in real driving.   Moreover, there is no 
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strong need for models that suit all drivers; most cars 
are driven by a relatively small number of drivers, 
and this fact can be used to increase classification 
accuracy. 

6    Conclusion 
We have demonstrated that we can accurately 

categorize drivers' actions very soon after the be- 
ginning of the action using our behavior modeling 
methodology. Because of the generic nature of the 
driving task, there is reason to believe that this ap- 
proach to modeling human behavior will generalize 
to a wide variety of human-machine systems. This 
would allow us to automatically recognize the peo- 
ple's intended action, and thus to build control sys- 
tems that dynamically adapt to better suit the hu- 
man's purpose. 
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Abstract 
This paper presents a trainable object detection ar- 
chitecture that is applied to detecting people in 
static images of cluttered scenes. This problem 
poses several challenges. People are highly non- 
rigid objects with a high degree of variability in 
size, shape, color, and texture. Unlike previous 
approaches, this system learns from examples and 
does not rely on any a priori (hand-crafted) models 
or on motion. 
The detection technique is based on a wavelet rep- 
resentation of the image: by learning an object class 
in terms of a subset of an overcomplete dictionary of 
wavelet basis functions. It is invariant to changes 
in color and texture and can be used to robustly 
define a rich and complex class of objects such as 
people. We show how the invariant properties and 
computational efficiency of the wavelet representa- 
tion make it an effective tool for object detection. 

1    Introduction 
The problem of object detection has seen a high 
degree of interest over the years. The fundamental 
problem is how to characterize an object class. In 
contrast to the case of pattern classification, where 
we need to decide between a relatively small num- 
ber of classes, the detection problem requires us to 
differentiate between the object class and the rest of 
the world. As a result, the class description for ob- 
ject detection must have large discriminative power 
to handle the cluttered scenes it will be presented 
with. Furthermore, in modeling complicated classes 
of objects (e.g. faces, pedestrians) the intra-class 
variability itself is significant and difficult to model. 
Since it is not known how many instances of the 
class are presented in the scene, if any, the detec- 
tion problem cannot easily be solved using methods 
such as maximum-a-posteriori probability (MAP) 
or maximum likelihood models. Consequently, the 
classification of each pattern in the image must be 
done independently; this makes the decision prob- 
lem susceptible to missed instances of the class and 
false positives. 
There has been a body of work on people detec- 
tion (Tsukiyama & Shirai, 1985[Tsukiyama and 
Shirai-1985], Leung & Yang, 1987[Leung and Yang- 
1987b][Leung and Yang-1987a], Rohr, 1993[Rohr- 
1993], Chen & Shirai, 1994[Chen and Shirai-1994]); 

"This research was sponsored by DARPA and ONR. 

these approaches are heavily based on motion and 
hand crafted models. An important aspect of our 
system is that the model is automatically learned 
from examples and avoids the use of motion and 
explicit segmentation. 
One of the successful systems in the area of train- 
able object detection in cluttered scenes is the face 
detection system of Sung and Poggio [Sung and 
Poggio-1994]. They model face and non-face pat- 
terns in a high dimensional space and derive a sta- 
tistical model for the class of frontal human faces. 
Similar face detection systems have been developed 
by others (Vaillant, et al.[Vaillant et a/.-1994], Row- 
ley, et al.[Rowley et a/.-1995], Moghaddam and A. 
Pentland[Moghaddam and PentIand-1995], Osuna 
et al.[Edgar Osuna and Girosi-1996]). 
Frontal human faces, despite their variability, share 
very similar patterns (shape and the spatial layout 
of facial features) and their color space is very con- 
strained. This is not the case with pedestrians. Fig- 
ure 1 shows several typical images of people in our 
database. These images illustrate the difficulties of 
pedestrian detection; there is significant variability 
in the patterns and colors within the boundaries of 
the body. The detection problem is also compli- 
cated by the absence of constraints on the image 
background. Given these problems, direct analy- 
sis of pixel characteristics (e.g. intensity, color and 
texture) is not adequate. Tnis paper presents a new 
approach based on learning a class-specific wavelet 
representation. This representation is motivated by 
an earlier piece of work by one of the authors [Sinha- 
1994a] [Sinha-1994b] who derived a new invariant 
called the 'ratio template' and applied it to face de- 
tection. 
A ratio template encodes the ordinal structure of 
the brightness distribution on a face. It consists 
of a set of inequality relationships between the 
average intensities of a few different face-regions. 
This design was motivated by the observation that 
while the absolute intensity values of different re- 
gions change dramatically under varying illumina- 
tion conditions, their mutual ordinal relationships 
(binarized ratios) remain largely unaffected. Thus, 
for instance, the forehead is typically brighter than 
the eye-socket regions for all but the most contrived 
lighting setups. A small set of such relationships, 
collectively called a ratio template, provides a pow- 
erful constraint for face detection.   The emphasis 
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Figure 1: Examples of images of people in the training database. The examples vary in color, texture, view- 
point (either frontal or rear) and background. 

on the use of qualitative relationships also renders 
the ratio template construct perceptually plausible 
(the human visual system is poor at judging abso- 
lute brightnesses but remarkably adept at making 
ordinal brightness comparisons). 
The success of the template-ratio approach for 
face detection and the shortcoming of the standard 
pixel-based image representation suggest the use of 
basis functions that encode differences in the av- 
erage intensities between neighboring regions. The 
Haar wavelet is a particular simple family of such 
basis functions that we choose for our system. The 
Haar wavelet representation has also been used for 
image database retrieval, Jacobs et a/.[Jacobs et al- 
1995], where the largest wavelet coefficients were 
used as a measure of similarity between two images. 
In our work, we use the wavelet representation to 
capture the structural similarities between various 
instances of the class. Another important feature 
of our work is the use of an overcomplete, or re- 
dundant, set of basis functions which is important 
in capturing global constraints on the object shape 
and provides adequate spatial resolution. Our re- 
sults on pedestrian detection using the wavelet rep- 
resentation demonstrate that it may be a promising 
framework for computer vision applications. 

2     Wavelets 
In this section, we review the Haar wavelet, describe 
a denser (redundant) transform, and describe the 
wavelet representation. 

2.1     The Haar Wavelets 
We provide only a concise description of wavelets; a 
more detailed treatment can be found in [Mallat- 
1989]. The definition of wavelets is closely re- 
lated to the concept of multi-resolution analysis 
that is based on a sequence of approximating sub- 
spaces, .. .Vj C V^+i C ..., such that each sub- 
space, Vj, describes finer details than the preceding 
one. The wavelet subspaces, {W^j}j, are defined to 
be the orthogonal complement of two consecutive 
approximating subspaces, V^+i = Vi®Wj, and 
can be interpreted as the subspace of "details" in 
increasing refinements. Each approximating sub- 
space, Vj, is spanned by a basis of scaling func- 
tions, {<t>{x)jj}u and, similarly, each wavelet sub- 

space, Wj, is spanned by a basis of wavelet func- 
tions, {'<P{x)jj}i. The union of the wavelet func- 
tions comprises a basis for L2{R)- It can be shown 
(under the standard condition of multi-resolution 
analysis) that all the scaling functions can be gen- 
erated from dilations and translations of one scal- 
ing function. Similarly, all the wavelet functions 
are dilations and translations of the mother wavelet 
function. The structure of the approximating and 
wavelet subspaces leads to an efficient cascade algo- 
rithm for the computation of the scaling coefficients, 
\jk, and the wavelet coefficients, jj^k'- 

n€Z 

(1) 

(2) 

where {hi} and {gt} are the filter coefficients cor- 
responding to the scaling and wavelet functions. It 
is important to observe that the discrete wavelet 
transform (DWT) performs downsampling or deci- 
mation of the coefficients at the finer scales since 
the filters h and g are moved in a step size of 2 for 
each increment of k. 
In this paper we use the Haar wavelets; the corre- 

.,0,|,i,0,0,...} and sponding filters are:  h = {. 

g = {...,0,-1^,0,0,...} 
The scaling coefficients are simply the averages of 
pairs of adjacent coefficients in the coarser level 
while the wavelet coefficients are the differences. 

2.1.1     2-Dimensional Wavelet Transform 

The natural extension of wavelets to 2-dimensional 
signals is obtained by taking the tensor product of 
two 1-dimensional wavelet transforms. The result 
is the three types of wavelet basis functions shown 
in Figure 2: the tensor product of a wavelet by a 
scaling function, ■>p(x,y) = ^{x) (g) <f>{y), is a ver- 
tical coefficient, a scaling function by a wavelet, 
tp(x,y) = (j){x) (g) i>{y), is a horizontal coefficient, 
and a wavelet by a wavelet, ip{x, y) = tp{x) ® 4'{y), 
is a corraer coefficient. 
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Since the wavelets that the standard transform 
generates have irregular support, we use the non- 
standard 2-dimensional DWT where, at a given 
scale, the transform is applied to each dimension se- 
quentially before proceeding to the next scale [Stoll- 
nitz et a/.-1994]. The results are Haar wavelets with 
square support at all scales. 

-i 1 
-I 

1 

1 •i 

(a) (b) (c) 

Figure 2: The 3 types of 2-dimensional non- 
standard Haar wavelets; (a) "vertical", (b) "hori- 
zontal", (c) "corner". 

2.1.2    A Wavelet Dictionary 

The standard Haar basis is not dense enough for 
our application. For the 1-dimensional transform, 
the distance between two neighboring wavelets at 
level n (with support of size 2") is 2". For better 
spatial resolution, we need a set of redundant ba- 
sis functions, or an overcomplete dictionary, where 
the distance between the wavelets at scale n is |2", 
see Figure 3. We call this a quadruple density dic- 
tionary. As one can easily observe, the straightfor- 
ward approach of shifting the signal and recomput- 
ing the DWT will not generate the desired dense 
sampling. Instead, this can be obtained by modi- 
fying the DWT. To generate wavelets with double 
density, where wavelets of level n are centered ev- 
ery ^2", we simply do not downsample in equation 
2. To generate the quadruple density dictionary, 
we do not downsample in equation 1 and get dou- 
ble density scaling coefficients. The next step is to 
calculate double density wavelet coefficients on the 
two sets of scaling coefficients — even and odd — 
separately. By interleaving the results of the two 
transforms we get quadruple density wavelet coef- 
ficients. For the next scale we keep only the even 
scaling coefficients of the previous level and repeat 
the quadruple transform on this set only; the odd 
scaling coefficients are dropped off. Since only the 
even coefficients are carried along at all the scales, 
we avoid an "explosion" in the number of coeffi- 
cients, yet provide a dense and uniform sampling of 
the wavelet coefficients at all the scales. As with 
the regular DWT, the time complexity is 0{n) in 
the number of pixels n. The extension for the 2- 
dimensional transform is straightforward. 

step 
■**■ 

- t 1 

Figure 3: Quadruple density 2D Haar basis. 

2.2     The Wavelet Representation 
The Haar coefficients preserve all the information 
in the original pixel-based representation but they 
encode it as the difference in the average intensity 
between two neighboring regions and at different 
scales. For the description of an object class we can 
impose or learn various constraints on the value of 
the wavelet coefficients. The constraints can be very 
specific, for examples, "the value of the wavelet co- 
efficient must lay in the range ...", or can be more 
qualitative, such as, "the coefficient must be differ- 
ent from zero." If we compute the wavelet trans- 
form on the log of the image intensities, the wavelet 
coefficients encode the ratios between the intensi- 
ties instead the differences. The use of an overcom- 
plete basis allows us to propagate constraints be- 
tween neighboring regions and to describe complex 
patterns. As a result, the use of difference or ratio 
coding of intensities in different scales provides a 
very flexible and expressive representation that can 
characterize complex object classes. Furthermore, 
the wavelet representation is computationally effi- 
cient for the task of object detection since we do not 
need to compute the transform for different image 
regions but only once for the whole image and look 
at different sets of coefficients for different spatial 
locations. We choose the quadruple density wavelet 
transform since it is found to provide adequate spa- 
tial resolution. 

2.2.1       Learning the Pedestrian Class Rep- 
resentation 

Given an object class, the central problem is how to 
learn which are the relevant coefficients that express 
structure common to the entire object class. In 
this section, we describe the learning of the pedes- 
trian class. Currently, we divided it into a two-stage 
learning process: identifying the wavelet coefficients 
and learning the relationships. 
Since the images our system analyzes are of pedes- 
trians in arbitrary cluttered scenes in unconstrained 
environments, it is easy to see that there are no con- 
sistent patterns in the color and texture of pedes- 
trian bodies or the backgrounds against which they 
stand. This lack of clearly discernible interior fea- 
tures is circumvented by relying on (1) differences 
in the intensity between pedestrian bodies and their 
backgrounds and (2) consistencies within regions in- 
side the body boundaries. Since the precise values 
of the wavelet coefficients and their signs have little 
meaning in this problem, we interpret the coeffi- 
cients as either indicating an almost uniform area, 
i.e. "no-change", if their absolute value is relatively 
small or as indicating "strong change" if their abso- 
lute value is relatively large. The wavelet template 
we seek to identify will consist solely of wavelet coef- 
ficients (either vertical, horizontal or corner) whose 
types ("change"/"no-change") are clearly identified 
and are consistent along the ensemble of pede.s- 
trian images. Coefficients that are not consistent 
or important are not used. The identification of the 
wavelet template consists of addressing the follow- 
ing three major questions: 

• The pedestrian images we use are of different 
subjects taken under different conditions; how 
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can we quantify the relative value of a coef- 
ficient as indicating "change" or "no-change" 
and how can we measure its consistency across 
the ensemble of examples? 

• Can we find a set of constraints on the wavelet 
coefficients, or wavelet representation, that 
characterizes the pedestrian class? 

• If such a wavelet representation is found, is 
its discriminative power high enough to detect 
pedestrians in cluttered scenes? 

In the remainder of this section, we address the first 
question of identifying the important basis func- 
tions. In the next section, we show how a classifier 
can learn the constraints on the wavelet coefficients. 
In the section on the experimental results, we show 
that the wavelet representation is an effective and 
discriminative representation for the class. 
The basic analysis to identify the important coef- 
ficients consists of two steps: first, we normalize 
the wavelet coefficients relative to the rest of the 
coeflScients in the patterns; second, we analyze the 
averages of the normalized coefficients along the en- 
semble. We have collected a set of 564 color images 
of people (Figure 1) for use in the learning. All 
the images are scaled and clipped to the dimen- 
sions 128 X 64 such that the people are centered 
and approximately the same size (the distance from 
the shoulders to feet is about 80 pixels). In our 
analysis, we restrict ourselves to the wavelets at 
scales of 32 x 32 pixels (one array of 15 x 5 coef- 
ficients for each wavelet class) and 16 x 16 pixels 
(29 X 13 for each class). For each color channel 
(RGB) of every image, we compute the quadru- 
ple dense Haar transform and take the coefficient 
value to be the largest absolute value among the 
three channels. The normalization step involves 
computing the average of each coefficient's class 
({vertical, horizontal, corner} x {16,32}) over all 
the pedestrian patterns and dividing every coeffi- 
cient by its corresponding class average. We cal- 
culate the averages separately for each class since 
the power distribution between the different classes 
may vary. 
To begin specifying the wavelet representation, we 
calculate the average of each normalized coefficient 
over the set of pedestrians. A base set of 597 color 
images of natural scenes of size 128 x 64 that do not 
contain people were gathered to compare with the 
pedestrian patterns. These non-pedestrian patterns 
are processed in the manner detailed above. Tables 
1(a) and 1(b) show the average coefficient values for 
the set of vertical Haar coefficients of scale 32 x 32 
for both the non-pedestrian and pedestrian classes. 
Several conclusions can be drawn from the tables. 
Table 1(a) shows that the process of averaging the 
coefficients within the pattern and then in the en- 
semble does not create spurious patterns. The av- 
erage values of the non-pedestrian coefficients are 
near 1 since these are random images that do not 
share any common pattern. The pedestrian aver- 
ages, on the other hand, show a clear pattern. The 
table shows strong response (values over 1.5) in the 
coefficients corresponding to the sides of the body. 
Conversely, the coeflScients along the center of the 
body are very weak (values less than 0.5). 

1.18 1.14 1.16 1.09 1.11 

1.13 1.06 1.11 1.06 1.07 

1.07 1.01 1.05 1.03 1.05 

1.07 0.97 1.00 1.00 1.05 

1.06 0.99 0.98 0.98 1.04 

1.03 0.98 0.95 0.94 1.01 

0.98 0.97 0.96 0.91 0.98 

0.98 0.96 0.98 0.94 0.99 

1.01 0.94 0.98 0.96 1.01 

1.01 0.95 0.95 0.96 1.00 

0.99 0.95 0.92 0.93 0.98 

1.00 0.94 0.91 0.92 0.96 

1.00 0.92 0.93 0.92 0.96 

(a) 
0.62 0.74 0.60 0.75 0.66 

0.76 0.92 0.54 0.88 0.81 

1.07 1.11 0.52 1.04 1.15 

1.38 1.17 0.48 1.08 1.47 

1.65 1.27 0.48 1.15 1.71 

1.62 1.24 0.48 1.11 1.63 

1.44 1.27 0.46 1.20 1.44 

1.27 1.38 0.46 1.34 1.27 

1.18 1.51 0.46 1.48 1.18 

1.09 1.54 0.45 1.52 1.08 

0.94 1.38 0.42 1.39 0.93 

0.74 1.08 0.36 1.11 0.72 

0.52 0.74 0.29 0.77 0.50 

(b) 

Table 1: Normalized vertical coefficients of scale 
32 X 32 of images with (a) random natural scenes 
(without people), (b) pedestrians. 

To visualize the emerging patterns for the different 
classes of coefficients we can use gray level to code 
the values of the coeflScients and display them in the 
proper spatial layout. Each coefficient is displayed 
as a small square where coefficients close to 1 are 
gray, stronger coefficients are darker, and weaker 
coefficients are lighter. Figures 4(a)-(d) show the 
gray level coding for the arrays of coarse scale co- 
efficients (32 X 32) and Figures 4(e)-(g) show the 
arrays of coefficients of the finer scale, (16 x 16). 
Figure 4(a) shows the vertical coefficients of ran- 
dom images; as expected this figure is uniformly 
gray. The corresponding images for the horizontal 
and corner coefficients, not shown here, are similar. 
In contrast, the coefficients of the people. Figures 
4(b)-(d), show clear patterns. It is interesting to ob- 
serve that each class of wavelet coefficients is tuned 
to a different type of structural information. The 
vertical wavelets. Figure 4(b), capture the sides of 
the pedestrians. The horizontal wavelets. Figure 
4(c), respond to the line from shoulder to shoul- 
der and to a weaker belt line. The corner wavelets. 
Figure 4(d), are tuned better to corners, for exam- 
ple, the shoulders, hands and feet. The wavelets of 
finer scale in Figures 4(e)-(g) provide better spatial 
resolution of the body s overall shape and smaller 
scale details such as the head and extremities ap- 
pear clearer. We conduct a similar analysis with the 
wavelets of the log of the intensities (that are related 

210 



Figure 4: Ensemble average values of the wavelet coefficients coded using gray level. Coefficients whose values 
are above the template average are darker, those below the average are lighter, (a) vertical coefficients of 
random scenes, (b)-(d) vertical, horizontal and corner coefficients of scale 32 x 32 of images of people, (e)-(g) 
vertical, horizontal and corner coefficients of scale 16 x 16 of images of people. 

to the ratio of intensities). The results of this statis- 
tical analysis are similar to the intensity differencing 
wavelets, indicating that, for pedestrians, the differ- 
ence and ratio versions capture essentially identical 
information. An analysis using the sigmoid function 
as a "soft threshold" on the normalized coefficients 
yields equivalent results. In general, the learning of 
the coefficients can be based on different statistical 
analyses of the ensemble coefficients. We find it in- 
triguing that a basic measure like the ensemble av- 
erage provides clear identification of the coefficients 
as shown in Figure 4. The result of the analysis 
described above is a set of 29 coefficients that are 
consistent along the ensemble either as indicators of 
"change" or "no-change". There are 6 vertical and 
1 horizontal coefficients at the scale of 32 x 32 and 
14 vertical and 8 horizontal at the scale of 16 x 16. 
The identified set of coefficients is used as a feature 
vector for a classification algorithm which is trained 
to classify pedestrians from non-pedestrians. 
We have decomposed the learning of the pedestrian 
class into a two-stage learning process. In the first 
stage, described in this section, we perform a di- 
mensionality reduction where we identify the most 
important coefficients from the original set of 1326 
wavelets coefficients (three types in two scales). 
Based on our initial experiments, it is doubtful that 
successful learning of the relationship between coef- 
ficients' values could be achieved on the original set 
of 1326 coefficients without introducing several or- 
ders of magnitude of additional training data. Most 
of these coefficients do not necessarily convey rele- 
vant information about the pedestrian class but, by 
starting with a large overcomplete dictionary, we 
would not sacrifice details or spatial accuracy. The 
above learning step extracts the most prominent 
features and results in a significant dimensionality 
reduction. 

3      The Detection System 
Once we have identified the important basis func- 
tions we can use various classification techniques to 
learn the relationships between the wavelet coeffi- 
cients that define the pedestrian class. In this sec- 
tion, we present the overall architecture of the de- 

tection system, the classifier we used (the support- 
vector machine), and the training process. We con- 
clude with experimental results of the detection sys- 
tem. 

3.1 System Architecture 
The system detects people in arbitrary positions in 
the image and in different scales. To accomplish this 
task, the system is trained to detect a pedestrian 
centered in a 128 x 64 pixel window. This training 
stage is the most difficult part of the system train- 
ing and once it is accomplished the system can de- 
tect pedestrians at arbitrary positions, by scanning 
all possible locations in the image by shifting the 
128 x 64 window. This is combined with iteratively 
resizing the image to achieve multi-scale detection. 
For our experiments, we scale the novel image from 
0.2 to 1.5 times its original size, at increments of 
0.1. At any given scale, instead of recomputing the 
wavelet coefficients for every window in the image, 
we compute the transform for the whole image and 
do the shifting in the coefficient space. A shift of 
one coefficient in the finer scale corresponds to a 
shift of 4 pixels in the window and a shift in the 
coarse scale corresponds to a shift of 8 pixels. Since 
most of the coefficients in the wavelet template are 
at the finer scale (the coarse scale coefficients hardly 
change with a shift of 4 pixels), we achieve an effec- 
tive spatial resolution of 4 pixels by working in the 
wavelet coefficient space. 

3.2 System Training 
To train our system, we use a database of frontal 
and rear images of people from outdoor and in- 
door scenes. The initial non-people in the training 
database are patterns from natural scenes not con- 
taining people. The combined set of positive and 
negative examples form the initial training database 
for the classifier. A key issue with the training 
of detection systems is that, while the examples 
of the target class, in this case pedestrians, are 
well defined, there are no typical examples of non- 
pedestrians. The main idea in overcoming this 
problem of defining this extremely large negative 
class is the use of "bootstrapping" training [Sung 
and Poggio-1994]. After the initial training, we run 
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the system over arbitrary images that do not con- 
tain any people. Any detections are clearly identi- 
fied as false positives and are added to the database 
of negative examples and the classifier is then re- 
trained with this larger set of data. These iterations 
of the bootstrapping procedure allows the classi- 
fier to construct an incremental refinement of the 
non-pedestrian class until satisfactory performance 
is achieved. This bootstrapping technique is illus- 
trated in Figure 5. 

ROC Curve for Support Vector Classifier 

Initial Training Set 

Clas,sifier 

False Positives 

Pedestrian 
Detection 
System 

Figure 5: Incremental bootstrapping to improve the 
system performance. 

3.3      Classification Schemes 
As described in the previous section, the decision 
task, whether a given window contain a pedestrian 
or not, is the most difficult task and crux of the de- 
tection system. In Section 2.2.1 we describe the 
identification of the significant coefficients which 
characterized the pedestrian class. These coeffi- 
cients can be used as feature vector for various clas- 
sification methods. 

3.3.1 Basic Template Matching 

The simplest classification scheme is to use a basic 
template matching measure. As in Section 2.2.1, 
the normalized template coefficients are divided 
into two categories: coefficients above 1 (indicating 
strong change) and below 1 (weak change). For ev- 
ery novel window, the wavelet coefficients are com- 
pared to the pedestrian template. The matching 
value is the ratio of the coefficients in agreement. 
A similar approach was used in [Sinha-1994a] for 
face detection with good results. While this basic 
template matching scheme is very simple — bet- 
ter classification techniques can be applied — it is 
interesting to see how well it will perform on this 
more complex task. 

3.3.2 Support Vector Machines 

Instead of the simple template matching paradigm 
we can use a more sophisticated classifier which will 

3 4 5 
False Detection Rate 

Figure 7: ROC curves for the support vector detec- 
tion system; the bottom curve is over the entire test 
set, the top curve is over the "high quality" set. 

learn the relationship between the coefficients from 
given sets of positive and negative examples. The 
classifier can learn more refined relationships than 
the simple template matching scheme and therefore 
can provide more accurate detection. 
The classification technique we use is the support 
vector machine (SVM) developed by Vapnik et 
al.[Boser et a/.-1992][Vapnik-1995]. This recently 
developed technique has several features that make 
it particularly attractive. Traditional training tech- 
niques for classifiers, such as multilayer perceptrons 
(MLP), use empirical risk minimization and only 
guarantee minimum error over the training set. In 
contrast, the SVM machinery uses structural risk 
minimization which minimizes a bound on the gen- 
eralization error and therefore should perform bet- 
ter on novel data. Another interesting aspect of the 
SVM is that its decision surface depends only on 
the inner product of tTie feature vectors. This leads 
to an important extension since we can replace the 
Euclidean inner product by any symmetric positive- 
definite kernel K{x,y) [Riesz and Sz.-Nagy-1955]. 
This use of a kernel is equivalent to mapping the 
feature vectors to a high-dimensional space, thereby 
significantly increasing the discriminative power of 
the classifier. For our classification problem, we find 
that using a polynomial of degree two as the kernel 
provides good results. 
It should be observed, that from the view point of 
the classification task, we could use the whole set 
of coefficents as a feature vector. However, using 
all the wavelet functions that describe a window of 
128 X 64 pixels would yield vectors of very high di- 
mensionality, as we mentioned earlier. The training 
of a classifier with such a high dimensionality would 
in turn require too large an example set. The tem- 
plate learning stage of Section 2.2.1 serves to select 
the basis functions relevant for this task and to re- 
duce their number considerably (to a very reason- 
able 29). 

4      The Experimental Results 
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Figure 6:   Results from the pedestrian detection system.   These are typical images of relatively complex 
scenes that are used to test the system. 

To evaluate the system performance, we start with a 
database of 564 positive examples and 597 negative 
examples. The system then undergoes the boot- 
strapping cycle detailed in Section 3.2. For this pa- 
per, the support vector system goes through three 
bootstrapping steps, ending up with a total of 4597 
negative examples. For the template matching ver- 
sion a threshold of 0.7 (70% matching) was empiri- 
cally found to yield good results. 
Out-of-sample performance is evaluated over a test 
set consisting of 72 images for both the template 
matching scheme and the support vector classifier. 
The test images contain a total of 165 pedestrians 
in frontal or near-frontal poses; 24 of these pedes- 
trians are only partially observable (e.g. with body 
regions that are indistinguishable from the back- 
ground). Since the system was not trained with 
partially observable pedestrians, we would not even 
expect a perfectly trained system (with the current 
template) to detect these instances. To give a fair 
account of the system, we present statistics for both 
the total set and the set of 141 "high quality" pedes- 
trian images. Results of the tests are presented in 
Table 2 for representative systems using template 
matching and support vectors. 
The template matching system has a pedestrian de- 
tection rate of 52.7%, with a false positive rate of 1 
for every 5,000 windows examined. The success of 
such a straightforward template matching measure 
suggests that the template learning scheme extracts 
non-trivial structural regularity within the pedes- 
trian class. 

Detection 
Rate 

False Positive 
Rate (per window) 

Template 
Matching 52.7% (61.7%) 1:5,000 
SVM 69.7% (81.6%) 1:15,000 

Table 2: Performance of the pedestrian detection 
system; values in parentheses are for the set of "high 
quality" pedestrian images. 

For the more sophisticated system with the support 
vector classifier, we perform a more thorough anal- 
ysis. In general, the performance of any detection 
system exhibits a tradeoff between the rate of de- 
tection and the rate of false positives. Performance 
drops as we impose more stringent restrictions on 
the rate of false positives. To capture this tradeoff, 
we vary the sensitivity of the system by threshold- 
ing the output and evaluate the ROC curve, given in 
Figure 7. From the curve, we can see, for example, 
that if we have a tolerance of one false positive for 
every 15,000 windows examined, we can achieve a 
detection rate of 69.6%, and as high as 81.6% on the 
"high quality" set. As we expect, the support vector 
classifier with the bootstrapping training performs 
better than the "naive" template matching scheme. 
In Figure 6 we show typical images that are used 
to test the system. These are very cluttered scenes 
crowded with complex patterns. Considering the 
complexity of these scenes  and the difficulties of 

213 



pedestrian detection in natural outdoor scenes, we 
consider the above detection rate to be high. It is in- 
teresting to observe that most of the false positives 
are patterns with overall proportions similar to the 
human body. We believe that additional training 
and refinement of the current system will reduce 
the false detection rate further. 
The system is currently trained only on frontal and 
rear views of pedestrians. Training the classifier to 
handle side views can be accomplished in an identi- 
cal manner and is our next extension to the system. 

5    Conclusion 
In this paper, we introduce the idea of a redun- 
dant wavelet representation and demonstrate how 
it can be learned and used for pedestrian detection 
in a cluttered scene. This representation yields not 
only a computationally efficient algorithm but an 
effective learning scheme as well. The success of 
the wavelet representation for pedestrian detection 
comes from its ability to capture high-level knowl- 
edge about the object class (structural information 
expressed as a set of constraints on the wavelet co- 
efficients) and incorporate it into the low-level pro- 
cess of interpreting image intensities. Attempts to 
directly apply low-level techniques such as edge de- 
tection and region segmentation are likely to fail in 
the type of images we analyze since these methods 
are not robust, are sensitive to spurious details, and 
give ambiguous results. Using the wavelet template, 
only significant information that characterizes the 
object class — as obtained in the learning phase — 
is evaluated and used. 
The strength of our system comes from the expres- 
sive power of the redundant wavelet representation 
- this representation effectively encodes the inten- 
sity relationships of certain pattern regions that de- 
fine a complex object class. The encouraging results 
of our system and related work on face detection, 
[Sinha-1994a] [Sinha-1994b], suggest that the ap- 
proach described in this paper may well generalize 
to several other object detection tasks. 
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Self-Taught Visually-Guided Pointing for a Humanoid Robot 

M. Marjanovic     B. Scassellati    M. Williamson 
Massachusetts Institute of Technology        Cambridge MA 

Abstract 

The authors implemented a system which performs a 
fundamental visuomotor coordination task on the hu- 

manoid robot Cog. Cog's task was to saccade its pair 
of two degree-of-freedom eyes to foveate on a target, 
and then to maneuver its six degree-of-freedom com- 
pliant arm to point at that target. This task requires 
systems for learning to saccade to visual targets, gen- 
erating smooth arm trajectories, locating the arm in 
the visual field, and learning the map between gaze 
direction and correct pointing configuration of the 
arm,. All learning was self-supervised solely by vi- 
sual feedback. The task was accomplished by many 
parallel processes running on a seven processor, ex- 
tensible architecture, MIMD computer. 

1    Introduction 

This paper is one of a series of developmental snap- 
shots from the Cog Project at the MIT Artificial 
Intelligence Laboratory. Cog is a humanoid robot 
designed to explore a wide variety of problems in 
artificial intelligence and cognitive science [5]. To 
date our hardware systems include a ten degree-of- 
freedom upper-torso robot, a multi-processor MIMD 
computer, a video capture/display system, a six 
degree-of-freedom series-elastic actuated arm, and 
a host of programming language and support tools 
[3, 4]. This paper focuses on a behavioral system 
that learns to coordinate visual information with 
motor commands in order to learn to point the arm 
toward a visual target. Additional information on 
the project background can be found in [5, 7, 14, 10]. 

To achieve visually-guided pointing, we construct a 
system that first learns the mapping from camera 

"The authors receive support from a National Sci- 
ence Foundation Graduate Fellowship, a National De- 
fense Science and Engineering Graduate Fellowship, and 
JPL Contract # 959333, respectively. Support for the 
Cog project is provided by an ONR/ARPA Vision MURI 
Grant (No. N00014-95-1-0600), a National Science Foun- 
dation Young Investigator Award (No. IRI-9357761) to 
Professor Lynn Andrea Stein, and by the J.H. and E.V. 
Wade Fund. 

image coordinates x = {x,y) to the head-centered 
coordinates of the eye motors e — (pan, tilt) and 
then to the coordinates of the arm motors cv = 
(ao-.-Os). An image correlation algorithm constructs 

a saccade map S : x —* e, which relates positions in 
the camera image with the motor commands nec- 
essary to foveate the eye at that location. Our 
task then becomes to learn the ballistic movement 
mapping from head-centered coordinates e to arm- 
centered coordinates a. To simplify the dimension- 
ality problems involved in controlling a six degree-of- 
freedom arm, arm positions are specified as a linear 
combination of basis posture primitives. The ballis- 
tic mapping B : e—^ a is constructed by an on-line 
learning algorithm that compares motor command 
signals with visual motion feedback clues to localize 
the arm in visual space. 

2     Robot Platform 

This section gives a brief specification of the physical 
subsystems of Cog (see Figure 1) that are directly 
relevant to our pointing task. 

To approximate human eye movements, the camera 
system has four degrees-of-freedom consisting of two 
active "eyes" [1]. Each eye can rotate about a ver- 
tical axis (pan) and a horizontal axis (tilt). Camera 
images are digitized to produce 120 x 120 images in 
8-bit grayscale. 

The arm is loosely based on the dimensions of a hu- 
man arm, and is illustrated in Figure 1. It has 6 
degrees-of-freedom, each powered by a DC electric 
motor through a series spring (a series elastic actu- 
ator, see [13]). Motion of the arm is achieved by 
changing the equilibrium positions of the joints, not 
by commanding the joint angles directly. 

The computational control for Cog is split into two 
levels: an on-board local motor controller for each 
motor, and a scalable MIMD computer that serves 
as Cog's "brain." This division of labor allows for an 
extensible and modular computer while still provid- 
ing for rapid, local motor control. Each motor has 
its own dedicated local motor controller, a special 
purpose board with a Motorola 6811HC11E2 micro- 
controller, which reads the encoder, performs servo 

215 



^^^•"'^^^^Wl 

Figure 1: Cog, an upper-torso humanoid robot. Cog 
has two degrees-of-freedom in the waist, one in the 
shoulder, three in the neclc, six on the arm, and two 
for each eye. 

calculations, and drives the motor with a 32KHz 
pulse-width modulated signal. Cog's "brain" is a 
scalable MIMD computer consisting of up to 239 
processor nodes (although only eight are in use so 
far). During operation, the brain is a fixed topology 
network. However, the topology can be changed and 
scaled by adding additional nodes and connections. 
All components of the processing system communi- 
cate through 8K by 16 bit DPRAM connections, so 
altering the topology is relatively simple. 

3    Task Overview 

The implementation discussed here can be decom- 
posed into three major pieces, each developed semi- 
independently: visual, arm motor, and a ballistic 
map. The visual system is responsible for mov- 
ing the eyes, detecting motion, and finding the end 
of the arm. The arm motor system maintains the 
variable-compliance arm and generates smooth tra- 
jectories between endpoints specified in a space of 
basis arm postures. The ballistic mapping system 
learns a feed-forward map from gaze position to arm 
position and generates reaching commands. Each of 
these subsystems is described in greater detail be- 
low. 

Although the basic activity for this particular task 
is sequential — foveate, reach, train, repeat — there 
is no centralized scheduler process. Rather, the ac- 
tion is driven by a set of triggers passed from one 
process to another. This is not a very important 
design consideration with the single task in mind; 

however as we add more processes, which act in par- 
allel and compete for motor and sensor resources, a 
distributed system of activation and arbitration will 
become a necessity. 

4    Visual System 

The components of the visual system used in this 
task can be grouped into three functional units: a 
saccade map trainer, a motion detection module, 
and a motion segmentation module. 

4.1     Learning the Saccade Map 

The saccade trainer incrementally learns the map- 
ping between the location of salient stimuli in the vi- 
sual image with the eye motor commands necessary 
to foveate on that object. With the neck in a fixed 
position, this task simplifies to learning the mapping 
between image coordinates and the pan/tilt encoder 
coordinates of the eye motors. The behavioral cor- 
relate of this simplified task is to learn the pan and 
tilt positions necessary to saccade to a visual target. 
Initial experimentation revealed that for the wide- 
angle cameras, this saccade map is linear near the 
image center but rapidly diverged near the edges. 
An on-line learning algorithm was implemented to 
incrementally update an initial estimate of the sac- 
cade map by comparing image correlations in a local 
field. This learning process, the saccade map trainer, 
optimized a look-up table that contained the pan 
and tilt encoder offsets needed to saccade to a given 
image coordinate. 

Saccade map training began with a linear estimate 
based on the range of the encoder limits (determined 
during calibration). For each learning trial, the sac- 
cade map trainer generated a random visual target 
location {xt,yt) and recorded the normalized image 
intensities /< in a 16 x 16 patch around that point. 
The process then issued a saccade motor command 
using the current map entries. After the saccade, a 
new image /„ is acquired. The normalized 16 x 16 
center of the new image is then correlated against 
the target image. Thus, for offsets XQ and t/o, we 
sought to maximize the dot-product of the image 
vectors: 

max  I V V" It{i, j) ■ In{xo + i, 2/o + j) (1) 

Since each image was normalized, maximizing the 
dot product of the image vectors is identical to min- 
imizing the angle between the two vectors. This 
normalization also gives the algorithm a better re- 
sistance to changes in background luminance as the 
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Figure 2: Saccade Map after 0 (dashed lines) and 
2000 (solid lines) learning trials. The figure shows 
the pan and tilt encoder values for every tenth posi- 
tion in the image array within the ranges x=[10,110] 
(pan) and y=[20,100] (tilt). 

camera moves. In our experiments, the offsets XQ 

and yo had a range of [—2,2]. The offset pair that 
maximized the expression in Equation 1, scaled by 
a constant factor, was used as the error vector for 
training the saccade map. 

Note that a single learning step of this hill-climbing 
algorithm does not find the optimal correlations 
across the entire image. The limited search radius 
vastly increases the speed of each learning trial at 
the expense of producing difficulties with local max- 
ima. However, in the laboratory space that makes 
up Cog's visual world, there are many large objects 
that are constant over relatively large pixel areas. 
The hill-climbing algorithm effectively exploited this 
property of the environment to avoid local maxima. 

To simplify the learning process, we initially trained 
the map with random visual positions {xt,yt) that 
were multiples of ten in the ranges [10,110] for xt 
(the pan dimension) and [20,100] for yt (tilt). By 
examining only a subset of the image points, we 
could quickly train a limited set of points which 
would bootstrap additional points. Examining im- 
age points closer to the periphery was also unneces- 
sary since the field of view of the camera was greater 
than the range of the motors; thus there were points 
on the edges of the image that could be seen but 
could not be foveated regardless of the current eye 
position. Figure 2 shows the data points in their 
initial linear approximation (dashed lines) and the 
resulting map after 2000 learning trials (solid lines). 
The saccade map after 2000 trials clearly indicates 
a slight counter-clockwise rotation of the mounting 
of the camera, which was verified by examination of 

the hardware. The training quickly reached a level of 
1 pixel-error or less per trial within 2000 trials (ap- 
proximately 20 trials per image location). Perhaps 
as a result of lens distortion effects, this error level 
remained constant regardless of continued learning. 

Visual comparison of the target images before sac- 
cade and the new images after saccade showed good 
match for all training image locations after 2000 tri- 
als. A set of examples from the collected data is 
shown in Figure 3. 

4.2    Motion Detection and Segmentation 

The motion detection system uses local area diff"er- 
ences between successive camera images to identify 
areas where motion has occured. The absolute value 
of the difference between the grayscale values in each 
image is thresholded to provide a raw motion image 

(Iraw = ^(1-^0 — h\))- The raw motion image is 
then used to produce a motion receptive field map, 
a 40 X 40 array in which each cell corresponds to 
the number of cells in a 3 x 3 receptive field of the 
raw motion image that are above threshold. This 
reduction in size allows for greater noise tolerance 
and increased processing speed. 

The motion segmentation module takes the recep- 
tive field map from the motion detection processor 
and produces a bounding box for the largest contigu- 
ous motion group. The process scans the receptive 
field map marking all locations which pass threshold 
with an identifying tag. Locations inherit tags from 
adjacent locations through a region grow-and-merge 
procedure. Once all locations above threshold have 
been tagged, the tag that has been assigned to the 
most locations is declared the "winner". The bound- 
ing box of the winning tag is computed and .sent to 
the ballistic map trainer. 

5    Arm Motion Control 

The method used to control the arm takes inspira- 
tion from work on organization of movement in the 
spinal cord of frogs [2, 8, 12]. These researchers elec- 
trically stimulated the spinal cord, and measured the 
forces at the foot, mapping out a force field in leg- 
motion space. They found that the force fields were 
convergent (the leg would move to fixed posture un- 
der the field's influence), and that there were only 
a small number of fields (4 in total). This lead to 
the suggestion that these postures were primitives 
that could be combined in different ways to gener- 
ate movement [11]. Details on the application of this 
research to robotic arms can be found in [14]. 

In Cog's arm, the primitives are implemented as a 
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Figure 3: Expanded example of the visual learning of the saccade map. The center collage is the pre-saccade 
target images It for a subset of the entire saccade map. The left collage shows the post-saccade image centers 
with no learning. The right collage shows the post-saccade image centers after 2000 learning trials. The 
post-learning collage shows a much better match to the target than the pre-learning collage. 

set of equilibrium angles for each of the arm joints, 
as shown in Figure 4. Each primitive corresponds 
to a different posture of the arm.   Four primitives 

INTERPOLATE BETWEEN 
POSTURES TO MOVE IN 
SHADED AREA 

ARM IN REST 
POSITION 

' r\-^ 

.> 

V                 ) 
3 POSSIBLE REACHING 
PRIMITIVES 

Figure 4: Primitives for the reaching task. There are 
four primitives: a rest position, and three in front of 
the robot. Linear interpolation is used to reach to 
points in the shaded area. 

are used: a rest position, and three on the extremes 
of the workspace in front of the robot. These are 
illustrated in Figure 5. Positions in space can be 
reached by interpolating between the primitives, giv- 
ing a new set of equilibrium angles for the arm, and 
so a new end-point position. The interpolation is lin- 
ear in primitive and joint space, but due to the non- 
linearity of the forward kinematics (end-point posi- 
tion in terms of joint angles), the motion in Carte- 
sian space is not linear. However since only 4 prim- 
itives are used to move the 6 DOF arm, there is a 
large reduction in the dimensionality of the problem, 
with a consequent reduction in complexity. 

The reaching behavior takes inspiration from stud- 
ies of child development [6]. Children always begin 
a reach from a rest position in front of their bodies. 
If they miss the target, they return to the rest posi- 
tion and try again. This reaching sequence is imple- 
mented in Cog's arm. Infants also have strong grasp- 

ing and withdrawal reflexes, which help them inter- 
act with their environment at a young age. These 
reflexes have also been implemented on Cog. 

6    Ballistic Map 

The ballistic map is a learned function B mapping 
eye position e into arm position a, such that the re- 
sulting arm configuration puts the end of the arm 
in the center of the visual field. Arm position is 
specified as a vector in a space of three basic 6- 
dimensional joint position vectors — the reach prim- 
itives (shown in Figure 5). There is also a fourth 
"rest" posture to which the arm returns between 
reaches. 

The reach primitive coefficents are interpreted as 
percentages, and thus are required to sum to unity. 
This constrains the reach vectors to lie on a plane, 
and the arm endpoint to lie on a two-dimensional 
manifold. Thus, the ballistic map B is essentially a 
function 7e2 -+7^^ 

We attempted to select reach primitives such that 
the locus of arm endpoints was smooth and 1-to-l 
when mapped onto the visual field. The kinematics 
of the arm and eye specify a function E : a i—>- e 
which maps primitive-specified arm positions into 
the eye positions which stare directly at the end of 
the arm. The ballistic map B is essentially the in- 
verse of E: we desire E{B{e)) = e. If i? is 1-to-l, 

then B is single-valued and we need not worry about 
learning discontinuous or multiple output ranges. 

The learning techniques used here closely parallels 
the distal supervised learning approach [9]. We ac- 

tually learned the forward map E as well as B\ this 
was necessitated by our training scheme. However, 
E is useful in that it gives an expectation of where to 
look to find the arm. This can be used to generate a 
window of attention to filter out distractions in the 
motion detection. 
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Figure 5: The basic arm postures. From left, "rest", "front", '"up", and "side." 

6.1     Map Implementation 

The maps B and E are both implemented using a 
simple radial basis function approach. Each map 
consists of 64 Gaussian nodes distributed evenly over 
the input space. The nodes have identical variance, 
but are associated with different output vectors. The 
output of such a network (y) for some input vector 
i is given by: 

k 

fhere 

gk{i) =exp( jl Uk\?)- 

and Wk is a set of weights. 

The ballistic map is initialized to point the arm to 
the center of the workspace for all gaze directions. 
The forward map is initialized to yield a centered 
gaze for all arm positions. 

6.2     Learning the Ballistic Map 

After the arm has reached out and its endpoint has 
been detected in the visual field, the ballistic map 
B is updated. However, since the error signal is a 
position in the image plane, the training cannot be 
done directly. We need to use the forward map E 
and the saccade map S. 

The current gaze direction eo is fed through B to 
yield a reach vector /? (/?-space is a two dimensional 
parameterization of the a reach-primitive space). 

This (3 is sent to the arm to generate a reaching 
motion. It is also fed through the forward map E 
to generate an estimate e*p of where the arm will be 
in gaze-space after the reach. In an ideal world, Cp 
would equal e^. 

After the arm has reached out, the motion detec- 
tion determines the position x of the arm in pixel 
coordinates. If the reach were perfect, this would be 
the center of the image. Using the saccade map S, 
we can map the difference in image (pixel) offsets 
between the end of the arm and the image center 
into gaze (eye position) offsets. So, we can use 5 to 
convert the visual position of the arm x into a gaze 
direction error Ae*. 

We still cannot train B directly, since we have an 
e-space error but a /?-space output. However, we 
can backpropagate Ae* through the forward map E 
to yield a useful error term. 

After all is said and done, we are performing basic 
least-mean-squares (LMS) gradient descent learning 

on the gaze error Ae*. For B defined by: 

/?=5(e) = ^t?,<7,(r) 

the update rule for the weights Wk is: 

Awj-i = -7]    Ae Okie). 

for some learning rate rj. 

The forward map F is learned simultaneously with 
the ballistic map. Since e = CQ + Ae is the gaze 
position of the arm after the reach, and Cp is the 

position predicted by F, F can be trained directly 
via gradient descent using the error (e'p — e). 

7    Results, Future Work, and Conclu- 
sions 

At the immediate time of this writing, the complete 
system has been implemented and debugged, but has 
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not been operational long enough to fully train the 
ballistic map. Initial results on small subsets of the 
visual input space show promising results. However, 
it will take some more extended training sessions 
before Cog has fully explored the space of reaches. 

In addition to completing Cog's basic ballistic point- 
ing training, our plans for upcoming endeavors in- 

clude: 

• incorporating additional degrees of freedom, 
such as neck and shoulder motion, into the 
model 

• refining the arm finding process to track the 
arm during reaching 

• expanding the number of primitive arm 
postures to cover a full three-dimensional 

workspace 

• extracting depth information from camera ver- 
gence and stereopsis, and using that to imple- 
ment reaching to and touching of objects. 

• adding reflexive motions such as arm with- 
drawal and a looming response, including rais- 
ing the arm to protect eyes and head 

• making better use of the inverse ballistic map in 
reducing the amount of computation necessary 
to visually locate the arm. 

This pointing task, albeit simple when viewed along- 
side the myriad complex motor skills of humans, is a 
milestone for Cog. This is the first task implemented 
on Cog which integrates major sensory and motor 
systems using a cohesive distributed network of pro- 
cesses on multiple processors. To the authors, this 
is a long-awaited proof of concept for the hardware 
and software which have been under development for 
the past two and a half years. Hopefully, this task 
will be a continuing part of the effort towards an 
artificial machine capable of human-like interaction 
with the world. 
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ABSTRACT 

We review the design of a working system that vi- 
sually recognizes hand gestures for the control of a 
window based user interface. We summarize many 
of the most significant environmental and human fac- 
tors aspects of this modality of interaction that we 
determined, and indicate how they impact system de- 
sign and utility. We explore two such interface issues 
in depth. First, we describe how it is necessary and 
possible to visually smooth the camera input using a 
non-linear physical model of the cursor. Second, we 
show how a standard HCI model of object selection 
(Fitts' Law) can be extended to model system vi- 
sual tracking and visual selecting performance. We 
conclude by presenting and evaluating total system 
performance. 

1    Introduction 

We have previously described a working system that 
visually recognizes hand gestures for control of a 
window based user interface. Knowledge of natural 
human gesticulation is used to design the system for 
ease of use and ease of recognition. Task knowl- 
edge is made explicitly available to the system in the 
form of a grammar describing the interaction lan- 
guage. This provides a sense of context within the 
conversation, allowing the system to focus on rele- 
vant image events, and to use simple but potentially 
ambiguous features. We avoid the complexity of an 
internal model of hand shape by using a neural net- 
work to classify various poses. The result is a system 
which is easily modified to perform a range of similar 
tasks in various environments. 

A camera placed below the screen captures a se- 

*This work is supported in part by DARPA contract DACA-76-92- 
C-007. 

quence of images of a gesturing hand against a rela- 
tively stadonary background. The hand is segmented 
from low resoludon decimations of the image se- 
quence using color and various image processing 
operations. The size and location of the hand in each 
image are used to create a sequence of X-location, 
Y-location, Size (XYS) tokens, which is translated 
to screen coordinates, smoothed and used to position 
the cursor where the user is pointing on the screen. 
The motion of the hand is interpreted by extracting 
symbolic features, such as pauses, changes of di- 
rection, or distance from the sequence of smoothed 
tokens. The sequence of features is interpreted by 
traversing a transition network encoding the inter- 
action language. At certain points in the network 
it becomes necessary to classify the pose of the 
hand. Then a high resolution image is cropped tightly 
around the region indicated by the current XYS to- 
ken and a more accurate segmentation is performed. 
This image is preprocessed to a canonical form and 
passed to a neural net that has been trained to dif- 
ferentiate the various hand poses. The classification 
is used to determine the next node in the transition 
network. At key points in the interpretation of a 
gesture, the transition network calls out actions that 
do such things as bring up menus, or select or move 
objects on the screen. (For more details of system 
operations, see [Kjeldsen, 1996].) 

2   Human Interface Issues 

In this section, we present some high-level obser- 
vations on how the gesture understanding system's 
physical setup and environment interact with what 
appear to be natural human characteristics and pref- 
erences. We also indicate how a simple visual add-on 
to an existing mouse-based interface cannot be fully 
successful, as the two modalities differ substantially 
in their understanding of the interactions. 
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2.1    Environmental Considerations 

2.1.1    Physical Setup 

Placing the camera below the screen and looking up 
avoids extreme foreshortening of the arm and makes 
it easy to detect a gesture when it raises off the key- 
board to gesture. Although bare forearms are a prob- 
lem, the hand looms large in the image making it easy 
to find, and other skin blobs, including the user's face, 
are guaranteed to be much smaller. Even though the 
typical placement of camera for video-conferencing 
is above the screen, for both these applications the 
ideal camera placement is actually inside the screen. 

The user does not appear to think in terms of the 
location of their hand in the image, but rather with 
respect to the screen. The system creates the illusion 
that the fingertip is a laser pointer and the cursor 
appears where the beam would contact the screen; 
this illusion is non-linear, as by geometry it must 
vary with the vertical location on the screen. 

2.1.2    Lighting 

Human skin has a distinct color, rich in lightly sat- 
urated red tones, a characteristic that persists across 
a wide range of apparent skin colors and lighting 
conditions. The fundamental assumption of the seg- 
mentation method is that skin coloration is relatively 
unique in the target environment. But we also note 
that people rarely paint walls ceilings with skin-tone 
paints or wear skin-tone clothes, as important objects 
like people need to stand out in the environment, for 
human purposes as well. 

Experimentation has determined that the skin is a 
highly Lambertian surface, and that office lighting is 
usually diffuse for many humanly desirable reasons. 
Consequently, attempting to only use the intensity 
of the color signal results in a washed out image 
of the hand. However, the normalized red channel 
of the color signal is actually brighter in shadows, 
and subtracting it from the intensity channel helps 
highlight features of the hand, including creases and 
the lines between fingers. 

Generally, the human need for strong office lighting 
ensures enough image contrast, and the properties 
of skin reduce color variations due to specularity, 
light source coloration, inter-reflections, and surface 
normal direction. We have found that color segmen- 
tation generalizes across different skin-tones, includ- 
ing people of Asian, Indian, European, and African 

descent, with the major exception being that training 
on Asian tones does not seem to generalize as well 
to others, and vice versa. 

2.1.3   Physics, Gravity, and Geometry 

The cursor and other screen objects have been loosely 
modeled as masses to be dragged by springs. How- 
ever, the spring function is non-linear, in order to 
tradeoff between making the cursor movement feel 
too sluggish at moderately large movements, and too 
twitchy at small displacements. (We detail this con- 
cept in the next section.) Similarly, altering object 
mass dynamically adjusts the "feel" of the objects ap- 
propriately. The mass of the cursor is increased when 
moving a window, so that the user gets the feeling 
that the object is heavier, and it lags noticeably be- 
hind the hand; however, it is now quite stable when 
the hand is not moving. Thus, weighty windows 
can be positioned accurately, whereas by the same 
methods, moderately heavy menus can be selected 
accurately and quickly, and lightweight cursors can 
be tracked very rapidly. 

Vertical positioning appears more difficult than hor- 
izontal positioning, as vertical positioning requires 
extending the hand away from the body with large 
muscle groups and fighting gravity, while horizon- 
tal positioning only requires rotating the shoulder or 
wrist. However, these preferences are in contradic- 
tion to standard "pull-down" menus. 

Users tend not to deliberately accommodate the 
imaging geometry. Instead, once users are not con- 
strained by the keyboard, they tend to lean way back 
in the chair or lean very close to the screen, but rarely 
sit up as they would when typing. Also, some people 
tend to gesture with their hand far from the screen, 
causing it to image relatively small, and making it 
difficult to set a size threshold. Further, the pointing 
pose in particular varies greatly depending on where 
on the screen the user is pointing; this requires addi- 
tional care in the neural net. 

2.2   Human Aspects 

2.2.1    Gestural Communication 

Although not formal, human gestural thought and 
communication induce certain constraints on the vi- 
sual signal that the system exploits. People naturally 
use gestures that are easy to differentiate based only 
on appearance; further, they display them in such a 
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way that the important features are visible and some- 
times exaggerated. Hand models are therefore less 
important, and appearance matching suffices. Some 
poses are very close to each other in joint-angle space 
but have different "meaning": for example, middle 
and index fingers extended, but the two fingers are to- 
gether or apart. The reverse is also true, for example, 
grasping, but either a grape or a grapefruit. 

The system exploits the natural "reset" signal: at any 
time, the user can drop the hand to the keyboard and 
the system will return to the start state. This is a very 
useful and naturally elicited gesture when the system 
misinterprets a user's intended gesture. 

People tend to adopt gestural shorthand. The 
"comma" is a unique shorthand gesture that we dis- 
covered. It is defined as the user moving their hand 
smoothly back away from the screen then toward it 
again. It is used to end one phrase of the gestural 
sentence and begin another: for example, to select 
the window they are pointing to, and then to point at 
it again to move it. It is also easily detected, as both 
a decrease in size and an apparent downward image 
movement. When we allowed the user to move and 
resize a window repeatedly, separating commands 
with commas, this proved to be very usable and reli- 
able. 

The interaction style used here was based on current 
theories of natural gesticulation [Quek, 1993]. They 
observe that a gesture has three phases: preparation, 
stroke, and retract (the PSR cycle). However, as the 
language evolved and incorporated modifications for 
usability and practicality, it moved away from such a 
pure grammar; a good example is the comma, which 
allows users to string together commands without re- 
turning to the keyboard between them. After some 
experience, then, we gave interaction language a sim- 
ple sentence-like structure of subject-verb-adverb; 
most adverbs tend to be analog, so using a gesture is 
natural to express them. Further, we allowed com- 
pounding, ellipsis, and anaphora, with the comma 
being literally equivalent to a comma. If the user 
returns to typing on the keyboard, the elided verb 
is "select", for example, "That window [select]". If 
the user gestures a comma and then another verb-like 
pose, they are anaphorically repeating the subject, for 
example, "That window select, [that window] resize 
like this, [that window] move here." 

2.2.2 Gestural Rhythm 

Gestures appear to have their own inherent rhythms. 
Tracking requires a system response of no more than 
10 hz, which is the sampling rate for the most rapid 
human pointing movements of 5 hz; we also ob- 
served that below 5 hz a user feels that movement is 
artificially slow. Our system at 7-8 hz therefore was 
adequate, until the user to became expert and moved 
quickly. Conversely, some poses must be held till 
the system responds; our system recognized poses at 
about 2 hz, which was annoying but acceptable. We 
noted that slow tracking and pose analysis interacted 
adversely: too long a pause disturbed the rhythm 
of the gesture, and made subsequent motions more 
awkward and harder to interpret. 

We observed that the rhythm of fine positioning 
seems to vary somewhat from person to person and 
from time to time: the user either uses slow deliber- 
ate motions, or a move-wait-move pattern. Both are 
equally difficult to detect precisely. 

2.2.3 Training of New Users 

New users are different from more expert ones. A 
user often shapes the hand awkwardly for training, 
and then points more naturally while selecting a win- 
dow, and pose recognition performance then drops to 
around 80%. Eventually, however, the system tends 
to train the user: the user learns to provide inputs in 
such a way that the system recognizes it correctly. 
This is analogous to what happens with mouse ac- 
tions, such as the proper timing of a double click. 
Nevertheless, with no memory aids for what actions 
are permitted next, some users complained that it 
was difficult to learn. And, since a pause is a signif- 
icant gesture, uncertainty in gesture often lead to an 
unintended gestural sentence. 

2.3    A New Interface IModel 
Standard HCI techniques must be modified to handle 
hand gesture interaction. The flexibility and con- 
tinuous nature of gesture, and the expense involved 
in extracting gestural features, make hand gestures 
fundamentally different from most current interface 
devices. Hands never turn off; gesture positioning 
is inherently three dimensional; gestures can deliver 
multiple pieces of information at one time; and it 
is possible to combine multiple poses by having one 
pose change into another. 

Many of the problems which were encountered were 
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due to aspects of the original window system GUI 
which were retained, which has evolved to suit the 
characteristics of a keyboard and mouse. Mouse po- 
sitioning is precise and easy, but the set of gestures 
(button clicks) is information poor; as a result, cur- 
rent GUIs rely on accurate selection of numerous 
small icons. Similarly, pull-down menus are com- 
fortable with a mouse, but unnatural using free-hand 
gesture; horizontal or pie-wedge menus would be 
more appropriate. Nevertheless, performance of the 
two modalities can be both measured and modeled 
using similar tools, and found to be approximately 
equivalent. (We detail this concept in a separate sec- 
tion.) 

3   Paradoxical Cursor Tracking 

We determined that the smoothing constraints of im- 
age and cursor tracking are critically dependent on 
the context in which hand motion occurs. Some of 
these constraints appear paradoxical. The displayed 
cursor must remain relatively still when the hand is 
not intentionally moving, but the cursor must respond 
to small movements almost immediately so that fine 
positioning is possible. It is also important that the 
cursor not lag far behind when the hand is moving 
quickly so that the user can select an object rapidly, 
but the cursor must not overshoot or oscillate when 
the motion of the hand suddenly stops. 

3.1    Non-Linear Springs 
Modeling the cursor as a physical object with mass, 
position, and velocity meets some but not all of these 
criteria. Instead, the system detects the various con- 
texts, and the physical model is adjusted dynamically 
depending on apparent user intention. The force 
function, which transmits visual location to cursor 
position via a sigmoidally varying nonlinear spring, 
depends on current and prior positions and veloci- 
ties. The figures show the force curves for various 
values of initial velocity (Figure 1). The net effect 
is that the cursor always moves toward the hand, but 
never passes it. When the hand has been moving 
slowly, additional small movements cause the cursor 
to gently accelerate toward it, while large movements 
cause the cursor to fly after it and catch up quickly. 
Behavior changes smoothly between these extremes. 
When the hand has been moving rapidly, the cursor 
tracks any displacement closely. 

Experience and analysis indicate that three possible 
scenarios should govern this dynamic adjustment: 
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Figure 1: Force applied to the cursor versus hand dis- 
placement for three initial velocities. A force of Fmax 
gets the cursor exactly to the current hand position by the 
end of the current cycle. 

Case 1: At the current velocity the cursor cannot not 
catch up with the new hand position in one cycle. 

Case 2: At the current velocity, the cursor will catch 
up to or pass the new hand position in this cycle. 

Case 3: The current velocity of the cursor is carrying 
it away from the hand. 

Figure 1 shows force curve for various values of ini- 
tial velocity. In case 3, the behavior is independent 
of initial velocity; the cursor always is given enough 
force to stop, then heads toward the hand with an ac- 
celeration that depends on cursor to token displace- 
ment. In case 2 the cursor always decelerates, so 
that it meets the hand this cycle. The behavior in 
case 1 depends strongly on initial velocity. When 
displacement is small, the cursor chases the hand as 
per the sigmoid function, but at high initial velocity 
it follows the hand as in case 2, with intermediate ve- 
locities producing behavior between these extremes. 
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3.2   Types of Image Noise 

The noise in the raw XYS token stream has very dis- 
tinctive characteristics. The noise can be subdivided 
into a stable component and a time-varying compo- 
nent. The stable component consists of an constant 
offset from the ideal cursor location, caused by lo- 
cal segmentation errors, but when the hand is still 
it remains constant. The varying components of the 
noise only show up when a sequence of images are 
considered. Some is again caused by random errors 
in the segmentation and small unintentional move- 
ments of the hand. Analysis of the sources of the 
remainder indicate that it falls roughly into four cat- 
egories: 1) low-frequency step or ramp functions due 
to the hand passing in front of widely different back- 
grounds; 2) medium-frequency medium-amplitude 
variations due to chaotic segmentations of fingers 
on or off the hand; 3) high-frequency low-amplitude 
due to jitter from segmentation effects of region bor- 
der pixels; 4) sporadic high-amplitude jumps due to 
image blur during fast motion. 

Except for the second category, which depends 
critically on fine tuning of the sigmoid function, 
these noise types are well handled by the non-linear 
smoothing. 

4    Modeling and Measuring Performance 

The system has been used by the first author during 
development and testing for hundreds of hours. It has 
also been used by about a dozen others for shorter 
amounts of time during demos and formal testing. 
Since it is as portable as any PC, it has been used in 
several different office and lab environments, without 
need for controlled lighting, prepared backgrounds, 
or unusual care in its placement. It is not being 
used on a daily basis primarily because of its limited 
functionality. 

Quality of the segmentation varies depending on 
quality of calibration, environmental conditions, and 
the orientation/position of the hand within the scene. 
At its best, 15-20% of the time, segmentation of the 
hand is near perfect. But more likely, 80-85% of the 
time, the segmentation is less than perfect but ac- 
curate enough for smooth tracking and reliable pose 
recognition. Occasionally, less than 1 % of the time, 
large chunks of the hand are missing, it may break 
into many small pieces, or some other object than the 
hand is segmented instead. 

4.1 Left-Right Selection 
As an initial test, we studied the absolute accuracy 
and repeatability of visual tracking in an alternat- 
ing target task, that is, left-right hand moton. The 
smoothing algorithm effectively damps out the ma- 
jority of the jitter that is present in the raw hand po- 
sition data, but nevertheless tracks fast movements 
very well. 

4.2 Hand vs. Mouse 

Next, we compared the usability of the visual inter- 
face with that of standard pointing and clicking in 
several ways. First, we evaluated the ability of users 
to select on-screen objects by measuring the time it 
takes to place the cursor in an object on the screen. 
For objects larger than about an inch, selection time 
was found to be comparable to that when using a 
mouse. 

Selection time was measured from the moment the 
space key was pressed with the pointing hand to until 
the cursor had been inside a one-inch target contin- 
uously for 0.5 seconds. The mean selection time for 
free-hand pointing was 1.91 seconds; the mean se- 
lection time using the mouse was 1.57. These times 
include the 0.5 seconds within the target. However, 
free-hand pointing time drops rapidly with increasing 
target size, leveling out at around 1.2 seconds when 
the target reaches 2 inches in diameter; selection time 
with a mouse also drops, to about 1.3 seconds. 

4.3 Fitts' Law Extended 
Secondly, we modeled free-hand pointing according 
to an augmented version Fitts' Law, a well-used and 
well-verified predictor of the time needed for object 
selection for a wide range of pointing devices and se- 
lection tasks. Fitts' Law basically states that the time 
T to select an object of a given size W at distance D 
from the initial location of the cursor is proportion- 
ate to log(DAV), suitably scaled and translated with 
three task-dependent constants: 

T = a -I- b * log(DAV + c). 

Using first the literature, then our own data to tune 
the parameters, we found that the pure form of Fitts' 
Law accurately captured our mouse data. But fol- 
lowing the same process with the hand data, it was 
not possible to come up with reasonable values of 
the constants to make the model explain the increase 
in selection time for small objects. 
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When terms were added for lag and noise, however, 
a reasonable fit was possible, as Figure 2 shows. 
Following the literature, the scale parameter, b, was 
increased to account for the lag in system response 
caused by slow tracking rate. Following our data, the 
shift parameter, a, was increased to account for jitter; 
assuming that jitter is random noise following a nor- 
mal distribution, through straightforward probability 
theory we derived a closed form for the jitter-induced 
delay for any target size and expected amplitude of 
noise. Together, these two models then allowed us 
to predict both systems' performance as a function 
of tracking rate and tracking accuracy. 

0  1— 

0.5 1 1.5 

Target Size (inches) 

Figure 2: Predicted and actual selection time for targets 
of various sizes using free-hand pointing. 

The model shows that random jitter in the cursor po- 
sition and the lag caused by the slow tracking rate 
are sufficient to cause the long selection times for 
small objects. The model indicated that accuracy 
was far more critical than speed, particularly since 
the target had to be selected and held for a fixed 
amount of time. With very little noise and at a track- 
ing speed attainable with off-the-shelf hardware in 
a few years, free-hand pointing can be expected to 
be approximately the same as for a mouse, slightly 
better for large objects, and slightly worse for small 
ones. Under ideal conditions (i.e. no tracking lag 
at all), gesture has the potential to be significantly 
faster than using a mouse for objects of all sizes. 

4.4    Total System Performance 

Lastly, we measured the total system results for two 
experienced users. In the following table, the quali- 
fied success rate indicates how many times the action 
was performed essentially correctly, but there was a 

minor error, such as the window ending up in the 
wrong position. The pure success rate indicates how 
often the action was performed exactly as the user 
intended. The minor errors nearly always have a 
common cause, namely trouble detecting where the 
retraction movement began, which in turn is primar- 
ily due to the relatively slow tracking speed. 

Qualified Pure 
Task Success Success 
Select 94% 89% 
Move Window 85% 81% 
Resize Window 87% 84% 
Select Menu Item 82% 63% 

Selection, the simplest task, was also the most re- 
liable. Moving a window or resizing it were also 
reliable, and the similar performance results cross- 
validate each other. Bringing up a menu is reliable, 
but selecting the very small items from it is not, 
at least not yet. For further discussion, please see 
[Kjeldsen and Kender, 1997]. 

5    Conclusion 

We have designed a working system capable of con- 
trolling window manipulation in a user interface us- 
ing hand gestures. This has made it possible to study 
the interaction of the environment with natural hu- 
man preferences, to experiment with different hand 
gesture interaction styles and algorithms, and to mea- 
sure model the component and systems performance. 
It has also indicated that for full success, a simple vi- 
sual gesture system add-on to a mouse-based design 
is inadequate; the full interface has to accommodate 
the unique needs of human gestural communication. 
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Abstract 

This paper presents a method for the representa- 
tion and detection of action using Allen's tempo- 
ral algebra and a time propagation algorithm based 
on a novel method called the PNF propagation. In 
this scheme, an action is represented as a collection 
of time intervals corresponding to its sub-actions, 
events, and detectable states of physical objects. 
The paper provides the basics of the PNF propagation 
which extends Allen's interval algebra into handling 
causal propagation of the states of temporal inter- 
vals. Some examples and results are given at the 
end, showing that the technique works well when 
there are sufficiently strong causal links from detec- 
tors to actions. 

1    Introduction 

In this paper we present a method — the PNF prop- 
agation — for detection of actions represented as 
a collection of temporal intervals. PNF propagation 
expands Allen's interval algebra [Allen, 1984] into 
causal recognition of intervals and provides a rep- 
resentation of the state of temporal intervals upon 
which fast algorithms can be used. 

The aim of this paper is to present the PNF prop- 
agation and how it can be used in the recognition 
of human actions. We start by discussing the prob- 
lem of representing human action and how Allen's 
interval algebra can be used to model the under- 
lying temporal structure. Following, we introduce 
the concept of PNF-restriction, the basic component 
of PNF propagation. PNF-restriction can be approxi- 
mately computed by using a technique for simpli- 
fying constraint satisfaction problems — CSP — 
called arc-consistency ([Mackworth, 1977]). We con- 
clude by analyzing some results obtained using this 
technique. 

2    Actions and Intervals 

Human actions typically decompose into smaller, 
simpler units whose occurrence can be verified em- 
pirically by sensors attached to a machine. We be- 

Intervals 
{ pick-up-bowl 

reach-for-bowl grasp-bowl 
bowl-out-of-hands bowl-in-hands 
DET;hands-close-sta-bowI 
DET:bowl-on-table DET;bowl-off-table } 

Relations 
{ { reach-for-bowl pick-up-bowl { START } } 

{ grasp-bowl pick-up-bowl { FINISH } } 

{ reach-for-bowl grasp-bowl { MEET BEFORE } } 

{ reach-for-bowl bowl-out-of-hands { DURING FINISH } } 

{ bowl-out-of-hands bowl-in-hands { MEET iMEET } } 

{ grasp-bowl bowl-in-hands { MEET OVERLAP } } 

{ DET;hands-close-sta-bowl bowl-out-of-hands 
{ START EQUAL DURING FINISH } } 

{ DET:bowl-on-table bowl-out-of-hands 
{ START DURING FINISH EQUAL } } 

{ DET:bowI-ofr-table bowl-in-hands 
{ START DURING FINISH EQUAL } } } 

Figure 1:   Representation of a "pick-up bowl"  action 
using temporal intervals. 

lieve that the methods for action recognition pro- 
posed before [Nagel, 1995, Kaultz and Allen, 1986, 
Siskind, 1994] are unable to cope with most 
of the complex time patterns of everyday ac- 
tions which include external events, simultane- 
ous activities, and multiple sequencing possibilities 
[Allen and Ferguson, 1994]. 

To deal with such structures we propose to use a rep- 
resentation based on Allen's interval temporal logic 
[Allen, 1984] which explicitly incorporates multiple 
temporal possibilities for action structures. Allen's 
interval algebra is based on the 13 possible primitive 
relationships between two time intervals: the equal- 
ity EQUAL, the relations BEFORE, MEET, OVERLAP, 
DURING, START, FINISH, and their inverses, iBEFORE, 
iMEET, iOVERLAP, iDURING, iSTART, and iFINISH 
(see [Allen, 1984] for the definition of those relation- 
ships). 

Figure 1 shows the representation for the temporal 
structure of a "pick-up bowl" action as it is used by 
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the detection system described later in this paper. 
The interval pick-up-bowl corresponds to the pe- 
riod where the action of picking up the bowl is occur- 
ing. This action is decomposed into two sub-actions 
corresponding to the intervals reach-f or-bowl and 
grasp-bowl. 

The relations between those three intervals are de- 
fined by the first three lines of the "Relations" 
section. reach-for-bowl is declared to be a 
time interval which has the same beginning as 
pick-up-bowl, but finishes first — the START re- 
lationship. Similarly, grasp-bowl finishes at the 
same time as pick-up-bowl. The relationship be- 
tween reach-for-bowl and grasp-bowl is defined 
in more vague terms: they either immediately follow 
each other (MEET) or happen in sequence (BEFORE). 
In other words, there can be some time between the 
sub-actions corresponding to pauses and indecisions. 
This example illustrates how modeling the temporal 
structure using Allen's logic allows the representa- 
tion of the indeterminacy and the multiple possibil- 
ities of typical of human actions. 

The next level of decomposition involves two mutu- 
ally exclusive predicates (written as MEET or iMEET) 
about the physical relation between the bowl and the 
hands, bowl-in-hands and bowl-out-of-hands. 
The fact that reaching for the bowl must happen 
while the bowl is not in contact with the hands 
is expressed by the DURING or FINISH relationship 
between reach-for-bowl and bowl-out-of-hands. 
Similarly, bow-in-hands starts during grasp-bowl 
or just after its end. 

For each of the two "physical" predicates we can as- 
sign simple, low-level detectors (marked by the pre- 
fix DET:). The first, DET:hands-close-sta-bowl, 
detects if the hands are close to the bowl while the 
bowl is static and on the table. The other two detec- 
tors DET:bowl-on-table and DET:bowl-off-table 
identify the presence of the bowl on or off' the table. 
The first two detectors can fire only when the bowl is 
out of hands, while DET: bowl-off-table can only 
happen while the bowl is being held. 

Notice that most of the relationships defined in 
this example do not involve "deep" common- 
sense reasoning. For instance, bowl-in-hands and 
bowl-out-of-hands are temporally mutually ex- 
clusive simply because by definition they repre- 
sent different states for the bowl. But by pre- 
processing the representation using Allen's time con- 
straint propagation algorithm ([Allen, 1984]), we 
can obtain — and use — stricter temporal con- 
straints imposed by the structure of the action. For 
instance, in the case described above Allen's al- 
gorithm propagates the fact that reach-for-bowl 
is followed by grasp-bowl into detecting that 
bowl-out-of-hands must MEET bowl-in-hands — 
instead of the original MEET or iMEET. 

As we can see, there are many advantages in repre- 
senting action structure through temporal intervals 
and their relationships. The next section describes a 
theory and an algorithm which enable the detection 
of the occurrence of actions and sub-actions given 
the state of the "detector" intervals. 

/(A r) :  possible states of /a, given I A TIB 

state A of I A 

r past no¥ fut 

EQUAL past now fut 

BEFORE past/now/fut fut fut 

iBEFORE past past past/now/fut 

MEET past/now fut fut 

iMEET past past now/fut 

OVERLAP past/no¥ now/fut fut 

iOVERLAP past past/now now/fut 

START past/now now fut 

iSTART past past/noB fut 

DURING past/now now now/fut 

iDURING past past/now/fut fut 

FINISH past now now/fut 

iFINISH past now/fut fut 

Table 1: A restriction function /(A,r) 

3    PNF-Restriction 

Action detection using PNF propagation employs an 
algorithm, called PUF-restriction, which we devel- 
oped based on algorithms for CSP. This section ex- 
plains and defines PNF-restriction, and provides al- 
gorithms to compute it. 

3.1     The Basic Technique 

PNF-restriction is based on assigning labels from the 
set m = {past, now, fut} to intervals to intuitively 
capture the idea of an interval that happened in the 
"past", is happening "now", or can happen in the 
"future". If a label / G m is assigned to an interval, 
we say that the state of the that interval is /. 

The basic idea of our action detection method is 
to assign now values to low-level detectors and run 
an algorithm that determines the possible states of 
the other intervals by considering the temporal con- 
straints between the actions and the detectors. The 
process of generating the possible states of all in- 
tervals, given the states of some of them, is called 
PTiF-restriction. 

Considering a set of intervals and the temporal re- 
lationships between any two of them, there can be 
assignments of labels to intervals which violate the 
intuitive meaning of "past", "now", and "future" 
occurrences. For instance, if an interval IA happens 
strictly BEFORE interval Is, both intervals can not 
be happening at the same time. 

Using our label assignment, this is translated to the 
condition that if I A is BEFORE IB , and IB is known 
to be in the state now. To not violate temporal con- 
straints, IA must be in the past state. However, if 
we consider the opposite situation where it is known 
that the value of IA is past, then the value of IB is 
not constrained in any sense: IB may have already 
happened (past), or be happening (now), or be in 
the future (fut). 

In general, given the state of an interval IA, A, and a 
particular relationship r G ^ to another interval /jg. 
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we can define a restriction function f which produces 
the possible states /(A, r) of the interval IB- Table 1 
displays a particular /(A, r) which embeds the usual 
semantics of past, present, and future among time 
intervals. The multiple options for IB are necessary 
because there are situations where the state of IA 

does not fully determine the state of IB, as it was 
the case shown in the previous example. 

N if the sensor is true, and PF if the sensor is false. 
Therefore, we can represent all the information com- 
ing from sensors by a single component PNF-state 
S = {Si)i, where 

S^^ 
value of the 7,-sensor 
PNF 

if I, is a sensor 
otherwise 

3.2    Component PNF-states 

To represent the multiple possibility of assignment 
of values from m to the intervals we develop the 
concept of component P'SF-states. Consider the set 
M of subsets of m, 

M    =    {0,{past},{now},{fut},{past,now}, 

{past,fut},{now,fut}, {past,now,fut}} 

whose elements are abbreviated as 

M = {0, P, N, F, PN, PF, NF, PNF} 

3.3    Definition of PNF-Restriction 

We are now in condition to formalize the basic algo- 
rithm underlying our action detection method. We 
start by expanding the definition of restriction func- 
tion given in table 1 to component PNF-states. The 
?^Y-restriction function J" : M x yl —► Af is defined 
as the union of the corresponding /'s, according to 

HK,r)= |J/(A,r) 
A6A 

ifhere A G M and r ^ A 

Given an interval, we can assign one of the mem- 
bers of M to represent its admissible states. This 
is called the ?TSi¥-state of the interval. To represent 
the PNF-state of all intervals, we define the set U of 
n-tuples on M where each n-tuple W is referred as 
a component PtSF-state, 

W = iWi,W2,...,Wn) where each Wi G M 

and W E. U =: Yl" ^- When one of the components 
of a component PNF-state W is the empty set, we 
say that py is a collapsed component PNF-state, or 
simply, a collapsed state. To simplify notation, we 
sometimes write {W\,W2, ■ ■ -^Wn) as {Wi)i. 

It is useful to define a containment relation between 
two component PNF-states of [/, W = {Wi)i and 
Y = {Yi)i, by making W CY only if Wi C Yi, for all 
i = 1,2,.. .,n. Similarly, we define an algebra^ on 
U by the union and intersection functions, WyjY — 
{Wi u Yi)i and ly n y = {Wi n y;),-. 
A component PNF-state W = {Wi)i is called simple if 
each Wi is an unitary set, Wi G {P,N,F}. Intuitively, 
a simple component PNF-state represents a specific 
assignment of values from m to every interval. 

Component PNF-states are useful for representing 
possible states of intervals, and not for individual as- 
signments to the intervals. For instance, if a pair of 
intervals can only assume the values (P, N) and (N, P), 
the component representation which includes the 
two assignments, (PN,PN), also includes two other 
assignments which can not happen, (P, P) and (N, N). 
This problem is not important in our action detec- 
tion method because we want to determine only the 
possible states of each interval, considered indepen- 
dently of the others. 

Moreover, component PNF-states are a good notation 
to represent the input from the sensors. Typically, 
we associated to a binary sensor only two PNF-states, 

^To make notation simpler, we extend the usual meaning 
of the symbols C, n, and U to the equivalent operations 
between component PHF-states. 

Let US then consider a set R of interval relations 
between intervals in J, J? C 7 x ^ x 7, and define 
Rij as the set of all relations between intervals 7j- 
and Ij which are members of 7?, 

Ri {r£A\{Ii,rij,Ij)eR} 

Notice that Rij is not necessarily a singleton be- 
cause we may not know the exact relationship be- 
tween the intervals 7,- and Ij. The statement Rij = 
{BEFORE, MEET} informs that 7j is either before Ij or 
meets Ij. 

Now, given a component PNF-state W = {Wi)i and 
a set of relations 7?C7xylx7, W is said an 7?- 
possible component PNF-state of U if for every two 
intervals 7,- and Ij, 

WjC   \J  T{Wi,T) 
rER„ 

that is, possible component PNF-states are the ones 
which respect the time structure defined by /, and, 
as a consequence, our intuitive expectations about 
time. 

We then define the restriction of a component PNF- 
state W under R, TZ{W), as the union of all simple, 
R-possible component PNF-states under R which are 
contained in W, 

n{W) =     U     y 
yCH',K,impl = 

Yfi-posaible 

Thus, if we apply the restriction function TZ on a 
component PNF-state S representing the information 
from the sensors as described above, we obtain the 
component PNF-state TZ{S) describing exactly the 
values that each interval can assume in at least one 
situation. 
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3.4    PNF-Restriction as a CSP Problem 

We can the computation of PNF-restriction as 
a constraint satisfaction problem ([Kumar, 1992, 
Nadel, 1989]). To do that, it is necessary to find a 
mapping between our formulation of PNF-restriction 
into a CSP, by determining the CSP's variables and 
the predicates corresponding to the unary and bi- 
nary constraints. First, we interpret the n intervals 
7i, /2,..., /n as variables with domain {?, N, F}. Do- 
ing this we implicitly state that all the solutions of 
the CSP are simple component PNF-states. 

Based in the constraint function T, given two inter- 
vals li and Ij and the relations between them, Rq, 
we can define binary constraints between the vari- 
ables based on predicates Pij which are true only if 
the PNF-state Wj of Ij is compatible with the PNF- 
state Wi of li, 

true      Wj Cl)^^^^^ J^{Wi,r) 

false    otherwise 

so any solution which satisfies those constraints can 
be interpreted as a iJ-possible component PNF-state. 

The input component PNF-state W is interpreted as 
a set of unary constraints (in fact, disequations) on 
the variables of the associated CSP. For instance, if 
the input is a component PNF-state {Wi, W2, W3) = 
(PNF, N,PF), it represents the predicates W2 ^ past, 
W2 ^ fit, and W3 ^ now. The unary constraints 
assure that the solutions are contained in the input 
W. 

Therefore, the PNF-restriction of a component PNF- 
state W, iZ(W), can be computed by determining all 
solutions for the associated CSP, considering than as 
simple PNF-states, and taking their component-wise 
union. By construction all solutions of the CSP are 
simple, R-possible component PNF-states contained 
in W. Notice, however, that unlike in a traditional 
CSP the objective is not to enumerate all solutions 
individually, but to obtain the values for each inter- 
val which appear in at least one solution. 

3.5     Algorithms for PNF-Restriction 

As we see from the preceding paragraph, PNF- 
restriction can be computed by the search and 
component-wise union of all solutions in the associ- 
ated CSP. However, finding one solution for a binary 
CSP is a NP-complete problem if the domain of each 
variable has more than two values (by reduction to 
the 3-SAT problem, [Downing and Gallier, 1984]). 
Therefore, it is possible that calculating the PNF- 
restriction is also a NP-complete problem. 

A common technique to simplify CSPs is called 
arc-consistency, which requires polynomial time 
([Mackworth, 1977]). We have been applying arc- 
consistency to calculate a component PNF-state 
which is guaranteed to contain the PNF-restriction. 
For practical purposes, the result of arc-consistency 
seems to produce all the information needed for ac- 
tion detection as we will show later with some ex- 
perimental results. 

Fig. 2 shows the arc-consistency algorithm 
([Mackworth, 1977]) adapted to the component PNF- 

Input:    I a set of intervals, I = {/i}. 
R the relations between the intervals, 
RCIxAxI 

T a component restriction function, 
r -.M xA-^ M 

W a component PNF-state, W = (W,), 

Output: 7J(VK), tiie PNF-propagation ofW under R 

Algorithm: 
initialize queue with all intervals I, of I 

where W, 7^ PNF (1) 

w ^W (2) 

while queue 7^ 0 (3) 

lio ^ pop (queue) (4) 

(Wi^ denotes the state of Ii^ in W) (5) 
for each interval li € I, 

such as {I,„,r,I,) £ R (6) 

^^Ue«.„. ^(^-■'•) (7) 

when W, ^ W, n A' (8) 

W, ^W,n X (9) 
pusii(/,, queue) (10) 

return W (11) 

Figure 2: An arc-consistency-based algorithm to com- 
pute an upper bound for the restriction 'Il{W) of a com- 
ponent state W. 

state notation. The first step of the algorithm con- 
sists in detecting which intervals of a component 
PNF-state W have a state diflferent than PNF, and 
queue all those intervals for further expansion. Then 
W, the variable used to construct the component 
PNF-state to be returned, is initialized identically to 
the input W. 

The core of the algorithm is a loop which ends when 
the queue is empty. In each cycle, one interval I,^ at 
state Wi^ is examined. For each interval U to which 
li^ relates to, a variable X is assigned the union, 
for all the relations, of the results of the restriction 
function. In other words, the algorithm considers 
all the possible relationships between the two inter- 
vals, and considers the safest situation by taking the 
union. In the next step, if necessary, the component 
PNF-state is actualized with the intersection of the 
corresponding PNF-state and X, and the modified 
interval is pushed into the queue. 

Since the result of arc-consistency always contains 
all the solutions of a CSP, it is clear that the PNF- 
restriction of a component PNF-state is contained 
in the component PNF-state computed by the arc- 
consistency algorithm of fig. 2. Moreover, in our 
use of that algorithm, we have never found a situ- 
ation where the arc-consistency algorithm has pro- 
duced a component PNF-state differently than PNF- 
restriction. In other words, we have some reason 
to believe that computing PNF-restriction is in fact 
a simpler problem than computing all the solutions 
of a CSP, and achievable in polynomial time by the 
arc-consistency algorithm of fig. 2. Presently we are 
trying to determine whether this conjecture is true. 
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4    Action Detection Using PNF 
Propagation 

When using PNF-restriction for action detection, we 
consider the computed PNF-state of each interval to 
determine whether the action may be happening. If 
the PNF-state of the interval is N, we can say that 
the action is happening; if it is P, F, or PF the action 
can be said to be not happening; otherwise (PNF), 
we assign an indeterminate label. 

PNF-restriction deals exclusively with determining a 
coherent structure for the world at a given moment 
of time. However, after an interval is determined 
to be in the past, its state for the rest of time is 
completely determined, i.e., past. To capture this 
concept, we define a function that time-expands a 
component PNF-state into another which is guaran- 
teed to be true in the next moment of time. 

4.1 Time Expansion 

The objective is to define a time expansion function, 
T : U —^ U, that considers a component PNF-state 
W* at time t and computes the smallest component 
PNF-state FF*+^ at time t+1 that satisfies the intu- 
itive meanings of past, now, and future. 

We start by defining a time expansion function for 
each element of m = {past, now, fut}, Tm '■ fn -^ M. 
To preserve the intuitive meanings of past, present, 
and future, a natural choice is the time expansion 
function, Tm : m —* M 

T„(past) = P   T„(now) = PN   Tm(lut) = NF 

Given the function that time-expands elements Tm, 
we define the function that expands the elements of 
M, TM : M —»■ M as being the union of the results 
of Tm, 

TMW =   U Tmi<j>) 

and the time expansion T : U ^ U 
as the component-wise application of TM on 
a   component   PNF-state   W = {Wi)i,    T{W)     = 
iTMiWi),TM{W2),...,TMiWn)). 

4.2 PNF Propagation 

PNF propagation is a method to detect the occur- 
rence of actions which is based on intersecting the 
information from the sensors with the time expan- 
sion of the component PNF-state representing all the 
past information. 

Formally, given the n time intervals corresponding to 
all actions, sub-actions, and detectors, PNF propaga- 
tion determines the PNF-state of each interval at each 
time t, represented by the component PNF-state W^. 
Sensor information at time t is gathered in the com- 
ponent PNF-state 5* where all states are PNF except 
those corresponding to perceptual sensors, which are 
assigned the sensor's corresponding PNF-state as ex- 
plained before. 

The initial component PNF-state VF° represents an 
initial state of total ignorance, W° = (PNF)i. After 

that, we determine W' by computing the restriction 
on the intersection between the time expansion of 
W'-^ and S\ 

w* = 7^(T(vy*-^)n5') 

It is necessary to time expand the component W'"^ 
before intersecting it with the perceptual informa- 
tion 5*, since between instant / — 1 and t actions 
may have ended or begun. Using past information is 
a fundamental component of the power of PNF prop- 
agation, as shown in the following experimental re- 
sults. 

4.3     Examples of Results 

Figure 3 shows some results for the detection of the 
action "pick-up bowl". The top part of the figure 
displays the temporal diagrams for the PNF-state of 
the detectors (marked as DET:) and the true state of 
all other intervals (marked as TRUE:), for a particu- 
lar instance of the action of picking up a bowl. The 
data were obtained manually from a video depict- 
ing the action. The diagram employs different sym- 
bols for each PNF-state, under the convention that 
the bottom line represents the fut state, the middle 
represents now, and the top, past (see the legend at 
the bottom of fig. 3). 

Fig. 3a shows the results when the detection process 
uses the description of the "pick-up bowl" action 
exactly as given in fig. 1. Basically, only the phys- 
ical events related to intervals bowl-in-hands and 
bowl-out-of-hands are recognized. The occurrence 
of the main action, pick-up-bowl, is never detected, 
although in the initial period it has been ruled out 
the possibility that the action had already happened 
(NF), and, after DET: bowl-ofl-table becomes N, 
it is detected that the action is happening or has 
already happened (PN). 

The primary problem is that the original definition 
of "pick-up bowl" lacks a causal link between detect- 
ing the bowl is not on the table and the result of the 
act of grasping. Part b of fig. 3 shows that, with the 
addition of such relation, the end of pick-up-bowl 
is detected. 

To detect the beginning of pick-up-bowl, it is neces- 
sary that the action description includes some causal 
relationship about the beginning of the sub-action 
reach-f or-bowl. A possible way is to indicate that 
the proximity between hands and bowl (as detected 
by DET:hands-close-sta-bowl) is an indicator for 
the occurrence of reach-f or-bowl. Notice that by 
doing this, we are assigning a relationship which may 
not be always true. However, given the simplicity 
of our sensors (and of most state-of-the-art vision- 
based algorithms), such "intentional" links are nec- 
essary to detect higher level actions. The results, 
shown in part c, display the almost perfect detec- 
tion of pick-up-bowl and reach-for-bowl. 

Finally, if we also want to detect the occurrence of 
grasp-bowl, a new detector is necessary. This is 
shown in part d of fig. 3, which displays the diagram 
of a new sensor, DET:hands-touch-bowl which fires 
precisely when the hand touches the bowl.  In this 
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Detectors (DET:) and true state (TRUE:) 

DET:hand£-close-sta-bowL 

DET:boul-on-table !" 

DETjbowl-off-table    [ 

TRUEtpick-up-boul ^ 

TRUE:r«»ch-for-boul p" 

TRUE:grasp-boul _ 

TRUE:boul-out.-of-hand5 "■ 
TRUE:boul-in-hands    „ 

a) Original pick-up bowl representation (as in fig. 1) 

pick-up-boul 

reach-for-boul 

grasfs-boul 

bou1-out-of-hands 

bowl-in-hands 

b) Addition of a new relation: 

{ DET:bowl-off-table grasp-bowl { i-before i-meet } } 

pick-up-boul 

reach-for-boul 

grasp-bowl 

bou1-out-of-hands 

boul-in-hands 

c) Addition of a new relation: 

{ DET:hands-close-sta-bowl reach-for-bowl 

{ start equal during finish } } 

pick-up-boul 

reach-foi—boul 

grasp-bowl 

boul-out—of-hands 

boul-in-hands 

d) Addition of a new detector: 
DET:hands-touch-bowI 
{ DET:hands-touch-bowl grasp-bowl { start equal } } 

DETthands-touch-boul  El 

pick-up-boul 

reach-fot—bowl 

grasp-bowl 

boul-out-of-hands 

boul~in-hands L 

e) Using sensor information without time propagation: 

H DET:bowl-on-table 

DET:bowl-off-table 

DET:h3nds-touch-bowl 

pick-up-boul 

reach-foi—bow1 

grasp-bowl 

bou1-out-of-hands 

bowl-in-hands 

LEGEND: _ 
P    H—  F  PN=   NF=:   PF   PNF=::   EHPl 

Figure 3: Detection of the action "pick-up bowl" 

last case, the state of the intervals are known in most 
times, and are correct (compare to the TRUE: dia- 
gram at the top of the figure). 

Part e of fig. 3 shows the importance of the infor- 
mation from the previous instant of time on the 
strength of PNF propagation. In this case, VF* is 
computed solely on the information from the sen- 
sors, W* = TZ{S*). Comparing fig. 3.e with part d, 
we can see a distinct degradation in the results. The 
main reason is that after a cause for an interval be- 
ing in the now state ceases to exist, the system still 

DET: hand-c 1 ose-pbag-box _ 

DET:chaos-front-trunkl _ 

DET:hand-close-chix-co _ 

DET:chaos-front-trunk2 ~ 

DET:hands-clo-uirap-chix_ 

DET I no-wot i on-wrap-ch i x _ 

TRUE:wrap-chicken     __^ 

wrap-chicken  H 

TRUE :get-plastic-bag 

get-plastic-bag 

TRUE Iopen-p1ast i c-bag 

open-p1ast i c-bag 

TRUE: get-ch i cken 

get-chicken 

TRUE:actuaI-urapp i ng 

actual-wrapping 

TRUE t put-doun-wrap-ch i x _^_ 

put-down-wrap-chix     [-. 

Figure 4: Detection of the action "wrapping chicken". 

considers that the interval can still happen in the 
fut (compare pick-up-bowl in both cases). 

Figure 4 illustrates the detection of a more 
complex action, wrapping chicken with a plas- 
tic bag which involves 25 intervals and 6 detec- 
tors. This action is derived from our previous 
work on automated cameras for TV cooking shows 
([Pinhanez and Bobick, 1996]). The figure displays 
the true and the recognized state of the main action 
and of five sub-actions, which of them with a level 
of complexity similar to the "pick-up bowl" shown 
above. All the sensors are very simple: proximity 
between hands and the box containing plastic bags 
(DET:hand-close-pbag-box) and the plate contain- 
ing chicken (DET:hand-close-chix-co), chaotic 
movement in front of the subject's 
trunk (DET:chaos-front-trunk), and absence of 
motion in the area of the wrapped chicken 
(DET:no-mot ion-wrap-chix). 

5     Final Remarks 

We have no knowledge of previous research try- 
ing to recognize actions defined by structures as 
loose as we are allowing in our experiments; most 
previous action recognition schemes [Siskind, 1994, 
Nagel, 1995] use strict sequential definitions of ac- 
tions which do not reflect the way actions happen in 
everyday life. 

In [Pinhanez and Bobick, 1996] we employed a 
variation of Schank's "conceptualization" 
([Schank, 1975]) to decompose primary actions into 
sub-actions and physical events using a one pass in- 
ference algorithm. We believe that an extension of 
that method can produce loose temporal relation- 
ships between sub-actions such as those of fig. 1. 

We are aware of some limitations of the approach. 
The first, obvious one, is if the computation of PNF- 
restriction is in fact exponential in time, that is, 
if we determined that the algorithm based on arc- 
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consistency is too weak for detection purposes. How-       [Siskind, 1994] Jeffrey   Mark   Siskind.   Grounding 
ever, we do know from our tests that PNF-restriction language in perception. Artificial InteUigence Re- 
actually  reduces   significantly  a  component  PNF- view, 8:371-391, 1994. 
state. A second limitation refers to the expressive ca- 
pabilities of using intervals and their temporal rela- 
tionships to represent human actions. For instance, 
in our work in SingSong [Pinhanez et a/., 1997], we 
realized the need of provisions to represent cyclic 
actions which are not met even by Allen's tempo- 
ral logic. One possible approach to allow cycles is 
to modify the time expansion function of past to 
T„(past) = PNF. 
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Abstract 

Conventional video cameras have limited fields 
of view that make them restrictive in a variety 
of vision applications. There are several ways to 
enhance the field of view of an imaging system. 
However, the entire imaging system must have a 
single effective viewpoint to enable the generation 
of pure perspective images from a sensed image. 
A new camera with a hemispherical field of view 
is presented. Two such cameras can be placed 
back-to-back without violating the single view- 
point constraint, to arrive at a truly omnidirec- 
tional sensor. Results are presented on the soft- 
ware generation of pure perspective images from 
an omnidirectional image, given any user-selected 
viewing direction and magnification. The paper 
concludes with a discussion on the spatial resolu- 
tion of the proposed camera. 

1    Introduction 

Conventional imaging systems are quite limited 
in their field of view. Is it feasible to devise a 
video camera that can, at any instant in time, 
"see" in all directions? Such an omnidirectional 
camera would have an impact on a variety of ap- 
plications, including autonomous navigation, re- 
mote surveillance, video conferencing, and scene 
recovery. 

Our approach to omnidirectional image sens- 
ing is to incorporate reflecting surfaces (mir- 
rors) into conventional imaging systems. This 
is what we refer to as catadioptric image forma- 
tion. There are a few existing implementations 
that are based on this approach to image sens- 
ing (see [Nayar, 1988], [Yagi and Kawato, 1990], 
[Hong, 1991], [Goshtasby and Gruver, 1993], [Ya- 
mazawa et al., 1995], [Nalwa, 1996]). As noted 
in [Yamazawa et a/., 1995] and [Nalwa, 1996], in 
order to compute pure perspective images from a 
wide-angle image, the catadioptric imaging sys- 
tem must have a single center of projection (view- 
point). In [Nayar and Baker, 1997], the complete 
class of catadioptric systems that satisfy the sin- 

gle viewpoint constraint is derived. Since we are 
interested in the development of a practical om- 
nidirectional camera, two additional conditions 
are imposed. First, the camera should be easy 
to implement and calibrate. Second, the map- 
ping from world coordinates to image coordinates 
must be simple enough to permit fast computa- 
tion of perspective and panoramic images. 

We begin by reviewing the state-of-the-art in 
wide-angle imaging and discuss the merits and 
drawbacks of existing approaches. Next, we 
present an omnidirectional video camera that sat- 
isfies the single viewpoint constraint, is easy to 
implement, and produces images that are effi- 
cient to manipulate. We have implemented sev- 
eral prototypes of the proposed camera, each one 
designed to meet the requirements of a specific 
application. Results on the mapping of omni- 
directional images to perspective ones are pre- 
sented. In [Peri and Nayar, 1997], a software sys- 
tem is described that generates a large number of 
perspective and panoramic video streams from an 
omnidirectional video input. We conclude with a 
discussion on the resolution of the proposed cam- 
era. 

*This work was supported 
in parts by the DARPA/ONR MURI Grant N00014-95- 
1-0601, an NSF National Young Investigator Award, and 
a David and Lucile Packard Fellowship. 

2    Omnidirectional Viewpoint 

It is worth describing why it is desirable that any 
imaging system have a single center of projec- 
tion. Strong cases in favor of a single viewpoint 
have also been made by Yamazawa et al. [Ya- 
mazawa et al., 1995] and Nalwa [Nalwa, 1996]. 
Consider an image acquired by a sensor that can 
view the world in all directions from a single ef- 
fective pinhole (see Figure 1). From such an om- 
nidirectional image, pure perspective images can 
be constructed by mapping sensed brightness val- 
ues onto a plane placed at any distance (effec- 
tive focal length) from the viewpoint, as shown 
in Figure 1. Any image computed in this man- 
ner preserves linear perspective geometry. Im- 
ages that adhere to perspective projection are de- 
sirable from two standpoints; they are consistent 
with the way we are used to seeing images, and 
they lend themselves to further processing by the 
large body of work in computational vision that 
assumes linear perspective projection. 
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omnidirectional 

(a) (b) 

panoramic 

perspective 

Figure 1: A truly omnidirectional image sensor views 
the world through an entire "sphere of view" as seen 
from its center of projection. The single viewpoint 
permits the construction of pure perspective images 
(computed by planar projection) or a panoramic im- 
age (computed by cylindrical projection). Panoramic 
sensors are not equivalent to omnidirectional sensors 
as they are omnidirectional only in one of the two 
angular dimensions. 

3    State of the Art 
Before we present our omnidirectional camera, 
a review of existing imaging systems that seek 
to achieve wide fields of view is in order. An 
excellent review of some of the previous work can 
be found in [Nalwa, 1996]. 

3.1 Traditional Imaging Systems 
Most imaging systems in use today comprise of 
a video camera, or a photographic film camera, 
attached to a lens. The image projection model 
for most camera lenses is perspective with a sin- 
gle center of projection. Since the imaging device 
(CCD array, for instance) is of finite size and the 
camera lens occludes itself while receiving incom- 
ing rays, the lens typically has a small field of 
view that corresponds to a small cone rather than 
a hemisphere (see Figure 2(a)). At first thought, 
it may appear that a large field can be sensed 
by packing together a number of cameras, each 
one pointing in a different direction. However, 
since the centers of projection reside inside their 
respective lenses, such a configuration proves in- 
feasible. 

3.2 Rotating Imaging Systems 
An obvious solution is to rotate the entire imag- 
ing system about its center of projection, as 
shown in Figure 2(b).   The sequence of images 

W) «; 

(c) (d) 

Figure 2: (a) A conventional imaging system and its 
limited field of view. A larger field of view may be 
obtained by (b) rotating the imaging system about 
its center of projection, (c) appending a fish-eye lens 
to the imaging system, and (d) imaging the scene 
through a mirror. 

acquired by rotation are "stitched" together to 
obtain a panoramic view of the scene. Such 
an approach has been recently proposed by sev- 
eral investigators (see [Chen, 1995], [McMillan 
and Bishop, 1995], [Krishnan and Ahuja, 1996], 
[Zheng and Tsuji, 1990]). Of these the most novel 
is the system developed by Krishnan and Ahuja 
[Krishnan and Ahuja, 1996] which uses a cam- 
era with a non-frontal image detector to scan the 
world. 

The first disadvantage of any rotating imaging 
system is that it requires the use of moving parts 
and precise positioning. A more serious drawback 
lies in the total time required to obtain an image 
with enhanced field of view. This restricts the 
use of rotating systems to static scenes and non- 
real-time applications. 

3.3    Fish-Eye Lenses 

An interesting approach to wide-angle imaging 
is based on the fish-eye lens (see [Wood, 1906], 
[Miyamoto, 1964]). Such a lens is used in place of 
a conventional camera lens and has a very short 
focal length that enables the camera to view ob- 
jects within as much as a hemisphere (see Figure 
2(c)). The use of fish-eye lenses for wide-angle 
imaging has been advocated in [Oh and Hall, 
1987] and [Kuban et al, 1994], among others. 

It turns out that it is difficult to design a fish- 
eye lens that ensures that all incoming princi- 
pal rays intersect at a single point to yield a 
fixed viewpoint (see [Nalwa, 1996] for details). 
This is indeed a problem with commercial fish-eye 
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lenses, including, Nikon's Fisheye-Nikkor 8mm 
f/2.8 lens. In short, the acquired image does 
not permit the construction of distortion-free per- 
spective images of the viewed scene (though con- 
structed images may prove good enough for some 
visualization applications). In addition, to cap- 
ture a hemispherical view, the fish-eye lens must 
be quite complex and large, and hence expensive. 

3.4    Catadioptric Systems 

As shown in Figure 2(d), a catadioptric imaging 
system uses a reflecting surface to enhance the 
field of view. The rear-view mirror in a car is 
used exactly in this fashion. However, the shape, 
position, and orientation of the reflecting surface 
are related to the viewpoint and field of view in 
a complex manner. While it is easy to construct 
a configuration which includes one or more mir- 
rors that dramatically increase the field of view 
of the imaging system, it is hard to keep the 
effective viewpoint fixed in space. Examples of 
catadioptric image sensors can be found in [Yagi 
and Kawato, 1990], [Hong, 1991], [Yamazawa et 
a/., 1995], and '"" ^ 
ical result (see 
the complete c 

Nalwa, 1996]. A recent theoret- 
Nayar and Baker, 1997]) reveals 
ass of catadioptric imaging sys- 

tems that satisfy the single viewpoint constraint. 
This general solution has enabled us to evaluate 
the merits and drawbacks of previous implemen- 
tations as well as suggest new ones [Nayar and 
Baker, 1997]. 

Here, we will briefly summarize previous ap- 
proaches. In [Yagi and Kawato, 1990], a conical 
mirror is used in conjunction with a perspective 
lens. Though this provides a panoramic view, 
the single viewpoint constraint is not satisfied. 
The result is a viewpoint locus that hangs hke a 
halo over the mirror. In [Hong, 1991], a spherical 
mirror was used with a perspective lens. Again, 
the result is a large locus of viewpoints rather 
than a single point. In [Yamazawa et ai, 1995], 
a hyperboloidal mirror used with a perspective 
lens is shown to satisfy the single viewpoint con- 
straint. This solution is a useful one. However, 
the sensor must be implemented and calibrated 
with care. More recently, in [Nalwa, 1996], a 
novel panoramic sensor has been proposed that 
includes four planar mirrors that form the faces 
of a pyramid. Four separate imaging systems are 
used, each one placed above one of the faces of the 
pyramid. The optical axes of the imaging systems 
and the angles made by the four planar faces are 
adjusted so that the four viewpoints produced by 
the planar mirrors coincide. The result is a sensor 
that has a single viewpoint and a panoramic field 
of view of approximately 360° X 50°. Again, care- 
ful alignment and calibration are needed during 
implementation. 

4    Omnidirectional Camera 

While all of the above approaches use mirrors 
placed in the view of perspective lenses, we ap- 
proach the problem using an orthographic lens. 
It is easy to see that if image projection is or- 
thographic rather than perspective, the geomet- 
rical mappings between the image, the mirror and 
the world are invariant to translations of the mir- 
ror with respect to the imaging system. Conse- 
quently, both calibration as well as the computa- 
tion of perspective images is greatly simplified. 

There are several ways to achieve orthographic 
projection, of which we shall mention a few. The 
most obvious of these is to use commercially 
available telecentric lenses [Edmund Scientific, 
1996] that are designed to be orthographic. It 
has also been shown [Watanabe and Nayar, 1996] 
that precise orthography can be achieved by sim- 
ply placing an aperture [Kingslake, 1983] at the 
back focal plane of an off-the-shelf lens. Further, 
several zoom lenses can be adjusted to prodiice 
orthographic projection. Yet another approach is 
to mount an inexpensive relay lens onto an off- 
the-shelf perspective lens. The relay lens not only 
converts the imaging system to an orthographic 
one but can also be used to undo more subtle op- 
tical effects such as coma and astigmatism [Born 
and Wolf, 1965] produced by curved mirrors. In 
short, the implementation of pure orthographic 
projection is viable and easy to implement. 

omnidirectional viewpoint 

Figure 3: Geometry used to derive the reflecting sur- 
face that produces an image of the world as seen from 
a fixed viewpoint v. This image is captured using an 
orthographic (telecentric) imaging lens. 

We are now ready to derive the shape of the 
reflecting surface. Since orthographic projection 
is rotationaUy symmetric, all we need to deter- 
mine is the cross-section z{r) of the reflecting sur- 
face. The mirror is then the solid of revolution 
obtained by sweeping the cross-section about the 
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axis of orthographic projection. As illustrated in 
Figure 3, each ray of light from the world head- 
ing in the direction of the viewpoint v must be 
reflected by the mirror in the direction of ortho- 
graphic projection. The relation between the an- 
gle 6 of the incoming ray and the profile z{r) of 
the reflecting surface is 

tan^ (1) 

Since the surface is specular, the angles of inci- 
dence and reflectance are equal to 6/2. Hence, 
the slope at the point of reflection can be ex- 
pressed as 

dz                    0 ,^, 
-   =   - tan - . (2) 

Now, we use the trignometric identity 

tan^ 
2 tan e 

1 - tan^ 
(3) 

Substituting (1) and (2) in the above expression, 
we obtain 

dz 
dr   

( 
dz\2 
dr 

(4) 

Thus, we find that the reflecting surface must sat- 
isfy a quadratic first-order differential equation. 
The first step is to solve the quadratic expression 
for surface slope. This gives us two solutions of 
which only one is valid since the slope of the sur- 
face in the first quadrant is assumed to be nega- 
tive (see Figure 3): 

dz 

dr 

z 

r i + (-r (5) 

This first-order differential equation can be 
solved to obtain the following expression for the 
reflecting surface: 

h^ - r^ 

2h 
(6) 

where, h > 0 is the constant of integration. 
Not surprisingly, the mirror that guarantees a 

single viewpoint for orthographic projection is a 
paraboloid. Paraboloidal mirrors are frequently 
used to converge an incoming set of parallel rays 
at a single point (the focus), or to generate a col- 
limated light source from a point source (placed 
at the focus). In both these cases, the paraboloid 
is a concave mirror that is reflective on its inner 
surface. In our case, the paraboloid is reflective 
on its outer surface (convex mirror); all incoming 
principle rays are orthographicaUy reflected by 
the mirror but can be extended to intersect at its 
focus, which serves as the viewpoint.  Note that 

a concave paraboloidal mirror can also be used 
(this corresponds to the second solution we would 
get from equation (4) if the slope of the mirror 
in the first quadrant is assumed to be positive). 
This solution is less desirable to us since incom- 
ing rays with large angles of incidence 6 would be 
self-occluded by the mirror. 

A shown in Figure 4, parameter h of the 
paraboloid is its radius at z — 0. The distance be- 
tween the vertex and the focus is h/2. Therefore, 
h determines the size of the paraboloid that, for 
any given orthographic lens system, can be cho- 
sen to maximize resolution. Shortly, the issue of 
resolution will be addressed in more detail. 

focus 

Figure 4: For orthographic projection, the solution is 
a paraboloid with the viewpoint located at the focus. 
Orthographic projection makes the geometric map- 
pings between the image, the paraboloidal mirror and 
the world invariant to translations of the mirror. This 
greatly simplifies calibration and the computation of 
perspective images from paraboloidal ones. 

5     Field of View 

As the extent of the paraboloid increases, so does 
the field of view of the catadioptric sensor. It 
is not possible, however, to acquire the entire 
sphere of view since the paraboloid itself must oc- 
clude the world beneath it. This brings us to an 
interesting practical consideration: Where should 
the paraboloid be terminated? Note that 

dz 

dr 
=   1 (7) 

^=0 

Hence, if we cut the paraboloid at the plane z = 
0, the field of view exactly equals the upper hemi- 
sphere (minus the solid angle subtended by the 
imaging system itself). If a field of view greater 
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than a hemisphere is desired, the paraboloid can 
be terminated below the z = 0 plane. If only a 
panorama is of interest, an annular section of the 
paraboloid may be obtained by truncating it be- 
low and above the z = 0 plane. For that matter, 
given any desired field of view, the corresponding 
section of the parabola can be used and the entire 
resolution of the imaging device can be dedicated 
to that section's projection in the image. 

In our prototypes, we have chosen to terminate 
the parabola at the z = 0 plane. This proves ad- 
vantageous in applications in which the complete 
sphere of view is desired, as shown in Figure 5. 
Since the paraboloid is terminted at the focus, 
it is possible to place two identical catadioptric 
cameras back-to-back such that their foci (view- 
points) coincide. Thus, we have a truly omnidi- 
rectional sensor, one that is capable of acquiring 
an entire sphere of view at video rate. 

(a) (b) 

Figure 5: If the paraboloid is cut by the horizontal 
plane that passes through its focus, the field of view 
of the catadioptric system exactly equals the upper 
hemisphere. This allows us to place two catadioptric 
sensors back-to-back such that their foci (viewpoints) 
coincide. The result is a truly omnidirectional sensor 
that can acquire the entire sphere of view. The shaded 
regions are parts of the field of view where the sensor 
sees itself. 

6    Iraplementation 
Several versions of the proposed omnidirectional 
sensor have been built, each one geared towards 
a specific application. The applications we have 
in mind include video teleconferencing, remote 
surveillance and autonomous navigation. Fig- 
ure 6 shows and details the different sensors and 
their components. The basic components of all 
the sensors are the same; each one includes a 
paraboloidal mirror, an orthographic lens sys- 
tem and a CCD video camera. The sensors dif- 
fer primarily in the their mechanical designs and 
their attachments.   For instance, the sensors in 

(c) (d) 

Figure 6: Four implementations of catadioptric om- 
nidirectional video cameras that use paraboloidal mir- 
rors, (a) This compact sensor for teleconferencing 
uses a 1.1 inch diameter paraboloidal mirror, a Pana- 
sonic GP-KR222 color camera, and Cosmicar/Pentax 
C6Z1218 zoom and close-up lenses to achieve orthog- 
raphy. The transparent spherical dome minimizes 
self-obstruction of the field of view, (b) This cam- 
era for navigation uses a 2.2 inch diameter mirror, a 
DXC-950 Sony color camera, and a Fujinon CVL-713 
zoom lens. The base plate has an attachment that fa- 
cilitates easy mounting on mobile platforms, (c) This 
sensor for surveillance uses a 1.6 inch diameter mir- 
ror, an Edmund Scientific 55mm F/2.8 telecentric (or- 
thographic) lens and a Sony XR-77 black and white 
camera. The sensor is lightweight and suitable for 
mounting on ceilings and walls, (d) This sensor is a 
back-to-back configuration that enables it to sense the 
entire sphere of view. Each of its two units is identical 
to the sensor in (a). 
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Figures 6(a) and 6(c) have transparent spheri- 
cal domes that minimize self-obstruction of their 
hemispherical fields of view. Figure 6(d) shows 
a back-to-back implementation that is capable of 
acquiring the complete sphere of view. 

The use of paraboloidal mirrors virtually obvi- 
ates calibration. All that is needed are the image 
coordinates of the center of the paraboloid and 
its radius h. Both these quantities are measured 
in pixels from a single omnidirectional image. We 
have implemented software for the generation of 
perspective images. First, the user specifies the 
viewing direction, the image size and effective fo- 
cal length (zoom) of the desired perspective im- 
age (see Figure 1). Again, all these quantities are 
specified in pixels. For each three-dimensional 
pixel location {xp,yp,Zp) on the desired perspec- 
tive image plane, its line of sight with respect to 
the viewpoint is computed in terms of its polar 
and azimuthal angles: 

6 =  cos" 
yxp'^ + 

tan 
Vp 2 + V Xp 

(8) 
This line of sight intersects the paraboloid at a 
distance p from its focus (origin), which is com- 
puted using the following spherical expression for 
the paraboloid: 

h 

(1 + cos^) 
(9) 

The brightness (or color) at the perspective im- 
age point {xp,yp,Zp) is then the same as that at 
the omnidirectional image point 

Xi  =  p sin ^ cos 4> ,      Vi  =  P sin 9 s'm(f) . 
(10) 

The above computation is repeated for all points 
in the desired perspective image. Figure 7 shows 
an omnidirectional image (512x480 pixels) and 
several perspective images (200x200 pixels each) 
computed from it. It is worth noting that per- 
spective projection is indeed preserved. For in- 
stance, straight lines in the scene map to straight 
lines in the perspective images while they appear 
as curved lines in the omnidirectional image. Re- 
cently, a video-rate version of the above described 
image generation has been developed as an in- 
teractive software system called OmniVideo [Peri 
and Nayar, 1997]. 

7    Resolution 
Several factors govern the resolution of a cata- 
dioptric sensor. Let us begin with the most ob- 
vious of these, the spatial resolution due to finite 
pixel size. In [Nayar and Baker, 1997], we have 
derived a general expression for the spatial reso- 
lution of any catadioptric camera. In the case of 

Figure 7: Software generation of perspective images 
(bottom) from an omnidirectional image (top). Each 
perspective image is generated using user-selected pa- 
rameters, including, viewing direction (line of sight 
from the viewpoint to the center of the desired im- 
age), effective focal length (distance of the perspec- 
tive image plane from the viewpoint of the sensor), 
and image size (number of desired pixels in each of 
the two dimensions). It is clear that the computed 
images are indeed perspective; for instance, straight 
lines are seen to appear as straight lines though they 
appear as curved lines in the omnidirectional image. 
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our paraboloidal mirror, the resolution increases 
by a factor of 4 from the vertex (r = 0) of the 
paraboloid to the fringe (r = h). In practice, 
this drop in resolution towards the center of the 
paraboloidal image is not easily discernible. In 
principle, it is of course possible to use image de- 
tectors with non-uniform resolution to compen- 
sate for the above variation. It should also be 
mentioned that while all our implementations use 
CCD arrays with 512x480 pixels, nothing pre- 
cludes us from using detectors with 1024x1024 or 
2048x2048 pixels that are commercially available 
at a higher cost. 

More intriguing are the blurring effects of coma 
and astigmatism that arise due to the aspherical 
nature of the reflecting surface [Born and Wolf, 
1965]. Since these elfects are linear but shift- 
variant [Robbins and Huang, 1972], a suitable set 
of deblurring filters need to be explored. Alterna- 
tively, these effects can be significantly reduced 
using inexpensive corrective lenses. 
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Abstract 
Existing software systems for visual exploration 
are limited in their capabilities in that they are 
only applicable to static omnidirectional images. 
We present a software system that has the capa- 
bility to generate at video rate (30 Hz), a large 
number of perspective and panoramic video 
streams from a single omnidirectional video in- 
put, using no more than a PC. This permits a re- 
mote user to create multiple perspective and 
panoramic views of a d3Tiamic scene, where the 
parameters of each view (viewing direction, field 
of view, and magnification) are controlled via an 
interactive device such as a mouse, joystick or a 
head-tracker. 

1   Introduction 

Remote visual exploration systems such as 
QuickTime® VR [Chen-1995] allow a user to navi- 
gate around a visual environment. This is done by 
simulating a virtual camera whose parameters 
are controlled by the user. A fundamental limita- 
tion of existing systems is that they are restricted 
to static environments, i.e. a single wide-angle 
image of a scene. The static image is typically ob- 
tained by stitching together several images of a 
static scene taken by rotating a camera about its 
center of projection. Only recently, it has become 
possible to acquire omnidirectional images at 
video rate (see [Nayar-1997]). The availability of 
such an acquisition device opens up the possibility 
of a software system that can create perspective 
and panoramic video streams. This adds a new 
dimension to the notion of remote visual explora- 
tion. 
The omnidirectional camera developed by Nayar 
captures at video rate, a hemispherical field of 
view as seen from a single point. We have devel- 

* This work was supported in parts by the DARPA/ONR 
MURI Grant N00014-95-1-0601, an NSF National 
Young Investigator Award, and a David and Lucile 
Packard Fellowship. 

oped a real-time software system called Om- 
niVideo that can generate multiple perspective 
and panoramic video streams from such an omni- 
directional video stream. The user can create and 
orient multiple perspective and panoramic views 
in desired directions; all views are updated at 
video rate. Furthermore, the viewing direction, 
field of view, and magnification of each video 
stream can be controlled using an interactive de- 
vice such as a mouse, joystick, or a head-tracker. 
The capabilities of the OmniVideo system can be 
exploited in a variety of applications, including 
immersive video, teleconferencing, autonomous 
navigation, and video surveillance and monitor- 
ing. We have also developed an omnidirectional 
web-camera wherein, view parameters can be 
modified using a control panel on the client's 
browser. An online demonstration is available at 
http://omnicam.cs.columbia.edu/. 

2   The OmniVideo System 

In the OmniVideo system, the omnidirectional 
video input defines the dynamic visual environ- 
ment. Perspective and panoramic views are es- 
sentially virtual cameras positioned in this visual 
environment. Navigation and exploration of this 
visual environment is performed by modifying 
one or more camera parameters. Perspective and 
panoramic virtual cameras have five parameters, 
namely pan, tilt, zoom, roll, and field of view. In 
the OmniVideo system, the user can modify these 
parameters using an interactive device such as a 
mouse, joystick, or a head-tracker. 

2.1    Reprojection 

The optics of the omnidirectional camera is de- 
signed to reflect a wide-angle view orthographi- 
cally off a parabolic mirror, onto the sensing ele- 
ment (CCD) of a conventional camera (see 
[Nayar-1997]). Views are generated by computing 
pixel intensities of every pixel P{Xp ,yp ,Zp) on the 

imaging surface of the virtual camera. Pixel in- 
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tensities are determined by reprojection. This is 
equivalent to determining the intensity of the 
point of intersection of the ray R{Q,^) (9 and ()> are 
polar and azimuthal angles, respectively) from 
the focus of the parabolic mirror, in the direction 
of the point P. 
The equation of the parabolic mirror is given by 

zir) = 
j 2        2 h   -r 

2h 
r^=x^+y\   h>0,       (1) 

where h is the parameter of the parabola. The ray 
RiQ,^) intersects the parabola at a distance 

p = ;i/(l + cose) (2) 
from the focus. When projected orthographically 
on to the CCD, the coordinates of the point of 
intersection are given by 

X; =psin9cos(t),  y; =psin0sine]). (3) 

Interpolation is used to determine intensity at 
this point. 
Rewriting equation (3) we get 

X- =  X „, (4) 

^p+V^P +yl+4 

yi 
h (5) 

n    2    2 ^' Zp+4^p+yp+Zp 

This form of equation (3) is suitable for optimiza- 
tion, as we shall see later. 

2.2   Implementation 

Video-rate performance is the most important fea- 
ture of the OmniVideo system. Since the incoming 
visual information changes dynamically, Om- 
niVideo cannot take advantage of most real-time 
reprojection methods that have been developed for 
static images (see [Chen-1995], [McMillan and 
Bishop-1995], [Lippman-1980], [Miller and Chen- 
1993]). We have implemented several numerical 
and data optimizations, which give to video-rate 
performance on a PC. 
We use the notion oi geometric maps to generate 
views. The geometric map defines the coordinate 
transformation between pixels on the imaging 
surface of the perspective (or panoramic) virtual 
camera, and the omnidirectional image. Simply 
stated, the geometric map implements the coordi- 
nate transformations of equations (4) and (5) in a 
lookup table. The process of reprojection is re- 
duced to a lookup through the geometric map. The 
geometric map of a view changes only when 
viewing parameters of the associated virtual cam- 
era change. In computing views at video-rate, we 
observe that geometric maps provide the greatest 

speedup when viewing parameters are unmodi- 
fied. 
Yet another speedup is the use of lookup tables 
for geometric map generation. In equations (4) 

and (5), the term  ^Xp +yl+zl   represents the 

distance of the pixel from the focus of the parab- 
ola. As we shall see, this distance factor can be 
rewritten in a manner that is independent of all 
view parameters, except zoom, and hence can be 
determined from a lookup table. 
For a perspective view, this distance can be writ- 

ten as -^x^ +yv +f^ . where (x^ ,y^) are the coor- 

dinates of the pixel PiXp,yp,Zp) in the coordi- 

nate system of the virtual camera. / is the focal 
length of the perspective view. Substituting, 
equations (4) and (5) can be written as: 

h 
X;  - 

h 

Zp+4^l+yl+f 
'p ■ 

(6) 

(7) 

Similarly, for a panoramic view, the distance fac- 

tor Jxl +yp +Zp   can be expressed as -^u;^ +f^ , 

where w is the height of the pixel along the cylin- 
drical surface of projection, and / is the focal 
length (radius of the cylinder). Again, equations 
(4) and (5) become: 

X;  = !" X„, (8) 
■^ju z„+^iw'^ +f 

yi 
h (9) 

Zp+4w^^ 

The distance factor now is effectively a constant. 
Using the optimized equations for xi and yi (equa- 
tions (6), (7), (8) and (9)), it is possible to compute 
geometric maps of perspective and panoramic 
views at video rate. 
Since reprojection of pixel coordinates {Xp,yp,Zp) 

takes place in a raster scan manner, there is tre- 
mendous computational redundancy in inter-pixel 
computations. We exploit this redundancy by in- 
cremental computation of pixel coordinates. 
A critical implementation issue, especially in 
video applications, is the overlap between compu- 
tation, user interaction, and video display. Om- 
niVideo takes advantage of the multithreading 
available in most modern operating systems 
(such as Windows® NT) to provide a responsive 
user interface, while operating at full video-rate. 
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Figure 1: The OmniVideo system allows a user to generate multiple perspective and panoramic 
video streams from an incoming omnidirectional stream (top-left). 

3   Results References 

We have implemented OmniVideo on an IBM 
compatible Pentium Pro PC, operating at 200 
MHz. The system has a simple interface that al- 
lows the user to control viewing parameters using 
either a joystick or a mouse. In this configuration, 
OmniVideo can generate up to 12 perspective and 
panoramic video streams at video rate. Figure 1 
shows the system in a typical surveillance and 
monitoring application. 
A novel application for the OmniVideo system is 
an omnidirectional web-camera. The OmniVideo 
system is integrated with an http server (such as 
Microsoft's Internet Information Server). A live 
omnidirectional camera feeds into the OmniVideo 
system. Multiple users can connect to the web- 
camera and navigate the scene captured by the 
omnidirectional camera, in real time over the 
Internet. View parameters are controlled using a 
control panel provided on the client's browser. 
The server running on a 200 MHz Pentium Pro 
PC can support a large number of connections at 
video-rates. An online demonstration is available 
at http://omnicam.cs.columbia.edu/. 
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Abstract 

Image stabilization, mosaicking and super- 
resolution are fundamental image sequence 
operations that are linked by the common 
thread of image motion analysis. The ac- 
curacy of these processes is tied closely to 
the accuracy with which interframe motion 
is estimated for the sequence. In this pa- 
per, we formulate a unified framework for 
solving these problems based on a robust 
technique for computing optical flow us- 
ing overlapped basis functions. We develop 
specific algorithms that robustly combine 
the flow estimates to give as their outputs 
the stabilized sequence, image mosaic and 
high-resolution image. 

1    Introduction 

An image sequence gathered by a remote camera 
{e.g. by a camera mounted on an unmanned air or 
ground vehicle) calls for significant pre-processing 
before it can be exploited by an automated algo- 
rithm or a tele-operator. Often the 3D motion of 
the camera platform and 3D structure of the im- 
aged scene are not known to an accuracy that allows 
for characterizing the temporal evolution of the se- 
quence. Such is the case when (i) the terrain over 
which the platform moves is unknown, (ii) the cam- 
era is uncalibrated or has lost its calibration, (Hi) 
camera pan/zoom cannot be estimated reliably, or 
(iv) the scene being viewed has rich 3D structure. 
The flrst step in consolidating an image sequence 
is to compensate for "unwanted" camera motion by 
a process known as image stabilization. When op- 
erating in a remote environment, it is desirable to 
obtain as large a field of view as possible, if neces- 

The support of the Defense Advanced Research 
Projects Agency and the Office of Naval Research un- 
der Grant N00014-95-1-0521 is gratefully acknowledged. 

sary by moving the platform or panning the cam- 
era. The process of piecing together the informa- 
tion in each frame of the sequence to build a rep- 
resentation encompassing a larger field of view is 
known as mosaicking. The temporal coherence in 
a video sequence implies data redundancy, and this 
allows for improving the image quality of the mo- 
saic. This improvement results from suppressing the 
noise components of individual frames while build- 
ing the mosaic, and enhancing the resolution of the 
denoised mosaic through a process known as super- 
resolution. These processes of image stabilization, 
mosaicking and super-resolution are linked by the 
common thread of image motion analysis. 

In this paper, we present an integrated approach to 
these image motion analysis processes. Our system 
is built around the robust flow field technique de- 
scribed in [9]. An overview of the system architec- 
ture is presented in Fig.l. The key innovations pro- 
posed here include an improved optical flow formu- 
lation, which is solved by a fast algorithm. Global 
motion parameters are estimated robustly from the 
local optical flow field. The stabilization process 
comprises a stage for removing gross, temporally 
correlated motion followed by a stage that compen- 
sates for residual uncorrelated jitter. A mosaic is ro- 
bustly obtained from the image sequence and warp- 
ing parameters. Super-resolution is achieved essen- 
tially by applying a sharpening filter to the mosaic. 
In using optical flow rather than a feature point 
technique for image motion computation, the sen- 
sitive dependence of algorithm accuracy on the de- 
tection and tracking accuracy of features is avoided. 
The superiority of this technique over others [l; 4; 
10] lies in its emphasis on robustness at every stage, 
leading to improved immunity to noise, computa- 
tional speed, and the ability to integrate multiple 
functionalities into a single computational frame- 
work. 

This paper is organized as follows: The optical flow 
algorithm is described in Section 2 and the stabiliza- 
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Figure 1: System architecture. 

tion method in Section 3. Section 4 covers the tem- 
poral integration processes of mosaicking and super- 
resolution. Results of applying our algorithms to 
visual and IR imagery are discussed in Section 5. 

2    Optical Flow Estimation 

When the projected 2D image field of a scene is given 
by ■^ = i[>{x, y, t), preservation of luminance patterns 
implies the gradient constraint equation 

= 0 'ix,y,t (1) 
dtp       dip       dip 

at ox oy 

In (1), u and v denote the horizontal and vertical ve- 
locities (as functions of space and time) respectively. 
Together, they constitute the optical flow of the se- 
quence. For every triplet {x,y,t) in (1), there are 
two unknowns, making the problem of computing 
the optical flow ill-conditioned. In practice, the sys- 
tem is regularized by imposing additional smooth- 
ness constraints on u and v. The performance of 
current solutions to (1) is often not consistent with 
respect to the accuracy and reliability of the field, 
and is characterized by numerical sensitivity, besides 
being computationally expensive. 

2.1     Formulation 

An alternative to computing the optical flow on a 
pixelwise basis is to model the motion fields u and 
V in terms of a weighted sum of basis functions and 
estimating the weights which constitute the model 
parameters. In this approach, the motion field is 
force-fitted to a local model and derives its smooth- 
ness properties from those of the model basis func- 
tions. Let {(f> = 4>{x, y, t)} he a. family of basis func- 
tions, and let the flow field be modeled as 

K 

E 
k=0 

K 

Uk<pk    and    V = }'^Vk(l>k (2) 
k = 0 

Substituting (2) into (1), we get 

dip     fr-^ dip     v^      .dip     ^^       j    /ON 
-g^ + 2^Uk4'k-g^ + 2^Vk<Pk-Q^ = 0\fx,y,t    (3) 

This is a continuum of equations in 3-space which 
is reduced to a scalar equation for each instant of 
time by integrating with a multiplicative kernel 0 = 

e{x,yy. 

(4) 
jejiedxdy+Ek^>^Ih^(^dxdy+ 

T,k^kj<l>kj^edxdy=0 

Such an equation exists for every square-integrable 
kernel 9. In order to solve for {uk,Vk}, it is necessary 
to choose appropriate kernels in (4). 

System (3) is linear in the unknowns {uk,Vk} and is 
analogous to the matrix-vector system 

Ax (5) 

where x corresponds to the vector (MQ, VQ, ...)'. The 
analogy implies the applicability of solutions and re- 
sults of (5) to (3). In the discrete domain, the anal- 
ogy is obvious since an equation of type (3) exists 
for each pixel in the current frame, corresponding 
to one row of the composite matrix [A\b]. The least 
squares (LS) solution of (5) is given by A'Ax = A'b; 
choosing 6 from the family {<j'k-^,<l>k-^} gives the 
LS solution of (3). In practice, only discretized data 
is available for the image luminance field ip. The LS 
solution assumes knowledge of the spatial derivatives 
of ip, which may not be known reliably. Any minor 
and random non-compliance with (1) is accounted 
for in the observation error in b. A robust approach 
must try to minimize the sensitive dependence of the 
solution on spatial as well as temporal derivatives. 
In other words, in the analog (5), the solution must 
be accurate and robust to errors in A as well as in 
b. This requirement can be stated as follows: 

Assume xo is the exact solution for the overcon- 
strained linear system Ax —>• 6. Let A and 8 be zero- 
mean, independent additive observation noise in A 
and b respectively, i.e. the quantities A = J4-|-A and 
b = b + 6 are observed. Find an optimal estimate x 
of XQ given A and b. 

It can be shown that, under assumptions of uncorre- 
latedness of A and i5 to yl and 6, and of invertibility 
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of the matrix A'A, neither the LS nor the total least 
squares (TLS) solutions of (5) are unbiased in the 
general case, and the corrected least squares (CLS) 
solution shows sensitive dependence on the errors in 
A as well as in 6 [9]. Interestingly, given the observa- 
tions G = A'A and Ab, the Extended Least Squares 
(ELS) solution (6) shows no dependence on the error 
A in the estimate of A: 

XE    =    G-^Ab 
es    =       G^   [A'{Axo-b)+A^+A'6] 

a(A'A)--^ =0 0(2) 
Rj    {A'A)-'^A'6 

(6) 

Also, the observation corresponding to G is available 
for (3). In (6), XB is unbiased, and has a smaller 
covariance than either xis or XCLS- In the original 
problem (3), the ELS solution is obtained when 6 in 

(4) is chosen from the family {<i>k-g^,<i>k-^] where 

the quantity QI^ \ is an estimate of the derivative, 
giving the system 

/ f <^, ^dxdy + E, n, fjf,. If 0, §dxdy 

/ ^<?^' ^dxdy -VY^kUkj 4>k ^(jii^dxdy 
(7) 

with the estimated temporal derivative ^. The 
availability of the observations G = A'A and A'h 
is equivalent to the computability of the integrals 
in (7), under certain weak assumptions on the func- 

tional form of (f)k and the estimate gij'\ ■ 

Consider the integral I{y) = f <Pkj^<Pij^dx. As- 

sume that the estimate ^f^. \ has a differentiable 

functional form, i.e. the derivative o,^ i ^f^ ■, is 
known exactly. This holds for even the simplest dis- 
crete gradient masks like (...,0,-1,1,0,...) since 
the masks assume a smooth underlying functional 
form. Also, assume that {(f)k] are differentiable and 
that (f)k{x,y) —»■ 0 as a; —»■ ±oo or j/ —+ ±oo. Inte- 
grating by parts over (—oo, oo), we obtain 

i{y) = <Pk<t>i-K-i' ax 
_ / /J4i^dx 
/■ da (8) 

which is computable reliably without knowing the 
exact derivatives g ff ■,. Applying this reasoning to 

(7) gives 

Ek^kJ 
,«i 

Zk-kl'-^^ + Ek^kf 

dy        ^ 

(9) 
3± 

dy -^ 

where the integrals are over the entire X-Y plane 
and can be computed reliably. (9) has the following 
desirable properties: 

• The accuracy of the spatio-temporal image 
derivatives is not critical to the accuracy of the 
computation. 

• The computed image flow is force-fitted to a 
model. The only conditions on the model are 
that it be space-limited and differentiable. 

• With finite-extent basis functions ^jt, the sys- 
tem of equations gives a sparse, banded matrix 
structure. 

2.2    Solution 

In our experiments, we used the cosine window 

4>a{x) 
1 r 
2 

l + cos( ) 
w   J 

xe[-w,w]     (10) 

as the prototype basis function. The entire basis 
was generated from shifts of the prototype along a 
rectangular grid with spacing w. This leads to an 
observation matrix G that is block tridiagonal: 

G 

Di    Ui      0      0 
L2    D2    U2     0 
0     La    £>3    Uz (11) 

where each of the submatrices Di, Ui and Li is in 
turn block tridiagonal, of the form 

X X 0 0 

X X X 0 
0    X    X    X (12) 

and X denotes a 2-by-2 submatrix with data- 
dependent coefficients. In addition, G is block di- 
agonal dominant, almost symmetric and almost pos- 
itive semidefinite. In order to solve (6), we employ 
the method of Preconditioned Biconjugate Gradients 
(PBCG) [2; 8]. The structure of G allows for a good 
choice of useful preconditioners, one of which is the 
matrix G formed by the even component of the di- 
agonal 2-by-2 submatrices of G. In effect, G is the 
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component of G comprised purely of within-grid in- 
teractions. 

Conjugate gradient methods are iterative algorithms 
for solving linear systems of the form Ax = 6 by 
minimizing a quadratic functional such as j(x) = 
\x'Ax — VX over certain vector spaces called Krylov 
spaces. Each iteration adds, under ideal conditions, 
a dimension to the search space and generates an 
improved minimizer. When A is non-symmetric or 
indeterminate, a variant, the biconjugate gradient 
method, is used. Under the preconditioner G the 
iterative equations take the form 

KG-'r^ 
Tk — d'^Gdk 

^k + l = Xk + Tkdk 

Vk + l =; Vk + TkGdk 

h+i = n + TkG'dk 

Pk = 

dk+1 = -G-Vfc + i+/?fc4 
dk+i = -G-^n+i+pkdk 

Xo = G-^Ah 
ro = ro = GXQ — Ab 
do = do = G-^ro 

(13) 

We have observed rapid convergence of the system, 
often to sufficient precision vcithin 10 iterations even 
when the dimensionality of G is very large. 

3    Stabilization 

Stabilization is a differential process that compen- 
sates for the "unwanted" motion in the image se- 
quence. In typical situations, the term "unwanted" 
denotes the motion in the sequence resulting from 
the kinematic motion of the camera with respect to 
an inertial frame of reference. In these situations, 
the "unwanted" component of the motion does not 
carry any information of relevance to the observer, 
and indeed strains its functioning. It can be shown 
that compensating for the full 3D motion of a 3D 
scene is tantamount to solving the structure-from- 
motion problem. It is possible to make simplify- 
ing assumptions on the structure of the scene to 
facilitate robust stabilization, which then involves 
(i) identifying an appropriate model to characterize 
the global motion, and (ii) robustly estimating the 
model parameters from the optical flow field. 

3.1    Global Motion Model 

Assume that a 3D scene is being imaged by a cam- 
era located at the origin with its optical axis along 
the Z axis. Let the camera translate with a linear 
velocity {tx,ty,tz) and rotate with an angular veloc- 
ity {wx,Wy, Wz). The point {Xi,Yi,Zi)' in 3-space is 
projected onto the image plane at p; = {xi,yi)' = 

(14) 

if^yf^y, and moves with velocity 

^ {-WyXi + W:,yi)^ + Wzyi- \ 

{-WyXi + WxVi)^ - ■WzXi-\- 

Equation (14) is nonlinear in the unknowns 
{tx,ty,t,,Wr,Wy,w,,f,Zi} when there is non-zero 
translation and the p^s are known at a sufficient 
number of points. The rotational and translational 
velocities cannot be computed (to within any reason- 
able degree of robustness) without computing the 
ZiS. The purpose of stabilization is not so much 
solving (14) as compensating for the effects of global 
camera motion. An assumption that is often made 
is that all unwanted motion is caused by the rotation 
of the camera, and the translations are small. When 
translation is significant, the formulation necessar- 
ily involves depth. Setting t^ — ty = tz = Q yields 
a linear system in the unknowns {wx, Wy, Wz) and 
a linearly constrained second-degree polynomial mo- 
tion field in f and j-. For a normal lens, j- < 0.4, 
the maximum being attained at the periphery of the 
image frame. It is therefore reasonable to assume 
the higher-order terms to be small given normal or 
telescopic optics. With such an assumption, the 3- 
parameter similarity transformation 

Pi = 
cos^ 

— sin^ 
sin^ 
cos^ Pi + (15) 

adequately models the global motion. An interesting 
case emerges under the assumption that all imaged 
points lie on a plane in 3D, i.e. 

AXi + BYi + CZi = 1       Vi (16) 

which is modeled by the 8-parameter projective 
transformation 

1 
ciXi + C2yi + 1 

aiXi + a^yi -f- "3 
biXi -I- h-^yi + 63 

(17) 
With an increase in model order or the number of 
free parameters, the stabilized image sequence shows 
a smoother motion. However, the additional param- 
eters often cause image distortions like warping of 
lines or an uneven expansion of the field of view. 
For our experiments, we have chosen an intermediate 
approach between the 3-parameter similarity trans- 
formation and the 8-parameter perspective model by 
using a 6-parameter affine model (18). Nevertheless, 
the procedure described here for robustly estimating 
model parameters holds for models of any degree of 
complexity 

Pi = 
ail 

021 

ai2 

02 2 
Pi + (18) 

250 



3.2    Parameter Estimation 

Since there may exist foreground areas that move 
quite differently from the background, the distribu- 
tion of flow velocities, even when estimated without 
error, may be multimodal. Model parameter estima- 
tion involves locating the fundamental mode and its 
membership, a typical clustering problem with no 
mathematically concise solution. Also, although the 
optical flow is computed over the whole image, its 
reliability is local-gradient-dependent. Areas which 
have large gradients are typically, though not always, 
associated with more reliable flow estimates. In the 
first pass, grid points showing significant gradient 
content are picked out as "reliable" and the flow 
estimates at these points are combined in a least- 
squares framework to give a set of model parameters. 
The process is analogous to A"-means clustering with 
the search for a cluster center being replaced by the 
search for model parameters. The model fit is com- 
pared to the local flow parameters and outliers based 
on sample statistics are discarded. This sieve is it- 
erated a few times. When pruning the set of motion 
parameters used for computing the model parame- 
ters, the angular error measure employed in [3] is 
used. Assume that the true and computed flows at 
a point (x, y) in a particular frame are (UQ, VQ)' and 
{u,v)' respectively. Define vectors VQ = («o,vo,l)' 
and V = (w, v, 1)'. The error angle e at {x, y) is given 
by 

arccos( 
vo • V 

) (19) 
i|vo||||v|l 

e is insensitive to the magnitude of the motion vec- 
tor and offers a normalized measure against which 
a range of velocities can be compared meaningfully. 
The final model estimates are obtained after a few 
iterations of pruning this set while ensuring that a 
sufficient number of grid points remain. 

3.3 Gross Motion Compensation 

The first phase of stabilization consists of compen- 
sating for large, temporally correlated motion be- 
tween frames. The image sequence is suitably down- 
sampled and temporal gradients are computed over 
a long support (typically 7 frames). The robust op- 
tical flow model is estimated, and from it the global 
motion model parameters are computed. Since there 
is no feedback to complete the loop and check for 
overall compliance, there is typically a small resid- 
ual motion in the stabilized frames. This motion is 
uncorrelated between frames. 

3.4 Jitter Removal 

Most electronic image stabilizers, whether feature- 
based or flow-based, leave behind a small residual 
motion in the stabilized frames. Since the motion is 
small and temporally uncorrelated, we can use the 

robust optical flow algorithm with temporal deriva- 
tives computed over two frames. The image se- 
quence at this stage is largely stabilized. Assum- 
ing that we have an internal representation of the 
"pristine" stabilized frame, we can compute spatial 
derivatives from it. This pristine frame is none other 
than the mosaic we build from the stabilized se- 
quence. To bootstrap the system, the flrst frame 
input to this block forms the first mosaic image for 
this block. As successive frames are fed in, the jitter 
is computed, the input frames are rewarped and the 
mosaic is updated taking the warping parameters 
into account. 

4    Mosaicking and Super-resolution 

The light pattern falling on the imaging surface of 
the camera is a continuous function of space and 
time, that is discretized and sampled to form the 
image sequence. For the sake of brevity, we will as- 
sume the exposure to be instantaneous in the follow- 
ing discussion. Let l(x, y) denote the incident light 
intensity at the current instant, which is sampled by 
s(-, •) to give the sampled intensity at pixel {i,j) as 
the continuous-domain convolution 

I{i,3) = {i,3)®s{i,j) (20) 

In a dynamic 3D scene, factors influencing l(x,y) 
include occlusion, motion of foreground objects and 
change in pose, as well as the background luminance 
pattern and sensor noise. Let f{x, y) denote the lu- 
minance pattern of the background at t = 0. We 
can write l{x,y) as a sum of a shifted f{x,y) and 
terms for the effects of foreground objects, occlu- 
sion and sensor noise, grouped into T){X, y). Let the 
background shift be [xg ,ys). We assume, for simplic- 
ity, that the shift is constant throughout the image, 
although it is possible to handle the case of space- 
varying shift with some added complexity. The im- 
aged intensity pattern is 

K^,y) = f{x-\-Xs,y+ys) + il{x,y)       (21) 

In the sampled domain the intensity pattern I{x, y) 
is given by 

I{i,i) - [fo{i +Xs,j + yy) + r;(i, j)] ® s{i, j) 
= [/o(«, i) + r]s(i, j)] ® s{i + Xs,j + ys) 

(22) 
The process of rewarping an image by a non-integrai 
shift essentially involves the following steps: (f) the 
sampled input image I{i,j) is converted to a contin- 
uous spatial function I{x, y), which is (ii) shifted by 
(—Xu,,—yw) and (in) resampled to give Is(x,y): 

I{x, y)    =    Y.i J2j Hh ])/»(« -ly- j) 
Isi3:,y)   -   I{x,y)®6{x + Xu,,y + yw) 

h{i + Xw -i,j + yw -j) 

(23) 
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Assume that the warping parameters {xu,,yw) are 
known to within a small error, i.e. 

Xu, = Xs + 6x Vw =ys + ^y (24) 

Equations (22), (23) and (24) give 

IsihJ)  = EiJ:j[fo{iJ) + risii,m^ 
s{i + Xs,j + ys)h{i -x^ -i,j -y^, - j)     (25) 
= [fo{i,j) + rjsiiJ)] ® w{i + 6^,j + Sy) 

where w{-, •) = s{-, ■)* h(-, ■) is the composite of the 
imaging and warping processes, calculated by a dis- 
crete convolution with a possibly non-integral shift. 

Equation (25) can be written as 

LiiJ)  -  foii,j)®AhJ)+ 
{SJyYViMi, j) ® w{i, j)) + o{6,, 6y)+      (26) 

T)s{i,j)®w{i + 6a:,j + 6y) 

The first term is independent of time. Errors in es- 
timating the true shift lead to differential terms. In 
the above equation, the statistics of the other terms 
are largely indeterminate. In practice, the noise 
components are non-Gaussian and heavy-tailed. In 
order to perform temporal averaging to estimate the 
steady term, it is necessary to apply a robust esti- 
mator like an order-statistics filter. We have used a 
sliding-window median filter for estimating the back- 
ground intensity from the temporal stack of stabi- 
lized images. 

In building a higher-resolution image from the data 
gathered by the sensor, the rewarping mechanism 
is upsampled by an appropriate factor. The same 
reasoning applies here as for mosaicking, to justify 
using a robust temporal filter in order to estimate 
the constant component of the signal corresponding 
to the perfectly stabilized background. The final 
task is to deconvolve the resulting image using the 
known composite blur ■w(-, ■). 

5     Results 

Fig.2 shows the performance of the algorithm on 
data gathered by a ground vehicle ((a) and (c)) 
and by an airborne camera ((b), (d)-(f)). The first 
frames of the two sequences are shown in Figs. 2 
(a) and (d) respectively. In the latter case, the im- 
age sequence itself was regenerated from an MPEG- 
compressed file that was available to us. The 
backward-stabilized image of the former sequence is 
shown in Fig.2(c). Here, the inner rectangle cor- 
responds to the latest viewing area and the older 
frames are warped back with respect to the current 
frame. The 3D nature of the world, as it evolves in 
time, does not permit a topologically correct embed- 
ding in the 2D plane of the image. Nevertheless, the 
mosaic does convey visually meaningful information, 

e.g. the presence of foreground trees on either side, 
and the overall rightward path of the vehicle (which 
is seen from the uneven distortion in the field of view 
and also by the right arc formed by the locus of the 
"hood ornament"). In the sequence gathered from 
the aerial platform, the targets on the ground are 
moving vehicles which are on the order of a single 
pixel in size, and move with fractional pixel veloc- 
ity. The mosaic reconstructed from the first minute 
(280 frames) is shown in Fig.2(b) and the super- 
resolved image reconstructed from the first 20 frames 
in Fig.2(c). Fig.2(d) shows the difference image be- 
tween the 20th frame and the super-resolved mosaic. 
The moving vehicles show up as bright spots. 
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Figure 2: Results: (a) First frame of MM sequence acquired from ground vehicle; (b) first frame of S69 
sequence of aerial imagery, decompressed from an MPEG stream; (c) stabilized mosaic of 100 frames of MM 
sequence showing an expanded field of view and distortions due to 3D effects; (d) mosaic of first 280 frames 
of S69; (e) super-resolved image from first 20 frames; (f) difference image showing target locations as bright 
spots. 253 
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Abstract 
Video mosaicing is commonly used to increase the 

effective visual field of view. Existing mosaicing meth- 
ods are based on image alignment, and are effective 
only in very limited cases. 

To overcome most restrictions, mosaicing is pre- 
sented in this paper as a process of collecting strips. 
Strips which are perpendicular to the optical flow are 
cut out of the images, and are warped so that within 
each strip the optical flow will be parallel. These strips 
are then pasted into the mosaic. This approach en- 
ables to define mosaicing even for cases of forward 
motion and for zoom. View interpolation, generating 
dense intermediate views, is used to overcome parallax 
effects. 

1    Introduction 
An introduction and a survey of mosaicing meth- 

ods can be found in [6]. We will only give a brief 
introduction focusing on the aspects relevant to this 
work. 

Early mosaicing methods were used for aerial and 
satellite images. In both cases the objects in the scene 
are distant from the camera, and camera motion could 
be modeled as a translation parallel to the image plane 
with no parallax effects. Other methods use a camera 
which is rotating around the y axis passing through it's 
optical center without any translation. The resulting 
mosaic corresponds to a projection onto a cylinder [5]. 

Most methods select one frame to be a reference 
frame, towards which all other frames are warped 
[8, 3]. This approach uses 2D analysis to find motion 
based on an affine model or a general planar surface 
model, and allows somewhat more general camera mo- 
tion. However, this approach can not handle parallax, 
and is restricted to small rotations (around the x or 
the y axis) with regard to the reference frame. Large 

*This research was partially funded by DARPA through the 
U.S. Office of Naval Research under grant N00014-93-1-1202 and 
by the European ACTS project AC074 "Vanguard". Contact 
E-Mail: peleg@cs.huji.ac.il 

rotations cause distortions when trying to perform the 
reprojection onto the reference frame. In addition, ex- 
isting methods are not well defined for forward motion 
or for zoom. 

To overcome most restrictions, mosaicing is defined 
here as a process of collecting strips from image .se- 
quences satisfying the following conditions: 

• Strips should be perpendicular to the optical flow. 

• The collected strips should be warped and pasted 
into the panoramic image such that when warp- 
ing their original optical flow it becomes parallel 
to the direction in which the panoramic image is 
constructed. 

Using these properties, we define mosaicing meth- 
ods for the case of 2D affine motion. This covers most 
simple cases, and also zoom and forward motion. Gen- 
erated mosaics have minimal distortions compared to 
the original images, as no global scaling is performed. 

The strip collection process allows the introduction 
of a mechanism to overcome the effects of parallax by 
generating dense intermediate views. In many cases 
mosaics generated in this manner can be considered 
at linear pushbroom cameras [2]. 

2    Mosaicing Using Strips 
Construction of panoramic mosaics includes the col- 

lection of sections from each image and pasting these 
sections next to each other to become the mosaic. In 
the simple case of a camera which is moving horizon- 
tally, vertical sections are usually taken from each im- 
age and pasted side by side (see Fig. l.a). In this case 
the process can also be viewed as scanning the scene 
with a vertical line. This vertical line scans the entire 
sequence, extracts vertical strips along the sequence, 
and pastes them one next to the other to create the 
panoramic mosaic. In this case the vertical line is 
perpendicular to the horizontal optical flow, and after 
placing the strips in the panoramic image, the optical 
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The affine transformation can be expressed as: 

Figure 1: The relation between the mosaicing 
process and the direction of the Optical Flow, 
(a) The simple case of camera which is moving 
to the left. The Optical Flow points to the right, 
and vertical strips are collected. After pasting, 
The Optical Flow is parallel with the direction 
in which the panoramic image is built, (b) New 
information is passing through a given line when 
the Optical Flow is perpendicular to the line, (c) 
No new information is passing through a given 
line when it is not perpendicular to the Optical 
Flow, (d) In the general case the line is set to be 
perpendicular to the Optical Flow. 

flow is pointing exactly to the direction from which 
the panoramic image is constructed (see Fig. l.b). 

Using such a vertical scanning line with vertical 
camera motion, when the optical flow is parallel to 
this scanning line, (see Fig. l.c), will not create any 
mosaic, as no new information will pass through the 
selected line. 

In general, optimal results would be achieved by 
selecting a scanning line which is perpendicular to the 
optical flow (see Fig. l.d). The information from all 
images in the sequences will pass through the scanning 
line, allowing to collect strips for pasting in the mosaic. 

The requirement that the scanning line be per- 
pendicular to the optical flow can be described for 
a pair of subsequent images 7„_i and /„. If a point 
p„ = {x„,yn) in In is on the scanning line, and corre- 
sponds to point p„_i = (a;„_i,2/„_i) = {x„ — u,yn — v) 
in image 7„_i, then new information arrive to the 
point pn from the direction {—u,-v), and for opti- 
mal results the direction of scanning line at point p„ 
should be perpendicular to (—M, —V). 

2.1     Affine Motion 
In many cases the motion between two images is ap- 

proximated by an affine tran.sformation. Many meth- 
ods exist to recover the parameters of an affine trans- 
formation [4]. 

•^n       ^n —1 

Vn - Un-l 

a + hxn + cy„ 
d + ex„ + fvn 

(1) 
where (a;„_i, j/n-i) and (a;„,2/„) are corresponding 

points in images /„_i and /„, and the parameters of 
the affine transformation A are (a,b,c,d,e, f). {u,v) 
is the optical flow vector as a function of the position 
ixn,yn)- The transformation A (and the optical flow) 
vary continuously along the sequence. 

We are looking for a line J^{x,y) = 0 such that it 
will be perpendicular to the optical flow. The nor- 

mal to the hne :F = 0 is in the direction (|f ,||-), 

thus it should be in the same direction as [u, v). This 

constraint can be expressed by; 

dx 

dT 
dy 

a + bx + CXI 

= k\ \=k\ '     1      (2) 
d-\- ex -[■ fy 

for some value of A;. By integrating, we get the equa- 
tion of the scanning line: 

0 = T(x, y) = ax + dy+ -x ■'-^xy+^y' + M (3) 

This is a family of lines that are all perpendicular to 
the optical flow. M is used to select a specific line. We 
suggest that M will be set to the value for which the 
line contains maximum number of pixels within the 
image. If many options exit, then we suggest using a 
line as close as possible to the center of the image to 
minimize lens distortions. 

Note that this line equation exists only when e = c. 
In most cases, the difference between the values of c 
and e is due to the rotation around the optical axis ui^, 
such that it contributes —w^ to c, and H-w^ to e. As a 
result, the term ^ should be approximately equal to 
the common component of c and e, which excludes the 
rotations around the optical axis. As rotation around 
the optical axis does not expose any new information 
regarding the scene, efl^ects of such a rotation should 
be eliminated by preliminary warping of the image 

with the rotation w, 
affine transformation is recovered 

We will use the following notation to describe 
the scanning line along the sequence: The line 
^n{x„,yn) = 0 is the line in Image /„, in it's coordi- 
nate system {xn,yn), which corresponds to the affine 
transformation An = {an,b„,Cn,dn,en, fn)- This 
affine transformation An relates points p„ in Image 
In to corresponding points pn-i in Image /„,_i (see 

Fig. 3). 

^"2^, which is known once the 
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Figure 2: Examples for scanning line, 
(a) A vertical scanning line is selected for horizon- 
tal motion, (b) A horizontal scanning line is se- 
lected for vertical motion, (c) A circular scanning 
line is selected for zoom and for forward motion. 

2.2    Special Cases 
Eq. 3 can be easily understood for some simple 

cases. 

• In the case of sideway motion (either small 
sideway rotation or sideway translation), the 
affine transformation A takes the form A = 
(a, 0, 0, 0, 0,0), thus the selected line becomes 0 = 
T{x,y) = ax + M, which is a vertical line (see 
Fig. 2.a). 

• In the case of upwards motion (either small ro- 
tation or translation), the affine transformation 
takes the form A = (0, 0, 0, rf, 0,0), thus the se- 
lected line becomes 0 = ^(a;, y) = dy+ M, which 
is a horizontal line (see Fig. 2.b). 

• In the case of zooming or forward motion (to- 
wards a planar surface which is parallel to the 
image plane), the affine transformation takes the 
form A = (0, s, 0, 0, 0, s), where s is the scaling 
factor. As a result, the selected line will become 
0 = J^{x, y) = |(a;^ -|- j/^) + M, which is a circle 
around the center of the image (see Fig. 2.c). 

In the more general translation case, the result will 
be a circle around the Focus Of Expansion (FOE), 
assuming that the scene is planar and parallel to the 
image plane. More complex cases exist, in which the 
result will be generalized elliptic curve. 

3    Cutting and Pasting of Strips 
The mosaic is constructed by pasting together 

strips taken from the original images. The shape of 
the strip, and its width, depend on the image motion. 
This section describes how to select and to paste these 
strips. 

Figure 3: Cutting and pasting strips. 
(a)-(c) Strips are perpendicular to the optical 
flow,   (d) Strips are warped and pasted so that 
their back is fixed and their front is warped to 
match the back of the next strip. 

3.1     Cutting Strips 
In order to determine the strip to be taken from Im- 

age /„, the preceding frame, In-i, and the succeeding 
frame, In+i, should be considered. 

Let An be the affine transformation relating points 
Pn = {xn,yn) in Image /„ to the corresponding 
points p„_i = (a;„_i,2/„_i) in Image /„_i, and let 
An-\-i be the affine transformation relating points 
Pn+i = {xn+\,yn-\-\) in Image J„+i to the correspond- 
ing points Pn = ixn,yn) in Image /„. 

Given the affine transformations An and An+i, 

the lines Tn{x„,yn) = 0 and J^n+iixn+i,yn+i) = 
0 are selected respectively (see Fig. 3.a-c). The 
line Tn{xn,yn) = 0 in /„ corresponds to the 
line T'n{xn-\,yn-\) = 0 in /„_i using the affine 
transformation An- In the same way, the line 
Tn+\{xn+i,yn+i) = 0 in J„+i Corresponds to the line 
T'n+i{xn,yn) = 0 in J„ using the affine tran.sforma.- 
tion An+i- 

The strip that is taken from the image /„ is 
the range between the lines Tn{xn,yn) = 0 and 
^'n+i{xn,yn) = 0 in 7„ (see Fig. 3.a-c). 

Using this selection, the first boundary of the strip 
will be described by the selected line Tn, thus will be 
exactly orthogonal to the optical flow with regard to 
the previous image. The second boundary of the strip 
is described by the line T'n+i which is the projection 
of the line Tn+i onto the current image /„, having the 
same properties in the next image. 

This selection of the boundaries of the strip ensures 
that no information is missed nor duplicated along the 
strip collection, as the orthogonality to the optical flow 
is kept. 
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3.2     Pasting Strips 
Consider the common approach to mosaicing where 

one of the frames is used as a reference frame, and all 
other frames are aligned to the reference frame before 
pasting. In term of strips, the first strip is put in the 
panoramic image as is. The second strip is warped in 
order to match the boundaries of the first strip. The 
third strip is now warped to match the boundaries of 
the already warped second strip, etc. As as result, the 
mosaic image is continuous. However, major distor- 
tions may be caused by the accumulated warps and 
distortions. Large rotations can not be handled, and 
cases such as forward motion or zoom usually cause 
unreasonable expansion (or shrinking) of the image. 

To create continuous mosaic images while avoid- 
ing accumulated distortions, the warping of the strips 
should not be done towards the mosaic, but towards 
another original frame. In our scheme, the back of 
each strip is never changed. This is the side of the 
strip which corresponds to the boundary between Im- 
age /„_i and Image /„ and defined by Tn- The front 
of the strip is warped to match the back side of the 
next strip. This is the boundary between Image /„ 
and Image J„+i which is defined by T'n+i- 

In the example described in Fig. 3.d, we warp the 
first strip such that its left side does not change, while 
its right side is warped to match the left side of the 
original second strip. In the second strip, the left 
side does not change, while the right side is warped 
to match the left side of the third strip, etc. 

As a result, the constructed image is continuous. 
Also, were we to warp the original optical flow as we 
did with the strips, the resulting flow is continuous 
as well, and is parallel to the direction in which the 
panoramic mosaic is constructed. Moreover, no accu- 
mulative distortions are encountered, as each strip is 
warped to match just another original strips, avoiding 
accumulative warps. 

4    View Interpolation for Parallax 
Taking strips from different images when the width 

of the strips is more than one pixel would work flne 
only without parallax. When parallax is involved, no 
single transformation can be found to represent the 
optical flow in the entire scene. As a result, a trans- 
formation that will align a close object will dupUcate 
far objects, and on the other hand, a transformation 
that will align a far object will truncate closer objects. 
Also, rapid changes between aligning close and far ob- 
jects might result in useless results. 

In order to overcome the parallax problems in gen- 
eral scenes, instead of taking a strip with a width of 
L pixels, we can synthetically generate intermediate 

images, and use narrower strips. For example, we can 
take a collection of L strips, each with a width of one 
pixel, from interpolated camera views in between the 
original camera positions. In order to synthesize new 
views we can use various methods, such as optical flow 
interpolation [1, 9], trilinear tensor methods [7], and 
others. In most cases approximate methods will give 
good results. The creation of the intermediate views 
can involve only view interpolation, as in most of the 
applications view extrapolation is not needed. 

The use of intermediate views for strips collec- 
tion gives the effect of orthographic projection, which 
avoids parallax discontinuities. This strategy can be 
combined with the methods that were described in the 
previous sections as a preliminary stage, such that a 
complete solution is given for general motion in gen- 
eral scenes. 

5    Experimental Results 
In this section we show two cases which can not 

be done with other mosaicing methods. These results 
are still preliminary, but indicate the potential of this 
approach. Simple cases can be seen in [6]. 
5.1 Zoom 

During zoom, the resolution of the image increases 
while the field of view becomes smaller, causing the 
loss of the outside periphery from the next frame. Our 
process collects these circular peripheral strips, that 
disappear from one frame to the next, to construct 
the mosaic. 

Assume the camera is located at the side of a long 
wall, with its optical axis parallel to the wall. In this 
case the closest parts of the wall are seen in high de- 
tails at the edge of the image, while the distant parts of 
the wall are seen smaller closer to the center of the im- 
age. When zooming in, the further parts are magnified 
and get closer to the edge of the image, and the mo- 
saic will therefore become a reconstruction of the wall 
at the highest possible resolution. Under some con- 
ditions the wall can even be reconstructed as viewed 
from the front, in uniform resolution all over. This 
result is shown in Fig. 4, where circular strips were 
collected and pasted in the panoramic image. 
5.2 Sideway Motion with Parallax 

In Figure 5 the camera is moving sideways, generat- 
ing substantial parallax. Vertical strips were collected 
according to the affine transformation that was recov- 
ered along the sequence, and the strips were pasted in 
the panoramic image. Without view interpolation, du- 
plications and truncations are seen clearly, while with 
view interpolation these eff'ects are reduced. The view 
interpolation was performed by optical flow interpola- 
tion. 
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Figure 4: Panoramic mosaic for Zoom, 
(a) Two original images. A map is seen on a wall 
parallel to the optical axis,    (b) Reconstructed 
panoramic mosaic, which is similar to a real front 
view of the map (c). 

Figure 5: Handling parallax: sideways motion 
(a) Two original images,    (b)  Mosaicing with- 
out view interpolation. Distant objects are dupli- 
cated, and close objects are truncated, (c) Using 
view interpolation reduces the distortions. 
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Abstract 
As the field of view of a picture is much smaller 

than our own visual field of view, it is common to 
paste together several pictures to create a panoramic 
mosaic having a larger field of view. While scissors 
and glue are the tools used in film photography, more 
sophisticated methods were enabled with digital video. 

Panoramic mosaics can be created by special de- 
vices which rotate around the camera's optical center 
(Quicktime VR, Surround Video), or by aligning, and 
pasting, frames in a video sequence to a single refer- 
ence frame. Existing mosaicing methods have strong 
limitations on imaging conditions, and distortions are 
common. 

Manifold projection enables the creation of 
panoramic mosaics from video sequences under very 
general conditions. The panoramic mosaic is a projec- 
tion of the scene into a virtual manifold whose struc- 
ture depends on the camera's motion. This manifold 
is more general than the customary projections onto 
a single image plane or onto a cylinder. VideoBrush, 
which is a real-time, software only, implementation on 
a PC, proves the superior quality and speed of this 
approach. 

1    Introduction 
The need to combine pictures into panoramic mo- 

saics existed since the beginning of photography, as 
the camera's field of view is always smaller than the 
human field of view. 

Three major issues are important in image mosaic- 
ing: 

• Image alignment, which determines the transfor- 
mation that aligns the images to be combined into 
a mosaic. 

• Image cut and paste is necessary since most re- 
gions in the panoramic mosaic are overlapping, 

*This research was mostly done at David Sarnoff Research 
Center, Princeton, NJ, USA. VideoBrush is a trademark of 
Sarnoff. Contact E-Mail: peleg@cs.huji.ac.il 

and are covered by more than one picture. 

• Image blending is necessary to overcome the 
intensity difference between images, differences 
that are present even when images are perfectly 
aligned. 

The simplest mosaics are created from a set of 
images whose mutual displacements are pure image- 
plane translations. This is approximately the case 
with some satellite images. Other simple mosaics are 
created by rotating the camera around its optical cen- 
ter using a special device, and creating a panoramic 
image which represents the projection of the scene 
onto a cylinder [7, 15, 14, 13]. Since it is not simple to 
ensure a pure rotation around the optical center, such 
mosaics are used only in limited cases. 

In more general camera motions, that may include 
both camera translations and camera rotations, more 
general transformation for image alignment are used 
[5, 8, 12, 16, 9]. In all cases images are aligned 
pairwise, using a parametric transformation like an 
affine transformation or planar-projective transforma- 
tion. A reference frame is selected, and all images 
are aligned with this reference frame and combined to 
create the panoramic mosaic. 

Aligning all frames to a single reference frame is 
reasonable when the camera is far away and its mo- 
tion is mainly a translation and a rotation around the 
optical axis. Significant distortions are created when 
camera motions includes other rotations. 

Manifold Projection overcomes many of the diffi- 
culties in photo-mosaicing: 

• The projection is defined for almost any arbitrary 
camera motion and any scene structure. This is 
enabled by narrowing the goal of image alignment 
from perfect alignment of all overlapping image 
regions to alignment only along the .seam between 
the images. 

• There are no distortions caused by the alignment 
to a reference frame. Object size in the panoramic 
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a) 

Figure 1: Aerial photography with a ID scan system. 

mosaic is the same as in the original images, and 
therefore the resolution in the mosaic is the same 
as the image resolution. 

• Computation is simplified as the only image warp- 
ing used are image-plane translations and rota- 
tions. 

VideoBrush is an initial implementation of Man- 
ifold Projection which performs real-time mosaicing 
from a video sequence on a PC without any hardware 
acceleration. 

2    Manifold Projection 
Manifold Projection simulates the sweeping of the 

scene with a plane using a one-dimensional sensor ar- 
ray (Figure 1). Such a 1-D sensor can scan the scene 
by arbitrary combinations of rotations and transla- 
tions, and in all cases the scanning will result in a 
sensible panoramic image if we could figure out how 
to align the incoming ID image strips. Some satellite 
images are created by scanning the earth with a 1-D 
sensor array using a rotating mirror. Since in this case 
the alignment of the sensors can be done using the lo- 
cation of the satellite and the position of the mirror, 
panoramic 2D images are easily obtained. Figure 1 is 
an example of such a ID scan system. 

In more general cases the motion of the sweeping 
plane may not be known. It seems impossible to align 
the 1-D image strips coming from an arbitrary plane 
sweep, but the problem becomes easier when the input 
is a video sequence. A 2D frame in a video sequence 
can be regarded as having a 1-D strip somewhere in 
the center of the image ("center strip"), embedded 
in the 2D image to facilitate alignment. The motion 
of the sweeping plane can then be computed from the 
entire image, and applied on the center-strip for align- 
ment and mosaicing. 

..-,. 

^XffiCT'"- 
b) 

^m- 
Geiwd nvuKold 

c) 

/^-A--A 

Figure 2: Different cases in Manifold Projection, 
where the projection is onto a smooth manifold pass- 
ing through the centers of the image planes used for 
mosaicing. The camera is located at the tip of the 
"field-of-view" cone, and the image plane is marked 
by a bold segment. 
a. Pure camera translation: parallel projection onto a 

plane. 
b. Pure camera rotation: projection onto a cylindrical 
manifold. 
c. Combined translation and rotation: the manifold 
is not simple any more. 

The image transformations of the ID strips gener- 
ated by the sweeping plane are only rigid transforma- 
tions: image plane translations and rotations. There- 
fore, rigid transformations should also be the trans- 
formation used in Manifold Projection. It should be 
noted that general camera motions induce, in general, 
non-rigid image-plane transformations. However, to 
simulate the plane sweep only rigid transformations 
should be used for the center-strip. 

The panoramic mosaics generated by combining the 
aligned ID center-strips form a new scene-to-image 
projection, called the Manifold Projection. This is a 
projection of the scene into a general manifold which 
is a smooth manifold passing through centers of all 
image planes constructing the mosaic. In the case of 
pure camera translations (Figure 2.a). Manifold pro- 
jections turns out to be a parallel projection onto a 
plane. In the case of pure camera rotations (Fig- 
ure 2.b), it is a projection onto a cylinder. But when 
both camera translations and rotations are involved, 
as in Figure 2.c, the manifold is not a simple manifold 
any more. The ability to handle such arbitrary com- 
binations of camera rotations and translations is the 
major distinction between Manifold Projection and all 
previous mosaicing approaches. 

The type of camera motion has a very significant 
impact on the type of projection and on the appear- 
ance of the panoramic mosaic.   In camera panning. 
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where the camera motion is a pure rotation around 
the Y-axis, the resulting projection is onto a cylinder. 
This generates a mosaic which is, locally, very similar 
to every input image. 

In a pure camera translation, where the camera 
moves parallel to the image plane, manifold projec- 
tion is a semi-parallel projection onto a plane. Semi- 
parallel means that each center-strip is parallel to the 
other center-strips, but within the center-strips the 
projection is still perspective. Parallel projection is 
very different from a perspective projection in the 
sense that far-away objects do not appear smaller than 
close-by objects. 

3 Image Alignment 
Simulation of scene sweeping by a plane from a 

given video sequence can be done once the full 3D 
motion of the camera ("ego-motion") is known [11]. 
However, the implementation of the manifold projec- 
tion described in this paper uses only 2D alignment, 
rather than using full ego-motion analysis. Neverthe- 
less, results are impressive in most cases. It has most 
of the desired features of the theoretical manifold pro- 
jection, e.g. that each object in the mosaic appears 
in the same shape and size as it appears in the video 
frames, avoiding any scaling, and therefore avoiding 
the possible associated distortions and loss of reso- 
lution. The 2D alignment used therefore compensates 
only for image translations and rotations. Another as- 
sumption in this implementation is that scale changes 
are minimal: there is no change of focal length, and 
the effects of forward motion are significantly smaller 
than the effects of other motions. 

To assure that the motion computation will always 
result in the image motion of a single object, methods 
similar to [10, 6] were used. 

4 Cut and Paste 
Combination of the sequence of aligned image 

frames into a single panoramic mosaic can be done 
in several ways. In those cases where image alignment 
is close to perfect, pixel values in the panoramic mo- 
saic can be computed by averaging the corresponding 
values in all overlapping pixels of the aligned original 
frames. 

When the alignment between images is not perfect, 
averaging may result in blurring and in deterioration 
of image quality. In this case it is preferred to select 
only one of the input images to represent a region 
in the mosaic. Such a selection should be done to 
minimize effects of misalignment. The most logical 
selection is to select from each image that part closest 
to its center. There are two reasons for that selection: 

• Alignment is usually better at the center than at 
the edges of the pictures. 

• Image distortion is minimal at the center of the 
images. 

This selection corresponds to the Voronoi tessella- 
tion [3]. Using the Voronoi tessellation for image cut- 
and-paste also served to minimize visible misalignment 
due to lens distortions. Voronoi tessellation causes 
every seam to be at the same distance from the two 
corresponding image centers. As lens distortions is 
a radial effect, features that are perpendicular to the 
seam will be distorted equally on the seam, and there- 
fore will remain aligned regardless of lens distortion. 

5 Color Merging in Seams 
Changes in image brightness, usually caused by the 

mechanism of automatic gain control (AGC), cause 
visible brightness seams in the mosaic between regions 
covered by different images. These seams should be 
eliminated in order to get a seamless panorama. 

The process of blending the different images into a 
seamless panorama must smooth all these illumination 
discontinuities, while preserving image sharpness. A 
method that fulfills this requirement is described in 
[4]. In this approach, the images are decomposed into 
band-pass pyramid levels, and then combined at each 
band-pass pyramid level. Final reconstruction of the 
images from the combined band-pass levels give the 
desired panorama. 

6 Examples 
Figure 3 shows some panoramic mosaic images cre- 

ated with VideoBrush. More examples can be viewed 
in "http://www.sarnoff.com/VideoBrush". 

7 Concluding Remarks 
Manifold Projection enables the fast creation of 

low-distortion panoramic mosaics under very general 
camera motions. Implementation under the assump- 
tions of limited change of scale and limited parallax 
gives unparalleled speed and quality of mosaicing. Fu- 
ture extensions will address the issues of motion par- 
allax, as well as forward motion and zoom which are 
not addresses in the current scheme. 
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Abstract 
Multiple images of a scene are related through 
2D/3D view transformations and linear and non- 
linear camera transformations. In all the traditional 
techniques to compute these transformations, espe- 
cially the ones relying on direct intensity gradients, 
one image and its coordinate system have been as- 
sumed to be ideal and distortion free. In this pa- 
per, we present a formulation and an algorithm for 
true multi-image alignment that does not rely on the 
measurements of a reference image being distortion 
free. For instance, in the presence of lens distor- 
tion, none of the images can be assumed to be ideal. 
In our formulation, all the images are modeled as in- 
tensity measurements represented in their respective 
coordinate systems, each of which is related to an 
ideal coordinate system through an interior camera 
transformation and an exterior view transformation. 
The goal of the accompanying algorithm is to com- 
pute an image in the ideal coordinate system while 
solving for the transformations that relate the ideal 
system with each of the data images. 

Key advantages of the technique presented in this 
paper are: (i) no reliance on one distortion free im- 
age, (ii) ability to register images and compute coor- 
dinate transformations even when the multiple im- 
ages are of an extended scene with no overlap be- 
tween the first and last frame of the sequence, and 
(iii) ability to handle linear and non-linear transfor- 
mations within the same framework. 

The new algorithm is evaluated in the context of 
two applications: (i) correction of lens distortion, 
and (ii) creation of video mosaics. 

1    Introduction 

Multiple images of a scene are related through 
2D/3D view transformations and linear and non- 

linear camera transformations. Automatic computa- 
tion of these transformations is important for appli- 
cations like image/video mosaicing, structure from 
motion, and recovery of camera and object mo- 
tions. Direct methods for simultaneously comput- 
ing the correspondences between frames and the 
unknown transformations through alignment have 
been actively explored in the past few years. Di- 
rect estimation has proven to be more practical 
and robust over more traditional feature correspon- 
dence based methods since the direct methods typ- 
ically use all the data available in images and em- 
ploy geometric viewpoint and structure constraints 
in the estimation process. Direct methods have 
been fruitfully employed in a hierarchical coarse-to- 
fine optimization framework to estimate 2D para- 
metric transformations [Bergen and others, 1992, 
Black and Anandan, 1996], 3D view and parallax 
estimates [Kumar et ai, 1994, Sawhney, 1994] both 
over two and multiple frames [Hanna and Okamoto, 
1993], 2D layered and moving object representa- 
tions [Ayer and Sawhney, 1995, Hsu et al., 1994, 
Irani et al., 1992], and to create 2D and 3D aligned 
video mosaics [Irani, 1995, Kumar et al., 1995, 
Mann and Picard, 1994, Sawhney et al., 1995, 
Szeliski, 1994]. 

In all the direct techniques, one image and its co- 
ordinate system have been assumed to be ideal and 
distortion free. In this paper, we present a formu- 
lation and an algorithm for true multi-image align- 
ment that does not rely on the measurements of a 
reference image being distortion free. For instance, 
in the presence of lens distortion, none of the images 
can be assumed to be ideal. In our formulation, all 
the images are modeled as intensity measurements 
represented in their respective coordinate systems, 
each of which is related to an ideal coordinate sys- 
tem through an interior camera transformation and 
an exterior view transformation. The goal of the ac- 
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companying algorithm is to compute an image in the 
ideal coordinate system while solving for the trans- 
formations that relate the ideal system with each of 
the data images. The algorithm is based on a min- 
imum variance estimate of the ideal image that is 
computed using direct multi-resolution methods. 

Key advantages of our technique are: (i) no reliance 
on one ideal and distortion free image, (ii) ability 
to register images and compute coordinate transfor- 
mations even when the multiple images are of an ex- 
tended scene with no overlap between the first and 
last frame of the sequence, and (iii) ability to han- 
dle linear and non-linear transformations within the 
same framework. 

In Section 2, the formulations of the multi-view vari- 
ance error function and an iterative solution are pre- 
sented. Section 3 presents the optimization strat- 
egy. Subsequently, we present experimental results 
for the new algorithm for two applications: (i) cor- 
rection of lens distortion, and (ii) creation of video 
mosaics. Finally, in the appendix, some experiments 
on the validation of our lens distortion model are 
presented. 

2    Formulation 

Given images II...IN, the coordinate system of 
each Ii is represented as a transformed version of 
an ideal reference coordinate system typically not 
belonging to any particular image. Therefore, a 
point p = {x,y) in the ideal system is related to 
an observed point p' = (a^Sy') in the ith image 
through a two-step transformation. In the first 
step, p is transformed through a transformation, A% 
which typically is a 3D-to-2D or 2D-to-2D projec- 
tion transformation, to an undistorted coordinate 
pj = {x},y}). In the second step, pj is further 
transformed, typically through a nonlinear camera 
transformation, 7, to obtain the observed video co- 
ordinate p' = (a;\y'). For simplicity and without 
loss of generality, 7 is assumed to be the same for 
^ach image. The functional relationship between a 
reference coordinate p and the corresponding video 
coordinate can be succinctly expressed as: 

p' = pi + r(pi;7)      pi = P(p;AO      (1) 

where P and T represent the projection and nonlin- 
ear camera tranformations, respectively. 

Given the coordinate transformations, intensities at 
points p™ in image /„ and at p" in image /„, that 
transform to the same reference coordinate p, are 
related through 

/„(p'";p,A",7)=/n(p";P,A",7).        (2) 

However, the parameters A^... A-'^ and 7 are un- 
known and so is the correspondence between the 
points of the images. The correspondence between 
points in various images can be established only 
through the transformation of the reference coordi- 
nates in Equation (1). 

In order to compute the correspondences and the 
unknown parameters simultaneously, we formulate 
an error function that minimizes the variance in in- 
tensities of a set of corresponding points in the im- 
ages, that map to the same ideal reference coordi- 
nate. Formally, the optimization problem is: 

Ai 
mm    Yl 

p 
A'^,7^^ M(p) 

Y^iW)-I{p)f,     (3) 

where point p' in frame i is a transformation of a 
point p in the reference coordinate system, 7(p) is 
the mean intensity value of all the p"s that map to 
p, and M(p) is a count of all such p"s. Therefore, 
given a point p in the reference coordinates, each 
term in the sum in Equation (3) is the variance of 
all the intensity values at points p' that map to point 

P- 

We now develop the multi-image formulation us- 
ing a parametric plane projective transformation as 
the scene to image mapping, and lens distortion 
as the nonlinear camera transformation. This can 
be specialized and generalized to other parametric 
(e.g. translation and afiine) and quasi-parametric 
(plane-l-parallax) models. Recall that the plane pro- 
jective model with lens distortion captures accu- 
rately the image transformations from a real camera 
undergoing approximately rotations (pan/tilt) and 
zoom, and also models the other internal camera 
parameters. 

The transformation consists of (for the purposes 
of this formulation but is not limited to) an 8- 
parameter plane projective transformation and a 
1 or 2 parameter lens distortion transformation. 
Therefore, Equation (1) can now be written specifi- 
cally in terms of the transformation parameters as: 

i ^ ajix + a\2y + a\z 

. ^ 4ia: + ahy + ^3 u) 

where an... 033 are the plane projective parameters 
with 033 set to 1 without loss of generality. {x),y)r) 
is further transformed non-linearly using the lens 
distortion to obtain the observed video coordinate 
{x',y^) through 

x' = x}+ji{x}-xi;y 

y' = yi + 7M-yhy (5) 
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where p^^ = (xQ^y^) is the image center for the 
ith frame, and r^ — {x\ - x}.)"^ + [v] - Vc)'^ i^ the 
squared distance of {x],y}) from the center. 

The above equation models only the cubic term of 
radial lens distortion. For most of the cameras we 
have experimented with, this is the most significant 
term. However, the alignment technique presented 
in this paper can easily be applied to other more 
general models of lens distortion. For simplicity, it 
is assumed that each video frame is distorted with 
the same lens distortion parameter 71; not an un- 
reasonable assumption for many real scenarios. It 
is also assumed that the x and y scale factors for 
the frame coordinates are the same; otherwise two 
parameters for lens distortion can easily be specified 
in the above equation. It is to be noted that if there 
is no non-linear distortion (as in Equation (5)), then 
the observed coordinates of one image can be chosen 
as the reference coordinates. This is a special case 
of the above formulation. 

2.1    Iterative Solution 

It is evident from the optimization function in Equa- 
tion (3) and the transformations in Equations (4)~ 
(5) that the unknown parameters cannot be ob- 
tained in closed form. We employ the Levenberg- 
Marquardt technique for minimizing sum of squares 
error functions. 

In order to apply the LM technique, each term in 
Equation (3) is linearized. Each term is of the form: 

E{{p';p);A,ji) 
v^M(p) 

(/,(p')-7(p)),    (6) 

where A represents the set of all the A^ unknown 
A*'s. Given a solution of the unknown parameters 
-4fc)7ifc at the fcth step in the optimization process, 
each JB((P';P);.4,7i) is linearized around this solu- 
tion as: 

E{{p';p);Ani) ~ £;((p';p); A,7iJ+ 

= £((p';p); A,7iJ + VE U,,^,^ [SA'^S^^f] (7) 

where 

-E((p';p);A,7iJ = 

7i(p'(p;Al,7iJ)--r(p'(p;Al,7iJ) 
^/Mip) 

The first term on the right hand side in the above 
equation is the intensity value for image i sampled 
at location p' which is a forward mapping of the 
corresponding point p in the reference image with 

mapping parameters Aj.,7i^. Recall that we do not 
apriori know the correspondences (p',p); these are 
known only through the mapping parameters. Given 
that typically only the forward mapping from p to p' 
is known, /i(p'(p; ^^,7^.)) can be written in terms 
of a warped image represented in the reference p co- 
ordinates, that is, /i(p'(p;A'fe,7iJ) = /•"(?)■ The 
warped image is created by computing p' for image 
i using p and the parameters Aj,,7i^., and inter- 
polating the known values of the image U at integer 
pixel locations. Therefore, /f (p) represents the cur- 
rent estimate of image i represented in the reference 
coordinates. Also, 

/(p'(p;AJ„7iJ) = M(p) 
Tir 

Therefore, at the kth parameter values, 

s((p';p);A,7u.) = /r(p)-/"(p)- 

The gradient term in the first order approximation 
of Equation (7) can be written as. 

v^U„7i = 
\/M(p) 

((V/,(p')Vp') lp'(p;Aj.,7iJ 

M|^E(^^»(P')^P')IP'(P;AL.7U))  (8) 

The gradients of images are in their respective co- 
ordinate systems and are 1x2 matrices. Again, 
the gradient images are represented in the reference 
coordinate system for particular values of the un- 
known parameters, Ak,^ik, through interpolation 
and warping. The gradients of the ith image's (7^) 
coordinate system, p', are with respect to the un- 
known parameters, Ai,7i, evaluated at the current 
values A[,7i^. Each of these is a 2 x (A'' x M -|- 1) 
matrix where M is the dimension of each unknown 
parameter vector Aj, TV is the number of images, 
and 1 accounts for the unknown scalar 71. 

The gradients of the image coordinates can be ex- 
pressed as: 

V(A-,-yi)P' ='^A' pi + V(Ai,-y,)r(pi;7i) 

The gradients are separated into the ones with re- 
spect to A' and 71. From Equation (1), 

VA^P= = ((l+7i^')l2+27i[pi-p'c][pi-p'cr)V IA^ pi, 

where I2 is the 2x2 identity matrix. 

Using the augmented vector Pa = [ P    1 ]   , 

i      [hi    O3    ha 
^A^Pi-      O3     hi     h3 
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where 

O3 

hi 

h2 

ha 

[000] 

1 1 
• T 

A^    Pa A^    Pa 

V3    Pa 

-y}x 

A{' 

A^    Pa 

"M^ 

WP. ■y\y 

Af   Af 

local minima are avoided and the number of itera- 
tions required is considerably reduced. 

The progressive complexity strategy is to divide the 
optimization process into a sequence of steps. At 
each step, an increasingly higher parametric order 
motion model is inserted in Equation (3) and the 
subsequent error function is minimized. The results 
from the previous step are used as an initial estimate 
for the next step. The unknown projective parame- 
ters can be decomposed into the following hierarchy 
for estimation: 

Furthermore, V^jP' = [pi - p'c]^^- 

Let g' = V/i(p')VAip' be a 1 X M matrix, and 
g^ = V/i(p')V^iP' be a scalar. Also let G(p) = 
[g^... gV .. g-*^] be the 1 X M * A'' matrix of all the 
g''s, and g = Y^iQ^ Then V^; of Equation (8) can 
be written as: 

VE: 
VMip] 

[00...g'0...05*]- 
1 

M(p) [G(P)5]. 

Each iteration solves the following linear sum of 
squares problem using LM: 

^^(£;(p-;p) + V£;(p-;p) 
5A 
6ji 

For each point p in the reference coordinates, all 
the images that contain a point that maps to p con- 
tribute an equation to the system of equations corre- 
sponding to the above problem. LM iterations look 
for a solution that results in a reduction of the er- 
ror function by making the Hessian diagonally dom- 
inant progressively, if the original system leads to 
an increase in the error value. In order to obtain a 
well-conditioned system of equations, the unknown 
parameters are scaled appropriately so that the Hes- 
sian remains well conditioned. 

3    Minimization Strategy 
In order to handle a wide range of motion between 
frames, and to efficiently compute large number 
of parameters through frame alignment, we adopt 
an optimization strategy that uses (i) progressively 
complex models of motion and (ii) coarse-to-fine 
tracking of the model parameters. 

Progressive Complexity 

In order to solve for a large number of parameters 
(typically, SN+lfovN + l frames with their respec- 
tive plane projective transformations and a common 
lens distortion parameter) efficiently, we have found 
empirically that the use of models with a progressive 
increase in complexity helps tremendously. Spurious 

1. 2D Ti-anslation, 2 unknown parameters,ai3,033, 
for each frame (Equation (4)). 

We first solve for only the translation parame- 
ters within a region of interest which is limited 
to an inner central square, typically 5 of the 
input images along each dimension. Pixels at 
the inner central square suffer from little lens 
distortion as compared to pixels in the outer 
boundaries. 

2. Affine, 6 unknown parameters 
a\i,a\2,a{3, 021, a22,0-23 ■ 
The initial translation is used to solve for affine 
parameters. The region of interest is expanded 
a little (to a dimension of | of the image), but 
still does not cover the whole image. 

3. Projective, 8^ parameters plus the global lens 
distortion parameters as in Equations (4) and 
(5). 

Finally, the affine parameters are used as an ini- 
tial estimate for computing the projective and 
the lens distortion parameters simultaneously. 
In this step, the error function is optimized over 
the entire image. 

In some situations step 2 may be skipped. 

Coarse to Fine Minimization 

In addition to the progressive complexity strategy, 
in order to align frames with displacements in tens 
of pixels, optimization over coarse-to-fine levels of 
a gaussian/laplacian pyramid is necessary. The pa- 
rameters are first estimated at the coarse level of 
the pyramid and the results from this level are used 
as an initial estimate for the next finer level of the 
pyramid. 

Typically the two strategies are combined. At the 
higher levels of the pyramid, only the low order mod- 
els are computed.   The results from these are used 

'^Note, the projective transformation can also be modeled 
by 9 parameters, with the constraint that the RMS value for 
the 9 parameters is equal to 1. 
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as an initial estimate for solving the higher order 
models at the fine levels of the pyramid. 

4    Experiments with Lens Distortion 
Correction 

One of the applications for multi-image registration 
is video mosaics using off-the-shelf inexpensive PC 
cameras. Severe lens distortion is a common occur- 
rence in most of these cameras. In order to create 
high quality mosaics using these cameras, it is nec- 
essary to correct for the distortion. Our algorithm 
may be used for this purpose either to compute the 
lens distortion parameter in an initializing phase in 
which only a few frames are used or along with the 
computation of the alignment parameters for each 
frame. 

We first show the results of computing the lens dis- 
tortion parameters from a few frames. In princi- 
ple, two frames should be sufficient to solve for the 
view transformation and lens distortion. However, 
we have observed that often two frames lead to lo- 
cal minimum solutions that can be avoided by using 
three frames. 

Room Sequence 

The first experiment is on a room sequence. The se- 
quence was acquired through a hand held inexpen- 
sive Toshiba desktop CCD camera. The effort was 
to capture a sequence of the complete room (about 
180 degrees) through two roughly panning swipes of 
the camera. 

The multi-frame registration algorithm was applied 
on three frames, shown in figure 1, with a plane pro- 
jective and lens distortion model. The three aligned 
frames are shown in the undistorted coordinate sys- 
tem of the middle frame in Figure 2. The frames are 
shown in a frame bigger than the original to show 
the full extent of the warping with the projective 
and lens distortion parameters. Figure 3 shows the 
differences with respect to the reference frame be- 
fore and after alignment, in the original size of the 
frames. 

Document Sequence 

Three images of a document scanned using an inex- 
pensive Visual Labs, "gooseneck" camera are shown 
in Figure 5. The 3D motion used to acquire the im- 
ages is essentially a global y-axis translation. Since 
the paper is flat, the image motion ideally would be 
described by a global 2D motion. However, from 
the figure, it can be noted that there is significant 

radial lens distortion in the images. Figure 6 shows 
the input images warped by the computed lens dis- 
tortion and global projective parameters. As can 
be noted from the images in the figure, the straight 
lines corresponding to page margins and sentence 
boundaries appear quite straight, showing effective 
compensation for lens distortion. 

5    Distortion Corrected Video 
Mosaics 

The algorithm demonstrated above may be applied 
over multiple frames simultaneously to register all 
of them in a given undistorted reference frame. Al- 
ternatively, to avoid solving for a large number of 
parameters simultaneously, a seed set of frames may 
be used to compute their view transformations and 
the lens distortion. Subsequently, the lens distor- 
tion is applied as a pre-processing steps to the rest 
of the frames and only the projective parameters are 
solved for to align new frames with already aligned 
ones. An interesting issue in creating such multi- 
frame video mosaics is whether frames should be 
registered to their neighbors and subsequently as- 
similated into a single coordinate system, or a given 
frame should be aligned to the current mosaic. This 
issue is extremely important when mosaics of ex- 
tended scenes are created by panning and tilting the 
camera and frames contain views of the same scene 
patches may not be temporally contiguous. For in- 
stance, the room sequence, was captured using two 
panning scans which were overlapping. Due to the 
constraints on space in this presentation, we are un- 
able to go into a detailed demonstration of the com- 
parisons between the two approaches. Almost all ex- 
isting methods have used parameters computed by 
consecutive frame alignment to create mosaics. We 
show a mosaic of 8 frames of the room scene that was 
constructed using lens distortion correction applied 
to each frame and through registration of frames to 
an evolving mosaic. Only the final result is shown 
in Figure 4. 

A mosaic built using the computed transformations 
on the document images is shown in Figure 7. 

Appendix 

A    Evaluation of the Lens Distortion 
Model 

We now present preliminary results on the validity 
of the lens distortion model and our multi-frame pa- 
rameter estimation technique. Experimental results 
on the quantitative accuracy achieved in point lo- 
calization by the techniques presented in this paper 

269 



Figure 1: Three frames from room sequence through a PC camera with severe lens distortion. 

Figure 2: The three frames, registered with the multi-frame plane projective plus lens distortion model, 
shown as complete warped frames in the coordinate system of the undistorted reference frame. 

•i    ti   N.   i; 
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Figure 3: Left two: Difference images for frame differences between the first and the third frames with 
respect to the second for the room sequence. White denotes low differences and black high differ- 
ences. Right two: Differences after multi-frame alignment. 

Figure 4: Video mosaic with frame-to-mosaic alignment for the room video. 
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Figure 5: Three frames of a document with severe lens distortion. 

Figure 6: Warped document images after compensation for global projective transformation and radial lens 
distortion. 

Figure 7: Document mosaic after compensation for lens distortion and projective transformation. 
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Figure 8: Left: One image of a grid of circles showing lens distortion. Middle: The image after warping 
with projective+lens distortion parameters. {Centers of circles have been marked with a +). 
Right: The mask used for evaluation of prediction errors based on estimated parameters. 
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are reported. In contrast with other cahbration tech- 
niques, that rely on comparing an image of a calibra- 
tion object/pattern with the true pattern, since our 
technique relies only on captured images, the evalu- 
ation technique also follows this framework. A pat- 
tern of uniform sized black circles on a white back- 
ground was chosen as a test pattern. The uniform 
sized circles were chosen so that locating their cen- 
ters and using these to compute point localization 
errors would be relatively easy. Using a PC cam- 
era, a number of images of this test pattern were 
captured by moving the camera. Subsequently, two 
tests were performed on the images. 

First, 2 or 3 frames of the captured images (one of 
the images is shown in Figure 8) were used to align 
the full images using four different models: (i) 2D 
affine, (ii) plane projective, (iii) afhne with lens dis- 
tortion, and (iv) plane projective with lens distor- 
tion. Each of the models was used separately to 
align the images using the method described earlier. 
Each of the models was plugged in in the optimiza- 
tion of Equation (3). Figure 8 shows one frame after 
warping with the projective-f-lens distortion align- 
ment parameters. After alignment, a template of 
one circular pattern was used to locate to sub-pixel 
accuracy the centers of all the circular patterns in 
each of the aligned images. The RMS error between 
corresponding points is reported as the achievable 
accuracy with the four models used. These results 
are reported in Table 1 under the 64pts. column. 

The second experiment reports the results of pre- 
dictability of points using the projection and distor- 
tion models. Instead of using the whole images for 
alignment, a checker board binary mask, shown in 
Figure 8, was used to compute the parameters. Only 
the image data that corresponds to the white areas 
of the mask is used for parameter computation; the 
black areas are ignored. Again, after alignment with 
the four models with the mask, results are reported 
for point localization separately for points that lie in 
the white areas (and hence participated in the esti- 
mation process), and for points that lie in the black 
areas (those that are predicted by the computed pa- 
rameters but did not participate in the estimation 
process). These results are reported in Table 1 un- 
der the two 32pts. columns, one each for points that 
were used for estimation and the points that were 
predicted. 

In the third evaluation experiment, we report the 
point location estimation errors for various values of 
the image center around the nominal image center 
which is (160,120) for the images used in the exper- 
iment. Note that for each parameter estimation run 
the image center was kept fixed but was varied be- 
tween different runs. The projective+lens distortion 

Table 1: Estimation and prediction errors of 
points for various models. Optical 
center assumed to be at 160, 120 for the 
images of size 320, 240. Second column 
shows RMS errors when all points are 
used in parameter estimation. Third and 
fourth columns show the RMS errors for 
half the points that are used in parame- 
ter estimation, and the other half that are 
only predicted. 

Model 
Type 

Estimated 
RMS error 

Estimated 
RMS error 

Predicted 
RMS error 

No. ofpts. 64 pts. 32 pts. 32 pts. 

pixels pixels pixels 

Affn. 1.36 1.17 1.56 
Proj. 0.67 0.64 0.72 

Affn.+LD 0.60 0.57 0.46 
Proj.-t-LD 0.26 0.39 0.34 

model was used to align the three grid images using 
our multi-frame alignment method with different but 
fixed values of the image center. Table 2 reports the 
RMS errors for points between the warped reference 
frame (frame 1) and the other two frames, 0 and 2, 
for various values of the center. The warped frame 
represents the predicted image using the computed 
parameters. The best estimation errors occur for 
values (160,120) and (170,110). 

In order to estimate both the center and the other 
parameters automatically, the two center parame- 
ters could also be unknowns in the estimation pro- 
cedure. Alternatively, a search for the best center 
around the nominal one may be adequate. Note that 
in order to be able to estimate the appropriate cen- 
ter also automatically, we have to be able to find the 
best estimation error for the minimum variance esti- 
mate and not the point correspondence errors. The 
results reported here for point correspondences are 
preliminary. Further work will lead to a better un- 
derstanding of the relation between the center and 
the minimum variance estimation error. 

Acknowledgments 

The work reported here was funded in part by the 
National Information Display Laboratory, Prince- 
ton, NJ. Our thanks to Jane Asmuth for her help 
in the calibration evaluation experiments. 

References 

[Ayer and Sawhney, 1995] S. Ayer and H. S. Sawh- 
ney. Layered representation of motion video using 

272 



Table 2: RMS error of points for optical cen- 
ter positions using projective model 
with lens distortion. Columns 3 and 4 
show the RMS errors, with different cen- 
ters, for points in frames 0 and 2 with 
frame 1 chosen as the reference. 

Optical 
Center 

Frame 0-1 
RMS error 

Frame 1-2 
RMS error 

X Y 64 pts. 64 pts. 

pixel pixel pixels pixels 

160 120 0.261 0.289 
155 120 0.277 0.337 
165 120 0.277 0.307 
160 115 0.273 0.297 
160 125 0.355 0.310 
170 110 0.292 0.242 
170 130 0.387 0.404 
150 130 0.320 0.358 
150 110 0.420 0.430 
160 115 0.273 0.297 
180 100 0.363 0.320 
190 90 0.344 0.353 
200 80 0.395 0.418 

[Kumar et ai, 1994] R. Kumar, P. Anandan, and 
K. Hanna. Direct recovery of shape from mul- 
tiple views: A parallax based approach. In ICPR, 
pages 685-688, 1994. 

[Kumar et ai, 1995] R. Kumar, P. Anandan, 
M. Irani, et al. Representation of scenes from 
collection of images. In Proc. IEEE Wkshp. on 
Representation of Visual Scenes, 1995. 

[Mann and Picard, 1994] S. Mann and R. W. Pi- 
card. Virtual bellows: Constructing high quality 
stills from video. In ICIP, 1994. 

[Sawhney et ai, 1995] H. S. Sawhney, S. Ayer, and 
M. Gorkani. Model-based 2D&3D dominant mo- 
tion estimation for mosaicing and video represen- 
tation. In ICCV, 1995. 

[Sawhney, 1994] H. S. Sawhney. Simplifying motion 
and structure analysis using planar parallax and 
image warping. In Proc. Intl. Conf. on Pattern 
Recognition, pages A403-A408, 1994. 

[Szeliski, 1994] R. Szeliski. Image mosaicing for tele- 
reality applications. In IEEE Wkshp. on Applica- 
tions of Computer Vision, pages 44-53, 1994. 

robust maximum-likelihood estimation of mixture 
models and MDL encoding. In ICCV, 1995. 

[Bergen and others, 1992] J. R. Bergen et al. Hier- 
archical model-based motion estimation. In 2nd 
ECCV, pages 237-252, 1992. 

[Black and Anandan, 1996] M. J. Black and 
P. Anandan. The robust estimation of multiple 
motions: AfRne and piecewise-smooth flow fields. 
Computer Vision and Image Understanding, 
63(1):75-104, 1996. 

[Hanna and Okamoto, 1993] K.J. Hanna and 
N. Okamoto. Combining stereo and motion 
analysis for direct estimation of scene structure. 
In International Conference on Computer Vision, 
pages 357-365, Berlin, May 1993. 

[Hsu et ai, 1994] S. Hsu, P. Anandan, and S. Pe- 
leg. Accurate computation of optical flow by us- 
ing layered motion representation. In ICPR, pages 
743-746, Jerusalem, Israel, Oct. 1994. 

[Irani et ai, 1992] M. Irani, B. Rousso, and S. Pe- 
leg. Detecting and tracking multiple moving ob- 
jects using temporal integration. In ECCV, pages 
282-287, Santa Margherita, Italy, May 1992. 

[Irani, 1995] Michal Irani. Applications of image 
mosaics. In International Conference on Com- 
puter Vision, Cambridge, MA, November 1995. 

273 



Horizon Line Matching for Orientation Correction 
Using a Messy Genetic Algorithm * 

Karthik Balasubramaniam     J. Ross Beveridge 
Christopher E. Lesher        Christopher Graves 

Colorado State University 
balasub/ross/Iesher/gravesc@cs.colostate.edu 

Abstract 

A robust and general line-matching system is 
used to match horizon hnes extracted from a 
terrain map to those extracted from CCD im- 
agery. Based upon these matches, uncertainty 
in camera pointing angle is reduced from several 
degrees to less than a degree. Results are pre- 
sented for two vehicle locations using imagery 
collected by the Unmanned Ground Vehicle pro- 
gram at the Lockheed-Martin Demo C test site. 
A new heuristic matching technique based upon 
a Messy Genetic Algorithm is used to obtain the 
optimal horizon matches. 

1    Introduction 

In [Beveridge et al, 1996], we demonstrated the 
feasibility of matching horizon lines extracted 
from CCD imagery to horizons extracted from 
rendered terrain maps. The practical applica- 
tion is to automate a process of precisely align- 
ing terrain maps to ground-looking imagery. It 
was found during the Unmanned Ground Ve- 
hicle (UGV) program that even when using an 
inertial guidance system to track vehicle orien- 
tation, errors of up to 1 to 2 degrees in pointing 

This work was sponsored by the Defense Advanced 
Research Projects Agency (DARPA) Image Understand- 
ing Program under contract 96-14-112 monitored by the 
Army Topographic Engineering Laboratory (TEC), con- 
tracts DAAH04-93-G-422 and DAAH04-95-1-0447, mon- 
itored by the U. S. Army Research Office as well as by the 
National Science Foundation under grant IRI-9503366. 

angle were common [Rimey and Hougen, 1995}. 

Here we extend the work presented in [Bev- 
eridge et al, 1996] by testing how well 3D cam- 
era orientation can be corrected using automat- 
ically matched horizons. We also introduce a 
new variant upon our past optimal matching 
work [Beveridge et al, 1990; Beveridge, 1993; 
Beveridge, 1997] which uses a Messy Genetic 
Algorithm to control search. Qualitatively 
speaking, we find the Messy Genetic Algorithm 
(MGA) performs better than our past local 
search techniques on the horizon problems; a 
quantitative comparison of the MGA and local 
search appears in [Whitley et al, 1997]. 

The procedure for correcting camera orientation 
is as follows: 

1. Render the 3D terrain model using an esti- 
mate of the vehicle pointing angle. 

2. Extract the horizon lines from the rendered 
terrain and the CCD imagery. 

3. Use the MGA to optimally match the two 
sets of horizon lines. 

4. Use the matched features to compute the 
orientation correction. 

Section 2 covers terrain rendering while Sec- 
tion 3 describes the extraction of line segments 
representing the horizon. Section 4 describes 
the process of finding the optimal 2D hori- 
zon matches and Section 5 explains the process 
of correcting 3D camera pointing angle based 
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upon these 2D horizon matches. Section 6 de- 
scribes our experiment design for testing how 
well camera orientation is corrected and Section 
7 presents the results of this experiment. 

2 Terrain Rendering 

The digital elevation map (DEM) for the ter- 
rain covered by our experiments, was obtained 
during the UGV RSTA program [Rimey, 1995]. 
We use imagery collected at the Lockheed Mar- 
tin site at Denver, Colorado. The imagery was 
captured using a color CCD camera mounted 
on the UGV. Images for various vehicle posi- 
tions are available, along with ground truth. 
Ground truth provides the vehicle position, and 
an estimate of vehicle pointing angle, based on 
positions of gimbal targets. These targets are 
markers on the test site. At each selected UGV 
position, the pan and tilt rotations needed to 
center the camera on these targets, gives us an 
estimate of the pointing angle. 

The terrain rendering system, which has been 
developed using Open-GL, renders the terrain 
given the vehicle position and pointing angle. 
The field of view used is 11.11° horizontal, and 
7.89° vertical. However, as is evident from a 
comparison of captured and rendered images, 
this is not very accurate. A simple Hghting 
model is used, since our interest lies only in the 
horizon Hues. These horizon Hues are extracted 
from a binary thresholded version of the ren- 
dered image. 

3 Extracting Horizon Lines 

The Burns' algorithm [Burns et al, 1986] is used 
to extract Mnes from the CCD as well as the 
rendered imagery. 

The presence of high frequency texture in the 
CCD imagery necessitates smoothing prior to 
extraction. A 5 x 5 averaging kernel is used. A 
problem faced here is that the lines extracted 
from the CCD imagery are often highly frag- 
mented. We attempt to restrict noise by en- 
forcing a minimum line length constraint, on 
extracted lines. While we have not developed 
any domain specific heuristics to improve line 
extraction for this task, past work [Thompson 

et a/., 1993; Sutherland and Thompson, 1994] 
suggests that domain specific feature extraction 
can be useful. 

For the terrain map horizons, the thresholded 
images are directly available from the rendering 
routine. Figure 3 shows the fines extracted from 
the CCD image (Figure 1). Figure 4 shows the 
fines extracted from the rendered terrain image 
shown in Figure 2. 

Figure 1: Actual CCD Imagery 

Figure 2: Terrain Map Rendering 
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Figure 3: Extracted Lines from CCD Image 

Figure 4: Extracted Lines from Rendered Image 

4    2D Line Matching 

Line matching determines the correspondence 
mapping (many-to-many) between a set of 
model line segments M and data line segments 
D that minimizes a match error function. In 
the case of horizon line matching, the data line 
segments are the horizon lines extracted from 
the actual CCD image. The model Une seg- 
ments are the horizon lines extracted from the 
rendered image which represents the image that 
ought to have resulted for the current estimate 
of pointing angle. 

The match error is formulated as the sum of fit 
and omission errors. The fit error indicates how 
closely the model fits the data. This value is 
computed using the integrated squared perpen- 
dicular distance between corresponding model 
and data line segments. The omission error 
measures the extent to which the model line 
segments are covered by the data. Match er- 
ror may be written as: 

^match ^^     o^fit   r -l^omission v-'-J 

The weighting coefficient a controls the rela- 
tive importance of the two error components. 
We have presented and used Ematch in sev- 
eral previous works [Beveridge et ai, 1990; 
Beveridge, 1993; Beveridge, 1997] and refer in- 
terested readers to these sources for additional 
detail. 

The search space for the matching problem con- 
sists of the power set C of all pairs S drawn from 
M and D. Thus, 

S C M X D C (2) 

The goal of matching is to find the optimal 
match c* e C such that 

Ematchic*)   <   Ematchic)     ^C  ^   C (3) 

In our previous paper [Beveridge et a/., 1996] 
on matching horizon lines, we reported results 
using an algorithm called subset-convergent lo- 
cal search [Beveridge et al, 1996] to find c*. 
Since that time, we've continued to study the 
problem of horizon line matching and, in par- 
ticular, have selected two vehicle locations and 
associated datasets for testing. On these cases, 
we've found subset-convergent local search to 
not perform as well as a newly developed tech- 
nique based upon a Messy Genetic Algorithm. 

4.1    Matching with a Messy GA 

Messy Genetic Algorithms [Goldberg et ai, 
1989] differ from normal Genetic Algorithms in 
that they allow variable-length strings that may 
be under-specified or over-specified with respect 
to the problem being solved. For matching ge- 
ometric models, this means they can operate 
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over partial matches and thereby piece together 
larger and better naatches. 

A Messy Genetic Algorithm typically has three 
phases: 

1. Initialization. 
2. Primordial Phase. 
3. Juxtapositional phase. 

Spatially proximal triples of line segments are 
used to initialize our MGA, where spatially 
proximal triples are defines as follows. For each 
model line rui G M, the closest two neighbors 
mil and mj2 as defined by Euclidean distance 6 
are 

6 {mi, mii)<6 (m^, lUk) ^ ruk e M - {mj 
S {mi, mi2) < 6 {mi, m^) "rf mk e M - {mi, mn} 

Similarly, for each data line segment dj G D the 
analogous nearest neighbors are dji and dj2- 

Given a matching problem between M and D, 
each pair of segments {mi,dj) G S form two 
spatially proximate triples /i and /2: 

/i    =    {{mi,dj),{mii,dji),{mi2,dj2)) 

/2    =    {{mi, dj), {mii,dj2), {mi2, dji)) 

(4) 

Since each of the n pairs of model and data seg- 
ments in S leads to 2 triples, there are 2n spa- 
tially proximate triples. 

The modified initiahzation phase creates 2n 
triples to seed the initial population of the ge- 
netic algorithm. Then, in the primordial phase, 
the match error Ematch is computed for each of 
the 2n triples. The triples are then sorted, and 
some fraction of the best form the initial pop- 
ulation. In the experiments presented here, the 
top 50% of triples are used. 

During Juxtapostion, selection is used together 
with two operators: cut and splice. Cut 'cuts' 
the chromosome at random position. SpHce 'at- 
taches' two cut chromosomes together. These 
two operators are the equivalents of crossover 
in a traditional GA. In our matching problem, 
a chromosome h is a variable length set of pairs 
h C S representing a match between model and 
data segments. Thus, using the cut and spHce 
operators, the MGA will progressively assemble 
better and better matches. All newly created 
matches are ranked by Ematch- 

At some point, recombination will typically con- 
struct enough of the match for local search to 
easily and quickly fill out the rest. For this rea- 
son, a pass of steepest-descent local search [Bev- 
eridge, 1993; Beveridge, 1997] is periodically ap- 
phed to individuals from the population. The 
frequency with which local search is run in- 
creases as population size decreases. 

To help drive the Messy Genetic Algorithm to 
a solution, every three generations the least fit 
individual in the population is dropped and the 
population size correspondingly shrinks by one. 
Every / = f generations, an individual is se- 
lected from the population and local search is 
run using the selected match as an initial state. 
If the result is better than the worst currently 
in the population, then it is inserted back into 
the population. 

5    Orientation Correction 

Given the two sets of fine segments, the MGA 
determines the transformation of the model cor- 
responding to the best match. For our purposes, 
we only need the transformation between the 
horizon as it appears in the terrain rendered 
image and the horizon is it appears in the CCD 
image. 

This 2D transformation is returned by the MGA 
when it finds the best match. The transforma- 
tion is specified by parameters: 

s,      ^ = {4>i,h),        T = {Ti,T2) 

representing scale, rotation, and translation 
respectively. The transformation is effected as 
follows: 

X 4>i 
(f>2 4>i 

X 

y 

T2 
Ti 

(5) 
This transformation maps a point {x, y) in the 
rendered image into a point {x ,y) in the CCD 
image. This transformation lets us create a set 
of paired points, with each pair containing a 
point coordinate in the terrain map image and 
the corresponding coordinate in the CCD im- 
age. In principle we could do this with any set of 
points lying on the horizon. In practice we use 
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the endpoints of the segments extracted from 
the rendered terrain image. 

This 2D mapping between points in the CCD 
and rendered image can be used to create a set 
of corresponding 3D points by backprojecting 
each 2D image point into the scene. Since we 
are concerned only with camera rotation, the 
exact depth we choose for back projecting the 
image points does not matter. 

Each 3D point derived from the CCD image, 
{x',y',z'), is now paired with a 3D point de- 
rived from the terrain rendered image, (x, y, z). 
The rotation R which corrects the orientation 
between terrain and CCD images should satisfy 

X 
f 

y 
z 

R 
X 

y 
z 

(6) 

This rotation is the orientation correction. In 
other words, R will correct for a mis-alignment 
between the orientation of the camera and the 
terrain map. 

We solve for the 3D rotation which aligns our 
two sets of points using a subset of Horn's ab- 
solute orientation method [Horn, 1987]. Let 
fd denote the set of model points transformed 
to match the data points, and f^, the model 
points. 

Model (Rendered) 

Figure 5: Horizon Line Matching 

We need to find the rotation R that maximizes 

n 

Y, rm ■ R{rd) 

This may be alternatively formulated as finding 

the quaternion q that maximizes. 

YiQrdq*) ■ rm 

The correction rotation, R, is used to obtain an 
estimate of the true pointing angle. 

The field of view estimate originally supplied 
for the Lockheed-Martin CCD camera is not 
accurate. This is evident visually if one care- 
fully compares Figures 1 and 2. The opti- 
mal 2D matching does recover a scale correc- 
tion through scaling the terrain map horizon to 
match the image. We can use this scale term 
from the match to correct the field of view as 
follows: 

"corrected — ^tan       I 
V S 

(7) 

6    Experiments 

Experiments were run for two different positions 
of the UGV (Scenarios 13 and 10, [Rimey, 1995]) 
on the test site. The horizons in these CCD im- 
ages are reasonably distinctive as required by 
this technique. The gimbal targets were used to 
obtain ground truth estimates of the pointing 
angle for each scenario. Perturbations applied 
to this pointing angle yielded sets of test cases. 
The pan perturbation (Apan) values used were 
-2°,0°, and -1-2°, the tilt perturbation (Atilt) 
values were -1°,0°, and -1-2°, and the roll per- 
turbation (Aroll) values were -5°,0°, and -1-5°. 
Thus, there are a total of 27 test cases for each 
UGV position under consideration. 

The conventions followed are that positive pans 
rotate the camera to the right, positive tilts 
rotate the camera upwards, and positive rolls 
rotate the camera clockwise. The terrain ren- 
dering, horizon line matching, and orientation 
correction operations were performed for each 
of the 54 cases, and the residual rotations were 
obtained. The matching process involved 100 
trials of the Messy Genetic search algorithm. It 
is worthwhile to run multiple trials, since we are 
using a stochastic search algorithm. 
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7    Results 

We present results first for the optimal match- 
ing part of our experiment and then for the 
3D orientation corrections derived from these 
matches. 

7.1    Results of Matching 

The implementation of the matching system 
running on a Sparc 20 workstation takes roughly 
1 hour to complete 100 independent trials of the 
MGA on Scenario 13. Scenario 10 takes only 
about 15 minutes to run 100 trials. Scenario 13 
has some of the largest search spaces for which 
the matching system has been used. 

Table 7.1 contains summaries of the matching 
trials for Scenarios 13 and 10. The number 
of possible model-data pairings is denoted by 
n. Average run-time per trial is given by rpt- 
Ps denotes the probability of finding the opti- 
mal match on any given independent run of the 
Messy Genetic Algorithm. The probabihty of 
seeing the optimal match at least once, over t 
independent trials, is 

Q, = 1 - (1 - PsY (8) 

IS 

Therefore, the number of trials ts required to 
find the optimal match with probability Q 
given by: 

ts =  [logl-R (1 - Qs)] (9) 

The expected run-time is given by 

fs — ''s'^pt (10) 

The computed values of ts, and expected run- 
times (for the machine used), are included in 
Table 2. We use a confidence level of 95% {Qs = 
0.95). As is evident from the table. Scenario 
13 is a harder problem than Scenario 10. This 
arises from the fact that there is more noise in 
the hues extracted from the CCD image, and 
more ambiguity as well. 

7.2    Results of Orientation Correction 

The arrays of images in Figure 6 depict pre- 
correction and post-correction orientations for 

n Tpt Ehiatch Ps 
average 1085 72 0.416 57 

minimum 456 19 0.253 1 
maximum 2083 158 0.623 100 

median 1140 64 0.411 49 
a 429 36 0.075 40 

(a) Scenario 13 

n rpt EMatch Ps 
average 364 10 0.265 97 

minimum 247 7 0.169 56 
maximum 469 14 0.358 100 

median 371 10 0.266 100 
cr 62 2 0.046 9 

(b) Scenario 10 

Table 1: Summary of Matching Results. 

ts Ts (seconds) 
Scenario 13 
Scenario 10 

3 
1 

254 
8 

Table 2: Predicted Run-times for 95% Confi- 
dence 

Scenarios 13 and 10 as manifested in terrain 
renderings from the vehicle position and orien- 
tation. These figures are provide some intuition 
for how much these changes in viewing angles 
change the relative placement of the horizon in 
the image. 

The scatter plots in Figure 7.2 depict orienta- 
tion errors, for Scenarios 13 (plots (a) through 
(c)) and 10 (plots (d) through (f)). The x-axis 
denotes the perturbation apphed to the origi- 
nal orientation. The y-axis denotes the residual 
orientation after correction. Ideally, the final 
orientation ought to be the same as the original 
orientation, i.e. the residual pan,tilt, and roll 
angles would all be zero. 

Examination of these plots reveal that the 
points appear to be displaced from the x-axis 
by a similar offset. This is especially the case 
for Scenario 10. This is due to the fact that 
ground truth values are not accurate. To work 
around this, we compute a post-correction im- 
age correlation fro each image, which indicates 
the extent to which the rendered image matches 
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the original CCD image. The image with the 
best correlation is selected, and the rotations 
of the remaining 26 cases are computed, with 
this orientation as the base. A summary of 
the post-correlation adjusted residual rotations 
is included in Table 3. 

Residual Rotation 
Initial Sc. 13 Sc. 10 

Average 4.241 0.580 0.911 
Minimum 0 0 0 
Maximum 5.774 1.710 1.406 

Median 5.385 0.536 1.114 
a 1.767 0.381 0.443 

Table 3: Summary of Adjusted Residual Ro- 
tations before and after orientation correction. 
Angles are measured in degrees. 

Based on analysis of the orientation error data, 
and visual examination of the matches deter- 
mined by the MGA, we have arrived at the fol- 
lowing observations. 

• In the case of horizons that are reasonably 
distinct, such as the ones in Scenarios 13 
and 10, we have obtained accurate results. 

• Owing to the highly irregular nature 
of horizon lines, the extracted lines are 
highly fragmented, in spite of consider- 
able smoothing. This renders the matching 
problem even more difficult. 

• The constraint on minimum line length 
notwithstanding, a very large number of ex- 
traneous line segments are usually present, 
greatly increasing noise. When the hori- 
zon structure is not distinct, it is easy for 
the matcher to piece together a competi- 
tive false match from the extraneous line 
segment clusters. 

• An inherent problem in horizon-line match- 
ing is that of ambiguity. Horizon lines are 
often self-similar in structure. Omission er- 
ror increases as segments of the model cor- 
responding to out-of-view data segments 
are left unmatched. This could drive the 
matching algorithm to find scaled-down 
matches in self-similar regions of the hori- 
zon.   We can reduce the chances of such 

mismatches by discouraging scaling. Ide- 
ally, the matching problem under consid- 
eration does not involve perceptible scale 
change. However, there may be small varia- 
tions in scale due to inaccuracies in ground 
truth. Also, as explained in [Beveridge, 
1993], fitting line models subject to rigid 
transforms is actually more difficult than 
for variable size models. 
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Before Orientation Correction 
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Figure 6:  Terrain map renderings, before and after orientation correction x-axis:   Aro?/, y-axis: 
Apan. bdiit values (left to right): -1,0,+2 
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Abstract 

We present two fast implementations of 
electronic image stabilization and mosaick- 
ing systems. The first one is based on a 
2D similarity model and is targeted to pro- 
cess PREDATOR video data. The second 
system uses a 3D model and compensates 
for 3D rotation. Both systems have been 
implemented on parallel pipeline image- 
processing hardware (a Datacube Max- 
Video 200) connected to a Themis lOMP. 
Both algorithms use a feature-based multi- 
resolution technique which tracks a small 
set of features to estimate the motion of 
the camera. The extended Kalman fil- 
ter framework is employed by the 3D de- 
rotation system. The inter-frame motion 
estimates relative to a reference frame are 
used to warp the current frame in order 
to achieve stabilization. The estimates are 
also used to construct mosaics by aligning 
the frames. A fast mosaicking implementa- 
tion is presented for the 2D system. Exper- 
imental results demonstrate the robustness 
of both systems at frame rates above 10 
frames/second. 

1    Introduction 

Camera motion estimation is an integral part of any 
computer vision or robotic system that has to nav- 
igate in a dynamic environment. Whenever part of 
the camera motion is not necessary or "unwanted", 
image stabilization can be applied as a preprocess- 
ing step before further analysis of the image se- 
quence. It can be used as a front-end system in 
a variety of dynamic image analysis applications or 

The support of the Defense Advanced Research 
Projects Agency (ARPA Order No. A422) and the U.S. 
Army Research OfRce under Contract DAAH04-93-G- 
0419 is gratefully acknowledged. 

simply as a visualization tool. Image stabilization 
has been used for the computation of egomotion 
[Vieville et ai, 1993; Irani et ai, 1994], video com- 
pression [Kwon et al, 1995; Morimoto et ai, 1996], 
and detection and tracking of independently moving 
objects [Balakirsky, 1995; Burt and Anandan, 1994; 
Morimoto et ai, 1995]. For more natural visualiza- 
tion, vehicle models are used to filter high-frequency 
or oscillatory motion components due to irregu- 
larities of the terrain [Duric and Rosenfeld, 1995; 
Yao et ai, 1995]. 

Methods proposed for electronic image stabilization 
can be distinguished by the models adopted to esti- 
mate the camera motion. Several 2D and 3D stabi- 
lization schemes are described by Davis et al. [Davis 
et al, 1994]. For 2D models, all the estimated mo- 
tion parameters are in general compensated for, i.e., 
all motion is removed from the input sequence [Burt 
and Anandan, 1994; Irani et ai, 1995; Sawhney et 
ai, 1995]. 

For 3D models under perspective projection, the 
displacement of each image pixel will also depend 
on the structure of the scene, or more precisely, 
on the depth of the corresponding 3D point. It 
is possible to parameterize these models so that 
only the translational components carry structural 
information, while the rotational components are 
depth-independent. Stabilization in 3D is achieved 
by derotating the frames, generating a translation- 
only sequence, or a sequence containing only transla- 
tion and low-frequency rotation (smoothed rotation) 
[Duric and Rosenfeld, 1995; Yao et a/., 1995]. By 
compensating for the camera rotation, the resulting 
image sequence looks mechanically stabilized, as if 
the camera were mounted on a gyroscopic platform. 

Most of the current image stabilization algorithms 
that have been implemented in real time use 2D 
models due to their simplicity [Hansen et al., 1994; 
Morimoto and Chellappa, 1996]. Feature-based mo- 
tion estimation or image registration algorithms are 
used by these methods in order to bring all the im- 
ages in the sequence into alignment.   These algo- 
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rithms are targeted to specific real-time image pro- 
cessing platforms. The systems operate with images 
of resolution 128 x 128 at above 10 frames per second, 
and are robust to large image displacements. The 
system developed by Hansen et al. [Hansen et al, 
1994] uses a mosaic-based registration technique im- 
plemented on pyramidal hardware (VFE-100). The 
system uses a multi-resolution, iterative process to 
estimate the afiine motion parameters between lev- 
els of Laplacian pyramid images. From coarse to fine 
levels, the optical flow of local patches of the image 
is computed using a cross-correlation scheme. The 
motion parameters are then computed by fitting an 
affine motion model to the flow. These parameters 
are used to warp the previous image of the next finer 
pyramid level to the current image, and the refine- 
ment process continues until the desired precision 
is achieved. This scheme, combined with the con- 
struction of a mosaic image, allows the system to 
cope with large image displacements. 

In this paper we present two image stabilization sys- 
tems based on 2D and 3D models. The 2D system in- 
cludes several modifications to the system presented 
in [Morimoto et al, 1995], in order to process data 
from PREDATOR video, which are sequences taken 
from an airborne platform and are characterized by 
low quality and relatively low inter-frame displace- 
ment (less than 10% of the image size). Most of 
the modifications were necessary because of the low 
quality of the video sequences, due to lossy compres- 
sion. The second system uses an extended Kalman 
filter (EKF) to estimate the 3D motion of the cam- 
era, and stabilization is achieved by derotating the 
input sequence. 

Both systems were implemented on a Datacube 
MaxVideo 200 card plugged into the same VME 
backplane as a Themis lOMP. The MV200 is a par- 
allel pipeline image processing board very commonly 
used for real-time image processing, and the Themis 
is a dual lOOMHz hyperSPARC board which is run- 
ning Solaris 2.4. They are able to process about 10 
frames per second for 8-bit gray level images of res- 
olution 128 X 120. The 2D system is also able to 
construct mosaic images in real time, directly onto 
a window on the host computer. 

This paper is organized as follows. Section 2 intro- 
duces the 2D model-based image stabilization algo- 
rithm; the 3D algorithm is described in Section 3. 
Section 4 describes the implementation of the real- 
time 2D mosaicking display and how 3D mosaics can 
also be computed. Section 5 shows experimental re- 
sults of the performance of both systems, and Sec- 
tion 6 concludes the paper. 

2    2D Image Stabilization Algorithm 

The 2D similarity model-based image stabilization 
system is based on the fast implementation of the im- 
age stabilization algorithm presented in [Morimoto 
et al, 1995]. A basic stabilization system is com- 
posed of three modules shown in Figure 1. The 
motion estimation module computes the motion or 
global transformation between consecutive frames 
which is used by the motion compensation module 
to determine the global transformation which brings 
the newest frame into alignment with the reference 
frame. The image composition module generates the 
stabilized sequence and/or mosaic by warping the 
current frame using the motion estimates. Section 4 
describes how the motion estimates are also used to 
construct a mosaic in real time by directly aligning 
the current frame with the mosaic constructed from 
previous frames. 

Motion Motion 
Compensation 

Image 
Composition Estimation 

Figure 1: Modules of a general electronic image sta- 
bilization system. 

A block diagram of the 2D system is shown in Fig- 
ure 2. The modules inside the dotted line are per- 
formed by the Datacube board, while the other mod- 
ules are processed by the host computer. The Dat- 
acube digitizes the video signal from the camera 
and builds Gaussian and Laplacian pyramids for 
each new frame. The Laplacian pyramid is used 
for feature detection and tracking is performed on 
the Gaussian images. Feature detection and track- 
ing, motion estimation, motion compensation, and 
mosaic construction are done by the host computer. 
The Datacube also receives the computed global mo- 
tion to warp the current frame and generates the 
stabilized video output. 

2.1    Motion Estimation 

The structure of the motion estimation module is 
similar to the feature-based multi-resolution image 
registration algorithm presented in [Zheng and Chel- 
lappa, 1993]. Starting from the coarsest Laplacian 
pyramid level, a small number of non-overlapping 
regions are scanned, and the pixel with maximum 
intensity in each region is selected for tracking. 
Each feature is tracked between the corresponding 
Gaussian pyramid level of the current and previous 
frames, using the sum of absolute differences (SAD) 
as similarity measure. 

The SAD between two windows of size IW -\- 1 cen- 
tered at feature point Pi{x, y) and its matching can- 
didate Pt-i{u, v) is given by 
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Figure 2: Block diagram of the 2D stabilization and 
mosaicking system. 

SAD = Y, \{Pi{^+i^ y+J) - Pt-iiu+i, v+j)\   (1) 

tained by substituting all TV matched feature pairs 
into the linearized equations. Each pair introduces 
two equations; hence the linear system has 2N equa- 
tions and three unknowns (6, AX, and Ay), and 
can be solved by a least-squares method. 

The motion parameters obtained from the coarsest 
pyramid level are used to warp the next higher pyra- 
mid level of the previous Gaussian pyramid, and the 
process of tracking, estimation, and warping repeats 
until the highest-resolution image is reached. For 
an arbitrary pyramid level, the new estimate must 
be combined with the previous coarser-level esti- 
mate before warping the image at the next higher 
pyramid level (an initial zero motion is assumed for 
the coarsest level). Assuming that the total mo- 
tion estimate from the coarser levels is Mi_i = 
(A^i-i, Aj/j_i, 0i_i,iS,_i) and the estimate for the 
current level is rrii = (dx,dy,d,s), the new total 
motion estimate M, used to warp the next-higher- 
resolution image can be easily derived to be [Zheng 
and Chellappa, 1993] 

where i and j vary from —W to +W. A match is 
obtained by searching for the minimum SAD over a 
neighborhood (search window) around the feature. 
For a feature at pixel coordinates {x,y), the search 
is performed by varying the candidate coordinates 
(w, v) in the interval [(x—S)... (x+S), (y—S)... {y+ 
S)], where 2S'-|-1 defines the search window size. Af- 
ter the grid-to-grid matches are obtained, displace- 
ments with subpixel accuracies are computed using 
a differential method [Tian and Huhns, 1986]. Sub- 
pixel accuracy is necessary to eliminate the quantiza- 
tion error introduced when the images are digitized. 

The feature displacements are then used to fit a four- 
parameter similarity model defined by 

=^ 
COS0 

sin 6 
— sin0 
COS0 

+ fAx 
I Ay 

^2) 
where (xi,yi) are the image frame coordinates at 
time ti, (Ax Aj/)* is the translation vector mea- 
sured in the image coordinate system of the frame 
at ti (fi), 6 is the rotation angle between the two 
frames and S is the scaling factor. Notice that <S is 
inversely proportional to the ratio of the distances 
between two arbitrary image points at times <i, <j_i. 
Thus S can be computed given a set of matched 
points from both frames, independently of the trans- 
lation and rotation between them. 

The scaling factor S is estimated first by computing 
the ratio of the distances in the feature sets relative 
to their center of mass. Assuming small rotation, 
the trigonometric terms in (2) can be linearized to 
compute the remaining translation and rotation pa- 
rameters.  A system of linear equations is then ob- 

Mi = (AxiAyiOiSif = 
/ scos6Axi^i — ssinOAyi-i + dx \ 

ssinOAxi^i + scos OAyi^i 

e + Qi-i 
s X iSi_i 

(3) 

/ 

2.2    IVEotion Compensation 

The motion compensation module keeps a history of 
the inter-frame motion to remove what is unwanted 
and compute the warping parameters that will stabi- 
lize the current image frame. One of the advantages 
of electronic image stabilization systems is that mo- 
tion can be compensated on demand, offering great 
flexibility by simply modifying some parameters of 
the compensation module. 

The motion compensation module keeps track of the 
total combined motion, from the reference frame up 
to the current frame. When a new estimate is sent 
from the motion estimation module, the total mo- 
tion is updated using (3). 

Our system does not perform temporal smoothing 
on any of the motion parameters, but allows the user 
to dynamically mask (enable/disable) each parame- 
ter independently, for display purposes. For exam- 
ple, when the camera moves forward, producing a 
divergent image flow, the computed transformation 
includes a reduction in scale, which basically elimi- 
nates the perception of forward motion by producing 
a shrinking image with internal zero flow. The for- 
ward motion perception is restored by simply mask- 
ing the scaling factor on display. 
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3    3D Image Stabilization Algorithm       (4) and (5): 

The 3D model-based stabilization algorithm uses an 
extended Kalman filter (EKF) to estimate the rota- 
tion between frames, which is represented using unit 
quaternions. A small set of feature points is tracked 
as described previously, except that no estimation 
refinement is computed between pyramid levels, i.e., 
the features are simply scaled between levels, in a 
similar way to the greedy multi-resolution search im- 
plemented in [Morimoto and Chellappa, 1996]. 

3.1     Camera Motion Model 

Let P = {X, Y, Z)^ be a 3D point in a Cartesian 
coordinate system fixed on the camera and let p = 
{x, yf be the corresponding image position of P (see 
Figure 3). The image plane defined by the x and 
y axes is perpendicular to the Z axis and contains 

the principal point (0,0,/). Thus the perspective 
projection of a point P = (X, Y, ZY onto the image 
plane is 

where / is the camera focal length. 

(4) 

P = (X, Y, Z) 

Figure 3: Diagram of the coordinate system fixed on 
the camera. 

Under a rigid motion assumption, an arbitrary mo- 
tion of the camera can be described by a translation 
T and a rotation R, so that a point PQ in the cam- 
era coordinate system at time to has a new camera 
position at time ti given by 

Pi =RPo-FT=^ 

'•ii    ri2    ri3\ /Xo 
r-ii    r22    r23 1 I  YQ 

rsi    f32    r33 ) \Zo 

(5) 

where R is a 3 x 3 orthonormal matrix. 

The projection of Pi can be obtained by combining 

/     ('•iiJ^o+'-i2!/o4-ri3/+/^) ^ 

('•3l2^0+'-32yo-|-r33/+/ -2^) 

\      (r3iXo+r32yo+r33f+f-^)J 

(6) 

For distant points (Zo '^TX,TY, and Tz), the dis- 
placement is basically due to rotation, and thus (6) 
simplifies to 

Pi 

r(riiXo+r,2yo+ri3j) 

f 
[r3iXo+r32yo+r33f) 
(r2iXo+r22yo+r23f) 
{r3iXo+r32yo+r33f) 

(7) 

The use of distant features for motion estimation 
and image stabilization has been addressed before in 
[Davis et al., 1994; Duric and Rosenfeld, 1995; Yao 
et al, 1995]. Such features constitute very strong 
visual cues that are present in almost all outdoor 
scenes, although it might be hard to guarantee that 
all the features are distant. In this paper we estimate 
the three parameters that describe the rotation of 
the camera using an iterated extended Kalman filter 
(lEKF). 

3.1.1 Quaternions 
Common ways to represent rotation include 3x3 
orthonormal matrices, Euler angles, axis plus an- 
gle, and unit quaternions [Kanatani, 1990]. Young 
and Chellappa [Young and Chellappa, 1990] used 
quaternions for the problem of 3D motion estimation 
from noisy stereo sequences, and Horn [Horn, 1987] 
used quaternions to solve the absolute orientation 
problem from three or more point correspondences. 
Many other applications of quaternions can be found 
in photogrammetry, robotics and computer vision 
because of their compactness and good numerical 
properties, which facilitate the process of rotation 
estimation. 

Quaternions are 4-tuples (go, fe, ?»/, ?^) that can be 
interpreted as complex numbers with one real (50) 
and three imaginary parts (g.-c, 2y, gz), as a scalar 
plus a 3D vector, or simply as a vector in 4D-space. 
To see how quaternions can represent rotations, con- 
sider a 3D unit sphere defined hy X"^+ Y'^-\-Z"^ = \. 
The position of a point on the surface of the sphere 
can directly represent pan and tilt but not roll. By 
introducing a fourth parameter, it is now possible to 
represent an arbitrary 3D rotation by a point on a 
4D unit sphere where q^ + q^-\- q^ -\- q1 = I. 

3.1.2 Relevant Properties of Unit 
Quaternions 

In this section we present only a few basic proper- 
ties of quaternions. More detailed treatments can 
be found in [Horn, 1987; Kanatani, 1990]. Consider 
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a quaternion as composed of a scalar and a vector 
part, as in 

q = 9o + q,     (i={qx,qy,qzf (8) 

The dot product operator for quaternions is defined 
as p.q = po9o + P-q, and the norm of a quaternion 
is given by |q| = q.q = q^ + q.q. Unit quaternions 
are simply defined as quaternions with unit norm. 

A unit quaternion can be interpreted as a rota- 
tion 6 around a unit vector w using the equation 
q = sin(^/2) + w cos{6/2). Note that q and —q cor- 
respond to the same rotation since a rotation of 9 
around a vector q is equivalent to a rotation of —9 
around the vector —q. 

Let the conjugate of a quaternion be defined as 

q* = 50 - q (9) 

and the multiplication of two quaternions as 

r = pq ro = Poqo - P-q; 
r = Poq+9oP + P X q. (10) 

Thus, the conjugate of q is also its inverse since 
q*q = qq* = 1. It is useful to have the multipli- 
cation of quaternions expanded in matrix form as 
follows: 

pq 

/ Po -Px -Py -Pz] (qo\ 
Px Po -Pz Py qx 

Py Pz Po -Px qy 
\Pz -Py Px Po  ) \ij 

(11) 

Note that the multiplication of quaternions is asso- 
ciative but it is not commutative, i.e., in general pq 
is not the same as qp. 

The rotation of a vector or point P to a vector or 
point P' can be represented by a quaternion q ac- 
cording to 

(0-f P') = q(0-f P)q* (12) 

Composition of rotations can be performed by mul- 
tiplication of quaternions since 

(0 + P") = q(0 + P')q* = 
q(f (0 + P)F)q* = (qr)(0 + P)(qr)* (13) 

where it is easy to verify that (f*q*) is equivalent to 
(qr)*. 

The nine components of the orthonormal rotation 
matrix R in (5) can be represented by the parame- 
ters of a unit quaternion simply by expanding (12) 
using (11), so that 

/   l-2gy-2g^    2(-qoq^+qxqy) 2{qoqy-\^a:qz 
^= \ ^(qoqz+qxqy)   i-2ql-2ql  2(-goga;-t^j,?^)] 

Y^qoqy+qxqz)  2{qoqx+qyqz)    l-2ql-2ql 
(14) 

3.2    3D Motion Estimation 

The dynamics of the camera is described as the evo- 
lution of a unit quaternion, and an lEKF is used 
to estimate the inter-frame rotation q. EKFs have 
been extensively used for motion estimation from 
a sequence of images [Broida and Chellappa, 1986; 
Yao et ai, 1995; Young and Chellappa, 1990]. In 
order to achieve real-time performance, this frame- 
work was simplified to compute only the rotational 
parameters from distant feature points. 

A unit quaternion has only three degrees of freedom 
due to its unit norm constraint, so that it will be 
represented using only the vector parameters. The 
remaining scalar parameter is computed from 

90 = (1 q'y - qi) 
2\i (15) 

Only nonnegative values of qa in (15) are considered, 
so that (14) can be rewritten using {qxAyAz) only. 

The state vector x and plant equations are defined 
as follows: 

dej  „ 
X =  q -|- n 

x = 0 
x(<i+i)=x(iO        (16) 

The following measurement equations are derived 
from (7): 

z{ti) = hi|i_i[x(;(i)]-hr?(ii) (17) 

where h is a nonlinear function which relates the 
current state to the measurement vector z{ti), and 
rj is the measurement noise. After tracking a set of 
N feature points, a two-step EKF algorithm is used 
to estimate the total rotation. The first step is to 
compute the state and covariance predictions at time 
<j_i before incorporating the information from z{ti) 
by 

x(^r) = x(d) ns^ 

where x(<+.j) is the estimate of x(ij_i) and T,{tf_-^) 
is its associated covariance obtained based on the 
information up to timeti_i; yi{tj) and S(<i") are the 
predicted estimates before the incorporation of the 
,-th measurements; and S„(<,_i) is the covariance of 
the plant noise n(ij_i). 

The update step follows the previous prediction step. 
When z{ti) becomes available, the state and covari- 
ance estimates are updated by 

K(<i) s(«r)H?i.-i 
H.|,_iS(i-)H^._i + S,(!.) 

x(<+) = x(i-) + K{ti){z{ti) - h,|,:_i[x(<-)]} 
S(i+) = [I-K(t.)H,:|i-i]S(tr) 

(19) 
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where K(ij) is a 3 x A^ matrix which corresponds to 
the Kalman gain, S,,(<i) is the covariance of T){ti) 
and I is a 3 X 3 identity matrix. H,|j_i is the lin- 
earized approximation of hj|j_i, defined as 

Hi|i- 
^hi|i. 

6x(i) x(tr) 
(20) 

A batch process using a least-square estimate of the 
rotational parameters can be used to initialize the 
algorithm, as in [Yao et ai, 1995], but for the exper- 
iments shown in Section 5 we simply assume zero 
rotation as the initial estimate. 

To speed up the process and reduce the amount of 
computation that is required to achieve real-time 
performance, the measurement vectors are sorted ac- 
cording to their fits to the previous estimate, so that 
only the best M points (M < N) are actually used 
by the EKF. The solution is refined iteratively by 
using the new estimate Xj to evaluate H and h, for 
a few iterations. More detailed derivations of the 
Kalman filter equations can be found in [Jazwinski, 
1970; Maybeck, 1982]. 

4    Fast 2D Mosaicking 
Implementation 

The goal of creating a mosaic image is to compose 
a picture which has a larger field of view than the 
input sensor. This may be accomplished by combin- 
ing individual frames which depict portions of the 
overall scene. By appropriately pasting these frames 
together, we can generate a panoramic view of the 
original scene. We refer to this procedure as mo- 
saicking. 

Through the use of the motion stabilization tech- 
nique described in Section 2, it is possible to not 
only compensate for inter-frame motion, but also to 
keep track of the motion parameters which repre- 
sent image frame changes with respect to a global 
coordinate system. We are then able to paste each 
incoming frame into our global picture. This process 
generates a mosaic of the imaged scene. 

A fast mosaicking system for PREDATOR video 
data was implemented as an extension to the sta- 
bilization system, and runs on the same platform. 
This extended system can be broken down into two 
distinct processing threads: a real-time thread for 
performing the image processing in conjunction with 
the Datacube card, and a mosaic thread which con- 
trols the display and user interface. The two threads 
communicate with each other through UNIX pipes. 
By using an X-Windows interface, the actual display 
head for the mosaic may be thousands of miles from 
the processor. This may be accomplished by setting 
the display head to be any X-Windows-compatible 

terminal which is networked to the mosaic processor. 

The last stage of the real-time thread warps the high- 
est pyramid level of the current frame to be an in- 
teger oflTset from the global coordinate frame. This 
warp is accomplished on the Datacube through the 
use of an affine transform, and removes all scale, 
rotation, and fractional pixel shifts. This warped 
image is then sent to the display process along with 
its location in the global system. The display pro- 
cess starts with a blank global image, and adds each 
incoming image segment to this image. 

In our current implementation of the mosaicking 
process, the global image is treated as a write-once 
medium which is unlimited in size. There are two 
reasons behind this. The first is that the error in the 
stabilization algorithm is cumulative. Therefore, if 
the camera dwells on a particular area for an ex- 
tended period of time, image drift which distorts 
the mosaic is noticeable. By providing a write-once 
memory, mosaic discontinuities are confined to a sin- 
gle line in the image. This makes for a much more 
viewable mosaic. The second reason for the write- 
once memory is to reduce the display channel band- 
width. It is possible to foresee applications where the 
image processor may be located at a remote ground 
(or air) station and may only be connected to the 
user's console by a low-bandwidth link. We hope 
to show that our mosaic creation technique allows 
for realistic scene generation while consuming little 
communication bandwidth. 

In order to avoid running out of room for the gen- 
eration of a mosaic, the global image is treated as if 
it were unlimited in size. In reality, the image stor- 
age size is constrained by the user, and the image is 
scrolled to maintain the current view on the screen. 
Areas which scroll off the edge of the display are lost. 

5     Experimental Results 

Since still images are not the most appropriate way 
of displaying the results of a dynamic process such 
as stabilization, we have made the original, stabi- 
lized and mosaicked sequences available in MPEG 
format at http://www.cfar.umd.edu/'carlos/ 
IUW97.html. In the following sections, an MPEG 
file at this address named Mosaic will be referenced 
by http:Mosaic. 

5.1    2D Stabilization and Mosaicking 
Results 

This section presents experimental results from ap- 
plying the fast 2D stabilization and mosaicking sys- 
tem to PREDATOR video data. Our data tape has 
been through several recording generations, and is 
of moderate to poor quality. 
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Figure 5: Mosaic from the 2D fast stabilization algorithm 

Figure 4: Mosaic from the 2D fast stabilization al- 
gorithm 

Figures 4 and 5 show mosaic images from PREDA- 
TOR video data using the mosaicking process de- 
scribed above. Reliable image stabilization requires 
large overlap between image frames and reasonably 
high frame rates. Fortunately this is significantly 
less important for the display thread. Since the mo- 
saic is treated as write-once memory, overlapping 
areas of the image are ignored. Therefore, it is nec- 
essary that there be only a small overlap between 
frames in order to provide a continuous mosaic. This 
allows us to discard frames from the real-time thread 
without displaying them. Running on the hardware 
described above, our real-time thread was able to 
run at approximately 10 frames per second. The 
display thread was set up to process every fourth 

image which was generated by the real-time thread. 
The rest of the images were discarded. 

The images used to generate the mosaic were from 
the top level of the image pyramid. This corre- 
sponds to an image resolution of 128x120 pixels. The 
bandwidth which would be necessary to transmit 
the mosaic in real time is image sequence depen- 
dent. The use of the write-once memory dictates 
that the required bandwidth is directly related to 
the amount of new information contained in each 
mosaic frame. For the mosaics shown in Figures 4 
and 5, we recorded an average bandwidth of 15993 
bytes per second, for a two-frame-per-second mosaic 
update rate. This is an 89% improvement over send- 
ing the entire raw sequence. 

5.2     3D Stabilization and Mosaicking 
Results 

Figure 6 is an example of the results obtained from 
our real-time 3D derotation system using an off-road 
sequence provided by NIST. The camera is rigidly 
mounted on the vehicle and is moving forward. The 
top row shows the fifth frame from the input se- 
quence (left) and its corresponding stabilized frame 
(right). The original and stabilized sequences are 
available at http:0ffRoad3DStabilization. The dif- 
ference between the fifth and tenth input frames is 
shown on the bottom left, and the difference between 
the corresponding stabilized frames on the bottom 
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1.1 

Figure 6: Image stabilization results. The top row 
contains the fifth frame (left) and its corresponding 
stabilized frame (right). The bottom row shows the 
diff'erence between two frames of the input sequence 
(left) and the difference of the corresponding sta- 
bilized frames (right). Stabilization minimizes the 
difference in regions close to the horizon. 

and appears at the center of the mosaics. The 
first column shows the 50th, 100th, and 200th 
frames from top to bottom. The second col- 
umn shows the corresponding mosaic images con- 
structed from the 2D estimates, and the third col- 
umn shows the corresponding mosaics constructed 
using the 3D estimates. Since the camera calibra- 
tion is unknown, we "guessed" the camera FOV to 
be 3 X 4 degrees. The mosaic from the 2D estimates 
(http:2DMosaicl) does a good job locally, but the 
3D mosaic (http:3DMosaicl) looks much more nat- 
ural, as if it were a panoramic picture taken using a 
fish-eye lens. The original sequence and the 3D sta- 
bilized output can be seen at http:3DStabilizationl. 

Figure 8 shows a second comparison between 2D and 
3D mosaics. The original sequence is composed of 
150 frames and the dominant motion is right-to-left 
panning. The reference frame was assumed to be the 
75th frame, and appears at the center of the mosaics. 
The top row shows the 70th and the last frame of the 
sequence, from left to right. The second row shows 
the 2D mosaics constructed up to the corresponding 
frames in the first row, and the bottom row shows 
the corresponding mosaics using the 3D models and 
using the same camera parameters that were used 
to generate Figure 7. The original sequence and 
the mosaics can be viewed at http:UGVsequence, 
http:2DUGVMosaic, and http:3DUGVMosaic. 

right. The darkness of a spot on the bottom images 
is proportional to the difference of intensity between 
the corresponding spots in each frame. Since stabi- 
lization has to compensate for the motion between 
frames, the difference images can be considered as 
error measurements which stabilization attempts to 
minimize. In this example, most of the features lie 
on the horizon, so that the horizon is particularly 
well stabilized. Errors are bigger around objects that 
are closer to the camera (darker regions), since they 
have large translational components which are not 
compensated by this method. 

The real-time implementation typically detects and 
tracks nine features with a maximum feature dis- 
placement of 15 pixels. Under these settings, the 
system is able to process approximately 9.8 frames 
per second. 

Figure 7 compares the mosaic images from the 2D 
and 3D models. They both use the same set of 11 
feature points for motion estimation, and the 3D sys- 
tem selects the four points which best approximate 
the current rotation estimate to update its state. 

The original sequence is composed of 200 frames 
and the dominant motion is left-to-right panning. 
To help in comparison and visualization, the ref- 
erence frame was assumed to be the 100th frame. 

6    Conclusion 

We have presented in this paper a fast electronic im- 
age stabilization and mosaicking system based on a 
two-dimensional feature-based multi-resolution mo- 
tion estimation algorithm, that tracks a small set 
of features to estimate the motion of the camera. 
Stabilization is achieved by combining all motion 
from a reference frame and subtracting this motion 
from the current frame. Mosaics are constructed 
in real time by directly aligning new frames with 
the current mosaic. The system was implemented 
on a Datacube MaxVideo 200 board connected to 
a Themis lOMP. Preliminary tests using PREDA- 
TOR video data demonstrate the robustness of the 
system, which is able to process 10 frames per sec- 
ond and handle displacements of up to ±12 pixels 
between consecutive frames. 

We have also presented a 3D model-based real-time 
stabilization system that estimates the motion of the 
camera using an lEKF. Stabilization is achieved by 
derotating the input camera sequence. Rotations 
are represented using unit quaternions, whose good 
numerical properties contribute to the overall per- 
formance of the system. The system was imple- 
mented on the same platform and it is able to process 
128 X 120 images at approximately 10 Hz. 
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Figure 7: 2D and 3D mosaics from 200 frames of a panning sequence. The leftmost column shows the 50th, 
100th, and 200th frames from the input sequence. The second and third columns show the corresponding 
2D and 3D mosaics, 
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Abstract 

We evaluate the performance of several im- 
age stabilization algorithms using synthetic 
and real uncalibrated image sequences. 
Each algorithm is based on a different 
2D parametric motion model, but they all 
share a similar structure. The basic algo- 
rithm estimates the inter-frame motion by 
fitting one of the transformation models us- 
ing a feature-based multi-resolution tech- 
nique. Stabilization is achieved by combin- 
ing the inter-frame motion estimates with 
respect to a reference frame, and warp- 
ing the current frame back to the refer- 
ence. Results from several experiments 
that were carried out to evaluate the per- 
formance of each model are also presented. 
These experiments also demonstrate the in- 
fluence of different system parameters, such 
as the use of multi-scale and subpixel fea- 
ture tracking, on each model's overall be- 
havior. 

1    Introduction 

Electronic image stabilization is the process of gen- 
erating a compensated video sequence where un- 
wanted camera motion is subtracted from the origi- 
nal input. Most proposed stabilization systems com- 
pensate for all motion [Burt and Anandan, 1994; 
Davis et al., 1994; Hansen et ah, 1994; Irani et al., 
1994; Morimoto and Chellappa, 1996; Sawhney et 
a/., 1995], producing a sequence where the back- 
ground remains motionless. 

Since motion estimation is the main component of 
an image stabilization system, the evaluation of the 
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system could be based on the performance of the 
motion estimation module alone, in which case one 
could use synthetic or calibrated sequences where 
the inter-frame motions are known, such as in [Bar- 
ren et a/., 1994]. Aside from the issue of generat- 
ing sequences with known motion, most stabilization 
systems use approximate parametric global transfor- 
mations, which creates the problem of finding the 
optimal transformation from the ground truth data, 
so that the motion estimates can be evaluated in 
terms of a distance measure from these optimal pa- 
rameters. Another important issue is how to com- 
pare the performance of systems based on different 
motion models, since distance measures might be 
model-dependent. 

Other methods of evaluating image stabilization sys- 
tems are presented in [Balakirsky and Chellappa, 
1996; Morimoto and Chellappa, 1996]. [Balakirsky 
and Chellappa, 1996] compares the performance of 
different stabilization algorithms based on the accu- 
racy of a real-time object tracker, and [Morimoto 
and Chellappa, 1996] considers the maximum dis- 
placement velocity in pixels per second, computed 
as the product of the frame rate and the maximum 
image displacement between frames. 

In this paper, we evaluate the fidelity of image 
stabilization techniques using the power signal-to- 
noise ratio (PSNR) between stabilized frames. This 
method does not require the use of calibrated se- 
quences to compare different systems, and provides 
a simple way of comparing systems based on differ- 
ent motion models. Synthetic sequences are used to 
measure other system properties, such as the range 
of displacements within which they operate. 

Intuitively, since all motion is compensated for after 
stabilization, the difference between two stabilized 
frames should be, ideally, zero in the overlapping re- 
gions. Several factors contribute to this measure not 
being zero. For stabilization purposes, the PSNR 
can be considered as a measure of the departure 
from the optimal case, or as a measure of the overlap 
between two images, which is maximized when the 
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images are identical. When two images do not over- 
lap, stabilization is not possible, and the PSNR is 
meaningless. But if pixels from non-overlapping re- 
gions are replaced by the corresponding pixels from 
the original frame before the PSNR is computed, 
a lower bound (LB) is created for the fidelity mea- 
sure, which is given by the PSNR between the corre- 
sponding frames from the original sequence; and we 
assume that the stabilization system has produced 
a valid output whenever the PSNR is higher than 
LB. Erroneous motion estimates can in fact produce 
PSNRs below LB. 

In the following section we present a brief descrip- 
tion of the stabilization system used in our evalua- 
tion experiments. These experiments compare the 
performance of several systems based on different 
transformations for motion estimation and compen- 
sation, and also demonstrate the influence of differ- 
ent system characteristics, such as multi-resolution 
estimation and subpixel feature tracking, on the sys- 
tem's overall behavior. Section 3 presents three ex- 
periments to evaluate and compare some properties 
of image stabilization systems. The results of each 
experiment are presented and discussed in Section 4. 
Section 5 concludes the paper. 

2    Image Stabilization Algorithm 

The algorithms used in this paper are based on 
the 2D fast image stabilization system described 
in [Morimoto and Chellappa, 1996], extended to 
other subsets of the group of affine image trans- 
formations. The system can be decomposed into 
three main modules, as shown in Figure 1. From 
the video input, the first module estimates the mo- 
tion between two consecutive frames using a multi- 
resolution feature-based technique. The motion 
compensation module uses the inter-frame estimates 
to update the global transformation used to bring 
the current frame into alignment with the reference 
frame. The third module uses the global transfor- 
mation to generate the stabilized output sequence, 
and possibly mosaics. 

Motion 
Estimation 

IVIotron 
Compensation 

Image 
Composition 

Figure 1: Modules of a general electronic image 
stabilization system. 

Instead of considering the problem of estimating and 
compensating for the camera motion to generate a 
stabilized sequence as in [Morimoto and Chellappa, 
1996], we consider stabilization as an image registra- 
tion problem, where an image IQ is mapped into an 

image 7i according to [Brown, 1992] 

hix,y) =i{Io{^{x,y))) (1) 

where Ii{x, y) represents the intensity of pixel {x, y) 
of image /,, 7 is a one-dimensional intensity trans- 
formation function, and ^{x, y) is a two-dimensional 
spatial coordinate transformation which maps pixel 
coordinates po = (a;o,2/o), to new pixel coordinates 

P'Q = (a;o,2/o) ^^'^^ ^^at Po = V'(Po)- For stabiliza- 
tion purposes, this problem can be reduced to the 
computation of the optimal spatial transformation 
1/) which properly aligns the two frames. 

2.1    Coordinate Transformations 

To facilitate the estimation of the coordinate trans- 
formations between frames, their composition, and 
other operations necessary for stabilization, we will 
restrict our experiments to subsets of the group of 
affine transformations. 

A simple transformation which is sufficient to regis- 
ter two images taken from the same viewing angle 
but from a different position can be defined using 
four parameters such as 

pi = sRpo + T (2) 

where T is a translation vector, s is a scalar corre- 
sponding to the scaling factor, and R is an orthog- 
onal rotational matrix defined by 

R = 
cos© 
sinQ 

— sin 6 
cos 0 (3) 

where the parameter 0 defines a rotation around the 
viewing axis. These transformations preserve angles 
and relative lengths, and belong to the similariiy 

group. 

Rigid transformations where scaling is not allowed 
are also described by (2) when s is set to be of unit 
value. The set of all such 3-parameter transforma- 
tions forms the Euclidean group. 

A 6-parameter affine transformation is obtained by 
relaxing the constraints on the rotational matrix R; 
it is defined by 

Pi = 
rii    ri2 
'•21    r22 

Po + = Rpo + T   (4) 

Angles and lengths are no longer preserved in this 
transformation, although parallel lines remain par- 
allel. The afhne transformation allows for skewing, 
and for change in aspect ratio due to non-uniform 
scaling in x and y. 

The use of higher-order models is discussed in [Mann 
and Picard, 1995]. The family of transformations 
described so far cannot account for some distor- 
tions which  appear  in more general  3D  motion. 
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such as those caused by pan-tilt movement. The 8- 
parameter transformations of the projective group, 
which are able to describe general 3D camera mo- 
tion, require more complex estimation techniques 
which considerably reduce the speed of the stabi- 
lization system. 

2.2    Parameter Estimation 

In order to compute the coefficients of the transfor- 
mations described above, a multi-resolution estima- 
tion technique similar to the one described in [Zheng 
and Chellappa, 1993] is used. 

Initially, Gaussian and Laplacian pyramids are con- 
structed for both of the images to be registered. It 
and /(_!. A Gaussian pyramid Gt is formed by com- 
bining several reduced-resolution Gaussian images of 
It ■ The image at level / of the pyramid is denoted 
by Gt[l], where Gt[0] is the highest resolution image, 
which might be a copy of /<. An image at level / has 
resolution R[l] = R[0]/2', where R[0] is the resolu- 
tion of Gt[0]. The Laplacian pyramid Lt is obtained 
by convolving Gt with a Laplacian kernel operator. 
The levels of the pyramids Gt~i and Gt are used 
from coarse to fine resolution; each new processed 
level contributes to refining the motion estimates. 

Starting from the coarsest level c, N features are 
chosen by dividing £i_i[c] into N non-overlapping 
regions and selecting the pixel with maximum in- 
tensity value in each of these regions for tracking. A 
match for the corresponding feature from G4_i[c] is 
obtained by minimizing the sum of squared differ- 
ences (SSD) over a neighborhood (search window) 
around the candidate matches in G<[c]. 

For a feature Gt-i[c]{x,y), a search for the mini- 
mum SSD is performed in a window of size S = 
(2s-|-l)x(2s-M) centered at the pixel G«[c](a;,?/). Af- 
ter the grid-to-grid matches are obtained, displace- 
ments with subpixel accuracy are computed using 
a differential method [Tian and Huhns, 1986]. Sub- 
pixel accuracy is necessary to eliminate the quantiza- 
tion error introduced when the images are digitized. 

The transformation parameters are computed from 
the feature displacements as follows. Each tracked 
feature contributes two equations from the x and 
y coordinates of (2) and (4). Since in general we 
have 2N > P, where P is the number of parame- 
ters, the over-determined system with 2A'' equations 
and P unknowns can be solved using a least-square 
method. 

For an arbitrary higher resolution level /, the trans- 
formation estimated up to level I + 1 must be prop- 
erly scaled to level / and used to warp Gt[l]- The 
registration process continues by scaling the features 
from Lt_i[/-|-1] or computing new features in Lt-i[l], 
and tracking the features from Lt-i[l + /] to the 

warped image of Lt[l]. The transformation com- 
puted from the feature displacements at level / must 
be combined with the estimate from the previous 
level to produce the correct inter-frame transforma- 
tion used to warp Gt[l— 1]. This process is repeated 
until the finest resolution level is reached. Notice 
that since the displacement is doubled after every 
level, the total displacement that this algorithm can 
handle can be very large even for small search win- 
dow sizes. 

2.3 IMotion Compensation 

To generate a stabilized sequence it is necessary 
to determine the transformation which brings the 
current frame into alignment with the reference 
frame. The motion compensation module computes 
this global transformation from the inter-frame es- 
timates. Let ipt be the global transformation which 
aligns image frame It with the reference frame IQ, 

i.e., Io{x,y) = It{iptix,y)). When the inter-frame 
estimate tp which aligns It+i with It is available 
(It{x,y) = It+i{4'(x, y))), the new global transfor- 
mation ipt+i must be updated using the composition 
rule 

■4't+i{x,y) = iJti'>Pix,y)). (5) 

2.4 Image Composition 

The stabilized output sequence is generated by warp- 
ing the current frame according to the global trans- 
formation computed by the motion compensation 
module. Warping is performed by scanning the out- 
put frame and determining the intensity at the cor- 
responding pixel of the input frame, which is then 
copied onto the output in case the transformed pixel 
lies inside the input image; otherwise, some back- 
ground default intensity is placed at the current out- 
put pixel. In general, the transformed coordinates 
will have non-integer values. To obtain the intensity 
at this non-grid point (a;,j/)' = ip{x,y), bilinear in- 
terpolation using the nearest four grid points (NW, 
NE, SW, SE) is performed 

Out{x,y) = 
NW X dx2 X dy2 + SW x dx2 x dyi+       (6) 
NE x dxi X dy2 -t- SE x dxi x dyi 

where dxi, dx2, dyi, and dy2 are shown in Figure 2. 

3     Evaluation Tests 

The following experiments were designed to evaluate 
two characteristics of stabilization systems: fidelity 
and displacement range. Fidelity is a measure of how 
well the stabilization is compensating the motion of 
the camera, i.e., how precisely the motion model fits 
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Figure 2: Bilinear interpolation. 

the actual camera motion. Since the motion must be 
estimated between frames, it is also directly depen- 
dent on the estimation process. Displacement range 
is defined by the minimum and maximum image dis- 
placements which can be estimated. The displace- 
ment range is a key feature of a stabilization system 
which, combined with the frame rate, determines the 
range of image velocities, in pixels per second, which 
can be compensated for. 

A brief remark must be made here about algorithm 
complexity. Since most algorithms are targeted for 
real-time hardware platforms, solutions of higher 
computational complexity may be more appropri- 
ate than solutions of lower complexity. Since we 
are interested in overall performance, we concentrate 
on empirical, possibly qualitative ways of comparing 
different systems. 

3.1    Experiment 1: Fidelity 

The PSNR between stabilized frames can be used to 
measure the fidelity of a system. Intuitively, when all 
motion is compensated for, there should be no resid- 
ual motion after stabilization, which means that the 
same frame should be obtained over and over again. 
Since the images are the same, the difference be- 
tween two stabilized images should be zero for every 
pixel. Many factors contribute to this difference be- 
ing non-zero, such as noise, estimation errors, distor- 
tions caused by departures from the motion model 
and by the interpolation during warping, etc. We 
want fidelity to measure the imprecision of the sys- 
tem due to all these factors. 

The MSE is a measure of the average departure per 
pixel from the desired stabilized result. The PSNR 
between Ii and /o is 

PSNR(Ii,Io)= 10 log 
255^ 

MSE{h,h) (7) 

The PSNR gives a relation between the desired out- 
put and the residual image, in terms of their powers 
(for gray images with a maximum intensity of 255). 
The higher the PSNR between two stabilized frames, 
the better the fidelity of the system. 

The above formulation does not account for the fact 
that, when a camera moves, it probably produces 
non-overlapping regions where compensation cannot 
be done. If the PSNR were computed just for the 
overlapping areas, the fidelity measure would not be 
meaningful when the overlapping areas are small. 
In order to handle these regions, we propose that 
every pixel belonging to a compensated frame and 
which does not overlap with the reference frame be 
copied from the current frame before computing the 
PSNR. For the case when the motion estimate warps 
the image completely outside the reference frame, 
we have a natural lower bound (LB) which is given 
by the PSNR between the reference and the current 
frames without compensation. We assume that the 
system has produced a valid output whenever the 
PSNR between stabilized frames is higher than LB. 

To run this experiment, the warping functions were 
modified to account for the non-overlapping areas. 
Given a particular stabilization system and an ar- 
bitrary sequence, two measures are computed. The 
first is a measure of the inter-frame transformation 
fidelity (ITF), and the second measures the global 
transformation fidelity (GTF). ITF is defined as the 
PSNR between two consecutive stabilized frames, 
and GTF corresponds to the PSNR between the ref- 
erence frame and the current stabilized frame. The 
lower bounds on ITF and GTF will be respectively 
denoted by LBj and LB^. 

3.2    Experiment 2: Minimum Image 
Displacement 

The second experiment determines the minimum im- 
age displacement that a system can measure. Since 
the estimation is based on feature tracking, this ex- 
periment could also be used to compare different 
tracking algorithms with subpixel precision. For this 
experiment, synthetic image sequences were created 
by the following procedure. Given a single image / 
of large dimensions, a window of smaller size (e.g. 
128 X 128) is first placed at a fixed position on the 
image. This window is used to compose the output 
sequence. The first frame is defined by the window 
itself, and the displacement velocity increment (ac- 
celeration) is set to zero. The following frames are 
created by incrementing the displacement velocity 
by a small amount, and warping I according to the 
new displacement velocity using bilinear interpola- 
tion. As a result, the contents of the window, when 
placed on the warped image, change proportionally. 
The precision of this measurement is defined by the 
acceleration step between frames. 

For very small displacements, the PSNR between 
consecutive frames is very high, i.e., LBj- is very high. 
If the errors in the estimated parameters are big- 
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ger than the true transformation parameters, ITF is 
lower than LBj. As the displacement increases, LBi 
decreases and ITF increases if the displacement is 
large enough to be estimated. Therefore, one curve 
eventually crosses the other. This crossing point is 
used to define the minimum image displacement for 
which the system can compensate. 

3.3    Experiment 3: 
Displacement 

Maximum Image 

This experiment determines the upper bound on the 
range of displacements that can be handled by a sys- 
tem. Synthetic image sequences were created using 
the method described above, using larger accelera- 
tion steps between frames. 

It is expected that when the system is working prop- 
erly, ITF remains higher than LBj, which is low for 
large inter-frame displacements. When the displace- 
ment is too large, the system produces invalid mo- 
tion estimates, causing ITF to drop and possibly 
become lower than LBj. We define the maximum 
image displacement to be the point where the ITF 
curve crosses the LBj curve. 

4    Experimental Results 

All experiments were run using the same settings 
for all parameters, i.e., the same number of feature 
points, the same number of pyramid levels, the same 
search window sizes, etc. 16 features arranged in two 
rows and eight columns were tracked using search 
windows of size 5 pixels per pyramid level. Two 
pyramid levels were constructed for images of res- 
olution 128 X 128, and three levels were used for 
images of higher resolution. All synthetic sequences 
were of resolution 128 x 128, and all real uncalibrated 
sequences were of resolution 320 x 240. 

In the graphs presented in this section, the follow- 
ing notation is used. The curves for the affine trans- 
formations are drawn using dotted lines with stars 
(.*.); the curves for the similarity transformations 
are drawn using solid lines (-); and the curves for Eu- 
clidean transformations, with dash-dotted lines (-.). 
Dotted lines with circles (.o.) are used for the mea- 
surements' lower bounds, and other curves (if any) 
are drawn with dotted lines with crosses {■+■)■ 
Figure 3 shows the results of evaluating the three 
systems using two uncalibrated sequences. The first 
column shows the results for the UGV sequence, 
which is composed of 30 frames of real video, where 
the camera starts zooming out and than pans from 
right to left. The graph on top of the first column 
shows ITF and LBj for all frames. Observe that 
the affine- and similarity-based systems have very 
similar curves, while the Euclidean system performs 

poorly during the first ten frames, which correspond 
to the zooming part of the sequence. This result is 
expected since the Euclidean group does not model 
scaling. 

After the 20th frame, the sequence does not over- 
lap the reference frame. This can be observed from 
the GTF curves shown in the bottom graph in the 
first column of Figure 3. The GTF drops from frame 
to frame since each new frame has less overlap with 
the reference frame. The GTF of the Euclidean sys- 
tem is considerably smaller due to the lack of scaling 
compensation. 

The second column of Figure 3 shows the ITF and 
GTF for the Building sequence. This sequence is 
also composed of 30 frames of real video, and con- 
tains a simple pan from left to right. In this case, 
since there is no change in scale, all the curves are 
very similar, i.e., all systems perform about equally 
well. It is important to notice from the ITF graph 
that feature outliers have much more influence on 
the performance of higher-order models. To test 
this hypothesis, the aflBne system was reconfigured 
to use 20 features instead of 16 (shown by the (.-f-.) 
curve); the resulting performance improvement can 
be seen from the ITF and GTF curves. Since 
the same 16 features are used for all systems, the 
least-square fit seems to be much more robust for 
the lower-complexity models. Both the UGV and 
Building sequences are available in MPEG format 
at http://www.cfar.umd.edu/'carlos/ 
IUW97EVALUATION.html. 

Figure 4 shows the results of determining the mini- 
mum displacement for each system. Two synthetic 
sequences composed of 19 frames each were created 
for this experiment. The inter-frame acceleration 
step was set to 1/lOth of a pixel/frame^, i.e., frame 
Fn has a displacement of n/10 pixel from F„_i, for 
n > 0. The original (Bahia and Boat) sequences 
are available at the same http address. For this ex- 
periment we introduced a fourth system based on 
the Euclidean group, but with a simpler grid-to-grid 
(no subpixel precision) feature tracker. The mea- 
surements for this system are shown by dotted lines 
with crosses (.-|-.). For the first three systems, ITF 
becomes larger than BLi after the second frame, i.e., 
the minimum displacement is below 0.3 pixel/frame. 
For the new system, the minimum displacement is 
below 0.6 pixel/frame for the Boat sequence, and 
below 0.7 pixel/frame for the Bahia sequence. 

Figure 5 shows the results of determining the maxi- 
mum displacements. Similar sequences were created, 
now with an acceleration of 1 pixel/frame^. The 
maximum displacement is a property of the system 
related to the search sizes and number of pyramid 
levels. The search sizes were set to ±5 pixels on each 
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Figure 3:  Results from Experiment 1.  The (.*.)  curve shows the results for the alRne fit, (.+.)  for afBne 
using 20 feature points, (-) for similarity, (-.) for Euclidean, and (.o.) for lower bound. 

level, and two pyramid levels were constructed. A 
fourth system with the same search window sizes but 
only one pyramid level (without multi-resolution) 
was also tested; its results are shown by the (.+•) 
curves. 

For the Boat sequence, the maximum displacement 
of the first three systems lies between the 13th and 
14th frame, so that it is safe to say that it is above 
13 pixels. For the Bahia sequence, which is of lower 
quality, this also seems to be the case, although there 
is a considerable drop after the 10th frame. For the 
system using only one pyramid level, the maximum 
displacement lies around 5 pixels, which corresponds 
to the size of the search window. 

The analysis of minimum and maximum displace- 
ments is not limited to translations. It is simple 
to create a synthetic sequence by varying any pa- 
rameter of a transformation group, and then empir- 
ically determining the system's operating range for 
the sequence. For example. Figure 6 shows the lower 

and upper bounds for rotation sequences created by 
varying the rotational parameter of the Euclidean 
transformation. The top graph of Figure 6 shows 
the results for determination of the minimum ro- 
tation. The sequence, based on the Bahia image, 
was created using rotation increments of 0.1 degree. 
The minimum rotation for all systems lies below 0.3 
degree. The bottom graph of Figure 6 shows the 
results for determination of the maximum rotation. 
A second sequence was created using rotation incre- 
ments of 1 degree, but starting from 5 degrees. The 
ITF of all systems seems to break down after the 
19th frame, i.e., the maximum rotation is above 23 
degrees. 

5     Conclusion 

We have proposed a simple way of evaluating the 
fidelity and range of displacements of stabilization 
systems. Fidelity is a measurement of how good the 
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Bahla sequence: PSNR between stabilized frames 
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Figure 4: Results from Experiment 2 - determina- 
tion of minimum translational displacement. The 
(.*.) curve shows the results for the afBne fit, (-) for 
similarity, (.+.) for Euclidean without subpixel pre- 
cision, (-.) for Euclidean, and (.o.) for lower bound. 
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Figure 5: Results from Experiment 3 - determina- 
tion of maximum translational displacement. The 
(.*.) curve shows the results for the affine fit, (-) 
for similarity, (.+.) for Euclidean without multi- 
resolution, (-.) for Euclidean, and (.o.) for lower 
bound. 

estimated image transformation fits the true trans- 
formation, and the range of displacements charac- 
terizes the minimum and maximum displacements 
that a system can handle. Although these measure- 
ments are not absolute since they depend on the 
sequence being stabilized, they can be used to com- 
pare different systems, even those based on different 
transformation models. They can also be used as de- 
velopment tools, to easily compare performance as 
a function of different system parameters and mod- 
ules. 

Uncalibrated sequences can be used to compare the 
fidelity of systems; synthetic ones are required to 
measure the range of displacements. We have evalu- 
ated the performance of stabilization systems based 
on three different transformation groups, the Eu- 
clidean, similarity, and affine groups. The experi- 
mental results seem to prove Occam's razor:   Ap- 

plying more complex models to fit the data does not 
necessarily produce better results. Actually, it turns 
out that the more complex models are more sensitive 
to tracking errors, causing them to perform worse 
than the simpler models. We verified that increas- 
ing the number of features lowers the difference be- 
tween the systems' performances, and a significant 
number of features can actually make the more com- 
plex models perform better. 

The range of displacements is another key feature 
for the evaluation of stabilization systems. Suppose 
the minimum and maximum displacements are 0.5 
and 10 pixels/frame respectively, and the system op- 
erates at 10 frames per second. This means that if 
the velocities of the images being stabilized are lower 
than 5 or higher than 100 pixels/second, the system 
will not operate properly. 
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Figure 6: Determination of the rotation estimation 
range. The (.*.) curve shows the results for the 
affine fit, (-) for similarity, (-.) for Euclidean, and 
(.o.) for lower bound. 
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Abstract 
Multiple perspective interactive video {MPI- 
Video) is an infrastructure for the analysis, 
management and interactive access to multiple 
streams of video cameras monitoring a dynam- 
ically evolving scene. Two important concepts 
form a basis for MPI-Video. The first, content- 
based interactivity, allows a user of a system to 
access information based on content and con- 
text, thus allowing the user to retrieve useful 
information even when the volume of data avail- 
able is large. The second, gestalt perception, 
refers the merging of data from multiple image 
sensors into a single percept that conveys more 
information than just the individual images. 
This paper describes current research on appli- 
cation of MPI- Video to video surveillance and 
monitoring. Work focuses on the assimilation 
of multiple streams of video into a single, inte- 
grated representation of the world. This forms 
the basis for future work to build a database 
subsystem to support content-based query op- 
erations, and a query environment which allows 
navigation and querying of a wealth of data. We 
describe research that we are pursuing to assim- 
ilate data for MPI- Video. This includes assimi- 
lation of motion and optical flow, determination 
of kinematic structure of objects, recognition of 
activities, and three-dimensional visualization. 

1    Introduction 

The Multiple Perspective Interactive Video 
(MPI-Video) project has been active for more 

than two years and has already demonstrated 
its applicability in areas including video surveil- 
lance and monitoring. MPI-Video is an infras- 
tructure for the analysis, management and in- 
teractive access to multiple streams of video 
cameras monitoring a dynamically evolving 
scene. Multiple Perspective Interactive Video 
[Jain and Wakimoto, 1995, Kelly et al, 1995], 
MPI- Video, provides a framework for the man- 
agement of and interactive access to multiple 
streams of video data capturing different per- 
spectives of related events. MPI-Video has 
dominant database and hyper-media compo- 
nents which allow a user not only to inter- 
act with live events, but browse the underly- 
ing database for similar or related events. The 
interactive construction of queries is also sup- 
ported. 

For video surveillance and monitoring (VSAM) 
large areas, sensor data from many platforms 
must be analyzed in a unified manner. Since 
battlefields or any important urban site are too 
large to be covered just by one camera, it is 
essential that multiple platforms be used to ac- 
quire data from multiple perspectives. This sys- 
tem should be operational, independent of the 
time of the day and the season. This will re- 
quire different types of sensors. The system 
of all these sensors mounted on multiple plat- 
forms should function in unison and present a 
Gestalt view to a user. Important research is- 
sues that must be addressed in this area in- 
clude, assimilation of information from multi- 
ple sensors, determination of camera placement, 
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dynamic scene segmentation, event understand- 
ing, camera hand-off, and representation of in- 
dividual sensor and global information. 

In this paper, first we define two very impor- 
tant concepts. Content-based Interactivity and 
Gestalt Perception that are central to the MPI- 
Video infrastructure, and then discuss MPI- 
Video infrastructure in the context of VSAM 
application. Finally, we discuss current research 
in related areas of image understanding in our 
laboratory. 

2    Content-based Interactivity 

Interactive TV and Video-on-demand have been 
often talked about features of multimedia sys- 
tems. Interactivity is very attractive; the cur- 
rent popularity of virtual reality and cyber- 
communities, including chat rooms, can be 
largely attributed to their strong interactive 
component.  . 

A major limitation of current TV, video, and 
movies is their passive one-way flow of informa- 
tion. Users have no control over the content 
and how they can view it. A powerful interac- 
tive environment can give a viewer a feeling of 
being present at the event being observed and 
view the objects and events of interest. It will 
be soon possible to provide highly interactive 
real immersive environments that will provide a 
user a feeling of telepresence. In fact, it will be 
possible that in addition to the feeling of being 
present, for many events users will be able to ex- 
tract information of interest and see other infor- 
mation related to events, like scenes from other 
movies by the same actor, or similar moves by 
a particular player in other games. 

A good example of flexible interactive environ- 
ments are video games. Though a player is 
immersed in 'virtual environment', he has free- 
dom to interact with environment through his 
avatar. It is this interactivity that makes video 
games so popular. Even in their early days when 
the quality of graphics was very primitive, in- 
teractivity popularized and carried video games. 
Compare the interactivity off'ered by video-on- 
demand and interactive movies. Clearly the in- 
teractivity offered in these systems is limited 

to very simple 'branching' condition at fixed 
points, whereas the interactivity offered in video 
games gives one freedom to act at any point 
in time and space; of course, depending on the 
context, some constraints are imposed and the 
results of actions depend on the context. 

When the amount of information grows, human 
ability to remember correct information sources 
becomes overloaded and starts failing. The suc- 
cess of databases is due to their ability to allow 
access to the content of the databases based on 
the queries related to the content. On the world 
wide web, search engines have played a ma- 
jor role in easier access to textual information. 
Currently, commercial tools to provide content- 
based address to visual information are in their 
infancy. 

A video or a television event is a vast stream of 
data representing intensity values at points in 
an image. This intensity value represents some 
physical attributes in space for the scene cap- 
tured by a camera. Viewers are interested in 
objects, their characteristics, relationships, and 
temporal history. A video is interesting because 
it provides that information. 

We can also view a physical event as an evolu- 
tion of spatio-temporal characteristics at a cer- 
tain location. As the amount of data increases, 
human ability to specify the locations decreases. 
Thus, a system that will provide facilities to 
specify objects and events and will return or re- 
trieve corresponding data will be much more in- 
teresting and useful to humans. Content-based 
interactivity is not only desirable, in systems 
with large volume of data, content-based inter- 
activity is essential. 

3    Gestalt Perception 

At any given time, we can only see the world, 
or the environment, from one perspective. To 
get other perspectives, we must move our eyes. 
To explore the environment from other view- 
points, we have to physically move. When we 
view the environment from one perspective, we 
are limited to what one may call tunnel vision 
or more precisely, considering the nature of im- 
age formation process, funnel vision. This was 
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Figure 1: The fable of six blind men and an 
elephant. Each man perceives only 
a small window into reality. If the 
six men were not blind, but looked 
at the elephant with zoomed-in cam- 
eras, they would still make the same 
mis-classifications. 

realized long time ago, as is clear from the fa- 
mous fable of Six Blind Men and an Elephant 
(see Figure 1). Cameras have similar limita- 
tions; a camera captures a scene from a limited 
perspective. 

One could obtain more information about the 
environment by panning and tilting the camera 
so that one could see a complete view from one 
position. Quicktime VR has attracted atten- 
tion by providing a mechanism to record a scene 
from one position and then allowing a user to 
view the scene along any direction. Similar ef- 
forts are being made in many research groups 
by taking multiple images of a scene and then 
using software to merge these images to provide 
a larger picture than is possible from any single 
camera views. 

As we show below, using a powerful information 
system to mediate between viewers and multiple 
cameras, it is possible to provide gestalt vision, 
which is more than any individual camera. A 
viewer than can see the scene from any position 
and may walk through a dynamic scene without 
disturbing the events in the scene. 

4    MPI Video 

The MPI- Video system provides an infrastruc- 
ture for analysis of video data from multiple 
cameras viewing a common area, and integrates 
this information into a dynamically evolving 
database to support content based retrieval ac- 
tivities. Thus, operations in an MPI- Video sys- 
tem run the gamut from low-level analysis ex- 
ecuted on the video frames themselves to more 
high-level data modeling, storage, retrieval and 
indexing operations. The MPI-Video environ- 
ment is a heterogeneous, distributed informa- 
tion infra-structure. Thus, it possesses the very 
qualities that a successful VSAM architecture 
must have. The primary source of informa- 
tion is a number of live video streams acquired 
from a set of cameras covering a closed envi- 
ronment. This environment has a static com- 
ponent consisting of a model of the environ- 
ment which resides on a server. The server also 
contains a library of possible dynamic objects 
that can appear in the environment. Multi- 
ple sensors capture the event and the system 
dynamically reconstructs a sequence of camera- 
independent three-dimensional scenes from the 
video streams [Katkere et al, 1997]. In MPI- 
Video, the user can ask questions, specify alarm- 
ing activities, and view and navigate in this 
world as the real-life event unfolds. While re- 
maining in this world, the user may also request 
additional information on any static or dynamic 
object. Secondary information resources such 
as hyper-linked HTML documents, databases of 
static images, and ftp sites of reference archives 
are available to the system and may need to be 
accessed either to initiate a user query or as the 
result of a query. 

The MPI- Video architecture shown in Figure 2 
[Jain and Wakimoto, 1995, Kelly et ai, 1995] 
has the following components: 

1. Video Data Analyzer: The MPI-Video 
system must detect and recognize objects 
of potential interest and their locations in 
the scene. This requires powerful image 
segmentation methods. 

2. Environment Model Builder: Individ- 
ual camera scenes will be combined in this 
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Figure 2: MPI-Video     system     architecture 
overview. 

system to form a model of the environment. 
All potential objects of interest and their 
locations will be recorded in the environ- 
ment model. The representation of the en- 
vironment model depends on the applica- 
tion domain and the facilities provided to 
the viewer. 

3. Viewer Interface: A viewer is able to se- 
lect the perspective that he or she desires. 
This information should be obtained from 
the user in a friendly but directed manner. 

4. View Selector: The view selector re- 
sponds to the user's request by selecting 
appropriate images to be displayed. These 
images may all come from one perspective 
or the system may have to select the best 
camera at every point in time to display 
the selected view and perspective. 

5. MPI-Video Database: If the event is 
not a real time event, then it is possi- 
ble to store the episode in an MPI-Video 
database. Each camera sequence will be 
stored along with its meta-data. Some of 
the meta-data is feature based and allows 
content-based operations [Jain and Ham- 
papur, 1994, Swanberg et al, 1993]. Data 
can also be collected during a real time 
event and stored for later use. 

6. Virtual View Builder: A particularly 
important component of MPI- Video is Im- 
mersive Video [Moezzi et al., 1996], where 
a virtual camera is created for the viewer 
by combining the extracted model with the 
original video streams to give a sense of om- 
niscient presence. The viewer in an Immer- 
sive Video environment is no longer con- 
trolled by the limitations of a physical cam- 
era. 

Our current research has focused on implemen- 
tation and evaluation of the MPI Video archi- 
tecture outlined in Figure 2. Figure 3 shows 
our current MPI Video interface. Our current 
system has a variety of features that are neces- 
sary in a VSAM system, for instance, a graph- 
ical model of the surveilled environment. Dis- 
play of appropriate video streams (in this case 
the environment is monitored by a total of six 
cameras). The current system also supports the 
interactive identification of a particular area to 
be monitored. When objects enter the moni- 
tored area, it is flagged as a visual alarm for the 
user. A simple environment model maintains 
information about the objects currently in the 
environment, in this case, their identities, pre- 
sented to the user in the text list and their loca- 
tions graphically indicated in the model. Users 
can select objects on the list or in the model to 
retrieve information about the selected object. 
We must now focus on refining the components, 
the Environment Model being the key among 
them. 

Three aspects central to this architecture 
are[Kelly et al, 1995]: 

1. Video data analysis and the assimilation of 
the rnultiple streams to form a single, inte- 
grated world-representation. Selection of a 
"best view" from the input data stream. 

2. A database subsystem which stores the raw 
video data, the derived data generated by 
the video analysis portion and any meta- 
data input by the user. The database sup- 
ports content-based query operations by 
the user or software agents. 
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System automatically dstennlms and displays "bast view" 
of selected object 

User can select object from list or by 
selecting dynamic object from model 

Visualization of dynamic environment 

Figure 3: Current MPI Video interface, show- 
ing a graphical model of the envi- 
ronment, video stream (one of 6 to- 
tal cameras is shown) and the list 
of objects currently in the environ- 
ment. 

3. A query environment which supports nav- 
igation and querying of the wealth of data 
input to and derived by the system [Tai, 
1996, Santini and Jain, 1996]. 

Clearly, all three components of this system are 
equally important. In this paper, our focus is 
only on the first aspect above. That is, innova- 
tive techniques for video data analysis, includ- 
ing activity understanding and object recogni- 
tion, and assimilation of the multiple streams 
of the data into the Environment Model (EM), 
segmentation and parameter extraction of artic- 
ulated objects for activity recognition, and vi- 
sualization. This is a crucial component of our 
MPI-Video system. The EM is coherent, dy- 
namic, multi-layered, three-dimensional repre- 
sentation of the content in the video streams. It 
is this view-independent, task-dependent model 
that bridges the gap between two-dimensional 
image arrays which by themselves have little 
meaning and the complex information require- 
ments placed by users and other components on 
the system. 

Additional information, including implemen- 
tation details, is available in technical re- 
ports [Chatterjee et al, 1994, Katkere et al, 
1995]. 

5    Current Research 

We are addressing many research issues in im- 
age understanding relevant to the VSAM to ex- 
ploit the MPI video infra-structure already de- 
veloped. These research issues will allow exten- 
sion of the MPI video paradigm to satisfy needs 
of VSAM and will also strengthen MPI technol- 
ogy for other applications. In particular, our 
focus is the formalization of the Environment 
Model and its attendant vision processing algo- 
rithms. 

5.1      Assimilation of Motion and 
Optical Flow 

As the size and speed of computers increase, the 
use of motion is playing an increasingly impor- 
tant role in computer vision systems. Motion 
will play a central role in visual surveillance. In 
this section we describe our approach for the 
assimilation of motion into our surveillance sys- 
tem. 

5.1.1    Generalized Shape-of-Motion 
Features 

The significance of motion in human percep- 
tion is highlighted throughout the psychophys- 
ical literature. Examples include Johansson's 
work on moving light displays (MLD) and more 
recently, Bertenthal and Pinto's [1993] work on 
the perception of the human gait. Cedras and 
Shah [1995] survey recent results regarding mo- 
tion in computer vision systems. A defining 
characteristic of a motion interpretation system 
is whether or not it is model-based. While all 
vision systems use models of some sort to per- 
form a task, in this context we refer to kine- 
matic models of the moving object. For ex- 
ample, Ju, Black and Yacoob [1996, 1997] use 
a model-based approach that couples optical 
flow with an articulated model of a human. 
Hunter, Kelly and Jain [1997] use mixture mod- 
els that are constrained to represent a collec- 
tion of limbs and the torso of the human body. 
Polana and Nelson [1994, 1995], Baumberg and 
Hogg [1993, 1995], Little and Boyd [1995, 1996], 
and Bobick and Davis [l996a, 1996b] describe 
a model-free approaches to motion recognition. 
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Figure 4: Generalized shape-of-motion feature 
extraction. An image sequence is re- 
duced to a feature vector, f, based 
on the sequences of scalars that 
characterize the distribution of op- 
tical flow. 

Our system begins with low-level model-free in- 
terpretation and progressively adds more infor- 
mation as is appropriate. 

Figure 4 shows a generalized version of the sys- 
tem Little and Boyd [1995, 1996] use to create 
shape-of-motion features from a sequence of im- 
ages that forms the basis of our motion recog- 
nition. The system begins with a sequence of 
images and derives dense optical flow. For each 
of the flow images, the system computes charac- 
teristics that describe the shape of motion (i.e., 
the spatial distribution of the flow). Rearrang- 
ing the scalar values forms a time series for each 
scalar. The time series are converted into a fea- 
ture vector used for recognition. For gait recog- 
nition, the conversion results in features that 
are the relative phases of the oscillating scalar 
values. 

A more general approach looks for other pat- 
terns in the optical flow. Here we are inspired 
by the work of Johansson [1975] and Nogawa, 
Nakajima, Sato and Tamura [1997]. They look 
for patterns of optical flow related to specific 
motion stimuli. For example, Johansson showed 
that the outline of a shrinking box has several 
possible perceptions. Two possible perceptions 

are a box being compressed, or a box rotating 
in space. The shrinking box has a correspond- 
ing optical flow pattern, a region of flow that 
converges towards a central point and shrink- 
ing in size. Detecting such a pattern of optical 
flow in a subsequent sequence indicates the set 
of possible perceptions. 

Many examples of flow patterns and perceptions 
exist in psychophysical and computer vision lit- 
erature and more can be created. We plan to 
build a catalogue of such flow patterns. Then, 
using the system described in Figure 4, we will 
be able to construct a rich feature vector based 
on a wide variety of flow patterns. This en- 
hanced feature vector will allow the system to 
interpret a broad range of motion, not just hu- 
man gaits. 

5.1.2    Motion Assimilation from 
Multiple Viewpoints 

Our surveillance system will have multiple cam- 
eras available to view motion in a scene. We in- 
tend to exploit that abundance of data using an 
Environment Model (EM) assimilation system, 
as described in the following. 

Katkere and Jain [1996] describe the environ- 
ment model (EM) paradigm illustrated in Fig- 
ure 5. The EM represents the state of the 
world, and the assimilation system iteratively 
updates the representation. An arbitrary num- 
ber of sensors acquire information about the 
world in the form of measurement data. At 
speciflc moments in time, assimilator modules 
take the measurement data and incorporate it 
into the environment model (Figure 5(a)) by ex- 
trapolating the current state of the EM and up- 
dating the extrapolation to reflect the new data 
(Figure 5(b)). 

The Kalman filter is closely related to the EM 
paradigm. The extrapolate-and-update data 
flow shown in Figure 5 is common to both, 
and we use the Kalman fllter as a mathemat- 
ical foundation for EM assimilation. In is usual 
form, the Kalman filter estimates a single time- 
varying state variable and a single source of 
measurements [Gelb, 1974]. In contrast, an as- 
similating Kalman filter allows multiple states 
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Figure 5: Illustration of environment model 
paradigm for information assimila- 
tion: (a) the overview of the system, 
and (b) the assimilator modules. 

and data sources. Let X^ = {^k,i} ^^^ ^k — 
{zfcj} be the sets of state and measurement vec- 
tors respectively for time k. The extrapolation 
stage is nearly identical to that for the simple 
Kalman filter, i.e., 

^k,i = ^k-iAk-i,i + Wfc-i.i, and       (1) 

Pk,i = ^k-i,iPk-i,i^k-i,i + Qk-i,i,      (2) 

for alH = 1,2,..., \Xk\, where ^ is the system 
model, P is the covariance of the state, w and Q 
are the extrapolation error then the associated 
covariance. The superscript "—" indicates an 
extrapolated value before update. The update 
stage requires matching of incoming data with 
an individual state variable. Let Mk^i be the set 
of indices for measurements that match state 
vector i at time k. The update is performed for 
all matches, i.e., for alH = 1,2,..., \Xk\, for all 

^k,i = y^k,i + Kk,i,j[zjfcj - ^fc,jX^,J,       (3) 

Pk,i = [I-Kk,i,jHkj]Pk,i,s.nd (4) 

Kk,i,j = P,:Mj[Hk,jPk,Hlj + Rk,j]-\    (5) 

where H is the measurement model, jR is the 
measurement error covariance, and K is the 
Kalman gain matrix. If there are no matches 
for a particular state vector, then the update 
is trivial. Ayache and Faugeras [1988], and 
Matthies, Kanade and Szeliski [1989] give exam- 
ples of data fusion systems that use a Kalman 
filter approach, like that described by Equations 
1 through 5 to assimilate data. 

Note that the assimilating Kalman filter is 
strongly coupled [Clark and Yuille, 1990]. Cou- 
pling of the independent measurements is innate 
to the Kalman filter because it does not care if 
diflferent measurements are from the same sen- 
sor at diffierent times or the different sensors at 
the same time. The filter allows high-level in- 
formation to be incorporated into the system as 
additional sources of data. 

We introduce a level of abstraction to the as- 
similating Kalman filter to create a symbolic 
Kalman filter. The state variable becomes fea- 
ture vectors and perceptions, while the covari- 
ance matrix becomes the associated confidence 
measures. The resulting system is no longer 
strictly a linear system, but it does maintain 
the feature of strong coupling. 

In our assimilation of motion, the state variable 
becomes 

Xfc,i = [ fl,fc,i     (2,k,i     Pk,i  J (6) 

where fi^k,i is the shape-of-motion feature vector 
for object i at time k as viewed by camera /. 
Pk,i is a perception vector, Pm,k,i G {0; 1} ^■iid 
indicates whether perception m is true or false. 
There is no covariance matrix as such. However, 
there is variance associated with each element 
of the feature vectors and a confidence level in 
the associated perception. 

We can now illustrate the operation of the pro- 
posed motion assimilation system with a hypo- 
thetical example based on Johansson's shrink- 
ing box stimulus. The system assimilates mo- 
tion from two cameras as follows. 

1. Camera #1 views the scene from the front 
and produces the feature vector, fi,fc,i-   If 
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there are three vahd perceptions, then the 
assimilation module produces the following 
state vector 

XM = [fi,M    0   1    1    1 ]^. 

Camera #2 views the scene from the side 
and produces a new value for f2,fe,i- Sup- 
pose the features indicate that there is a 
counter-clockwise rotation for the object so 
only one of the three perceptions is possi- 
ble. The state vector is updated to 

Xfc,l ['■- fc,l     I2,fc,l 0   1   0 
lT 

The system has a set of features and a 
unique perception of the motion in the 
scene. 

3. In a larger system, additional assimilators 
could modify the perceptions contained in 
the EM as dictated by the feature vectors 
that they acquire. The extrapolation step 
in this system is simply an identity opera- 
tion. In a more complicated and dynamic 
environment, extrapolation may be more 
complicated. 

Using the EM paradigm to assimilate the data 
allows us to add data from disparate sources 
too. Any sensor that can indicate activity in a 
scene can be added to the system and contribute 
a feature vector and a set of perceptions. 

5.1.3    High-Level Information 

The low-level interpretation based on shape-of- 
motion features is limited in its use for rea- 
soning about the scene. The features are ad- 
equate to reason about some things, but will 
not help answer questions that require, for ex- 
ample, structural information about a human. 
We contend that use of models in interpreting 
a scene depends entirely on what you need to 
know about a scene. Complex models need 
not be introduced until the information they 
provide is needed. Furthermore, before such a 
model can be applied, it must be known that the 
model is appropriate. An advantage of the EM 
paradigm is that we can introduce such models 
as the needs of the system dictate. 

courtyard 

^ 

Side-view 
camera 

/ 

/ pedestrian 

h 

P   path 

0 front-view 
camera 

Figure 6: Plan view of a courtyard scene with 
a pedestrian walking along a diago- 
nal path. The scene is observed by 
two cameras. 

The following example illustrates how the pro- 
posed system will employ high-level a priori 
knowledge. Suppose that we are monitoring 
a courtyard with two cameras. Figure 6, both 
at eye level and aimed in the horizontal plane. 
A person walks diagonally across the court- 
yard. The EM assimilation system interprets 
the scene in the following steps. 

1. The assimilator module for the front view 
camera builds a shape-of-motion feature 
vector and determines that there is an ob- 
ject, probably a person, moving from right 
to left across the courtyard and sets the 
perception vector accordingly. 

2. The assimilator for the side camera also 
identifies the moving object, but sees it as 
moving from left to right. The module, 
based on the new information about the 
motion, updates the EM to indicate that 
a person is walking diagonally across the 
courtyard, since diagonal motion is the only 
thing consistent with the information al- 
ready in the EM and the motion observed 
by the second camera. 

3. Suppose we desire to know if pedestrians 
crossing the courtyard are carrying brief- 
cases. To answer this question we need to 
know where the hands are, and for that we 
need the structure of the body. A high- 
level assimilator module is introduced to 
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determine kinematic structure. This mod- 
ule identifies the Umbs and body of the per- 
son and adds another set of features, f, to 
the state vector, x. These new features 
are the structural parameters of the body. 
Prom the kinematic structure the system 
locates the hands and determines whether 
or not a briefcase is present. 

The system only introduces the model in step 3 
when it is appropriate and needs the informa- 
tion that the model can provide. 

5.2    Kinematic Structure from 
Constrained Mixture Models 

Recovery of three-dimensional time-varying 
posture of complex articulated objects from 
two-dimensional image sequences is a basic re- 
quirement for the development of many im- 
portant image sequence understanding appli- 
cations. Examples include motion recogni- 
tion systems, content-based addressing of video 
databases, and advanced human-computer in- 
terfaces. We are developing a novel articulated 
object posture and motion estimation frame- 
work that unites low-level uncertainty man- 
agement techniques with explicit representation 
and enforcement of known object structure. Ar- 
ticulated motion is motion that arises from the 
movements of an articulated object assembled 
in joint-link fashion where the component bod- 
ies (links) are assumed to be rigid objects of 
fixed proportions. Currently, the observer is as- 
sumed stationary. 

Low level processing consists of Bayesian 
maximum a posteriori (MAP) fore- 
ground/background segmentation followed 
by soft-labeling (probabilistic classification) of 
foreground observations to object structural 
components, which are modeled as a mixture 
density in the image space. Object kinematic 
structure is expressed as a set of constraint 
equations over the mixture parameter space 
that all valid postures must satisfy. Oper- 
ationally, maximum likelihood estimation is 
achieved by employing a modified Expectation 
Maximization (EM) algorithm, called the 
Expectation-Constrained Maximization (ECM) 

algorithm, that projects every EM iterate into 
the feasible posture space. 

The key concept in mixture density modeling of 
articulated object motion is the association of 
observation processes with object components. 
For example, an articulated object will have 
processes associated with each rigid link, which 
are taken to be responsible for the production of 
segmented foreground pixel data (or other ba- 
sic observables). Once we have made this asso- 
ciation, articulated object kinematic structure 
may be expressed as constraints over the space 
of mixture density parameters. This approach 
unites uncertainty management in early pro- 
cessing (via stochastic observation processes) 
with explicit, deterministic knowledge of object 
structure in an attempt to address the following 
design objectives: 

1. Explicit representation and use of object 
kinematic models, and explicit 3D posture 
estimates. 

2. Distinction between model acquisition and 
model-based estimation. 

3. Model closely coupled with early vision 
(segmentation) via top down processing. 

4. Formal uncertainty management at pixel 
level accounting for segmentation and 
component-wise pixel labeling errors, com- 
ponent shape variability and local deforma- 
tions. 

5. Natural and robust occlusion reasoning 
framework. 

6. Explicit modeling and robustness to corre- 
lated segmentation dropout. 

7. Equal applicability to single or multiple ob- 
server datasets. 

8. Applicable to uncontrived environments 
and objects. 

9. Extensible to use of object dynamics mod- 
els and higher-level motion analysis mod- 
els. 

10. Applicable for guidance or control of finer 
segmentation techniques (e.g. snakes). 
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We believe these objectives represent the es- 
sential aspects of articulated motion estimation 
with regard to most applications. 

We have begun to evaluate our computational 
framework on real data of the motion of a hu- 
man being in an arbitrary indoor environment. 
Early tests show the algorithm returns subjec- 
tively good posture estimates in this uncon- 
trived test environment, and that those esti- 
mates are always valid object postures. 

5.2.1    Object Models, Postures and 
Orthographic Observers 

For an articulated object with n rigid links 
(components) and m joints, and assuming 
the three-dimensional (unobservable) compo- 
nent observations have the Gaussian form, the 
articulated structural model is specified by the 
pair 

5 = {A,E} (7) 

where A = {Ai}i=i,2,...,n is the labeled 
set of diagonalized covariance matrices 
Ai = diag(a?i,cr?2,43) (descending), 
one associated with each rigid link to 
characterize it's fixed three-dimensional 
shape; E = {{j,k,eij^k,^k,j)l}i=i,2,...,m with 
j,k G {l,2,...,n}, j T^ k and a.j,k,a-k,j S R^ 
denotes the connectivity structure of the 
object's m joints: component j is connected 
to component k, where the joint is located at 
a.j^k with respect to component j's reference 
frame, and a-kj with respect to component fc's 
reference frame. 

The articulated posture is defined to be the set 

^ = {{0i,l,9i,2,di,3}i=l,...,n, tJ'1,1, fJ'1,2, fJ'1,3}   (8) 

of Euler joint angles for each joint, and the po- 
sition fii of the base component. The posture 
Q implies a set 

Joint4(link5l-4) 3D0F 
(Rotational) 

Joint 2 (links 1-2). 3 DOF 
(Rotational) 

Comon©nt 4. 
Right arm 

Joint 5 (finks 4-5) —^ 
1 DOF (Rotational) 

Comonent 5. 
Rigtit forearm 

Joint 3 (links 2-3): 11XIF 
(Rotaoonal) 

Comonont 3. 
*int Kinks0-1): 6DOF L,ftfor.arm 

' (3 Translational, 3 Rotational) 

y^-* 
Fram© 0; Reference Geometry 

(a) 

2oi,i      ^\-\2oi,z 

2oi, 

(b) 

Figure 7: (a) 14-degree-of-freedom structural 
model for analysis of image se- 
quences containing human beings, 
(b) Schematic diagram of the mix- 
ture process associated with a two 
component, single joint articulated 
object (e.g. a potion of the object 
in (a)). 

* = {^i}j=l,2,..,ri (9) 

of labeled mixture process parameters associ- 
ated with individual rigid components compris- 
ing the articulated body. Here, (f>i = {/ij,Ej} 
with mean vector fj,i 6 R^ and covariance ma- 
trix Sj 6 R^^^, related to the eigenvalue matrix 
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by Ej = i?o,iAji?o^^ for rotation Ro^i{il) with 
respect to the reference frame. 

The set H is a valid posture according to model 
<S if each component has the correct eigenval- 
ues Aj, and the collection of components satisfy 
the joint conditions in S. Posture is not gen- 
erally observable because available image data 
is two-dimensional. Images may be interpreted 
as arising from a marginalized data source, with 
the dimension corresponding to the optical axis 
integrated out, assuming orthographic projec- 
tion in image formation. These 2D observation 
processes are responsible for the generation of 
pixel foreground observations (coordinate pairs 
of foreground pixels) at the output of a segmen- 
tation algorithm. 

Assuming orthographic image projection and, 
without loss of generality, taking the xi — a;2 
plane as the imaging plane and X3 as the opti- 
cal axis, the observation process corresponding 
to component i is the two-dimensional (spatial) 
Gaussian density function with parameters (j)^ = 
{/i-,E-}, /i- = upper 2-vector of/^i, E^ = upper 
left 2x2 sub-matrix of Ej = i?o,iAi-Ro^j. As- 
suming observations of component i are drawn 
according to the observation process that dis- 
tributes them spatially according to it's param- 
eters (pl, then arbitrary (i.e. unlabeled) data 
can be taken to arise from the mixture process 

n 

p{wi\^') = ^ ajPj{wi\(t>'j) + aBG        (10) 
j=i 

where aj is the prior probability of observing 
component j at an arbitrary image site, and 
OBG is a uniform outlier process, Y^l-i ctj + 
«BG = 1 such that all object component pro- 
cesses have equivalent peak values. 

5.2.2    Integrating Known Kinematic 
Structure into 
Mstximum-Likelihood Posture 
Estimation: ECM Algorithms 

The EM algorithm does not, in it's common 
form, account for explicit parameter space de- 
pendencies amongst elements of $^.  One may 

account for this, however, by viewing the max- 
imization step of the EM algorithm as a con- 
strained optimization procedure, given the a 
priori structural knowledge in the model S. 
We refer to this modified EM procedure as an 
Expectation-Constrained Maximization (ECM) 
algorithm. 

A full set of constraint equations, c = 0 describ- 
ing each joint with respect to it's constituent 
components, define a nonlinear subspace (the 
"feasible" space or constraint manifold) in the 
total parameter search space. The correct ex- 
pression for joints between components i and j 
is 

fj,i -\- dijTjj — fij -\- dj^irj^i (11) 

where dijrij is the orientation of component Vs 
joint axis with respect to the reference frame, 
rjj is the distance from the component mean to 
the joint along dijrij, etc. Equation 11 results 
in three constraint relations per joint. To en- 
force these constraints, each EM iterate is pro- 
jected onto this subspace by a Newton-Raphson 
(NR) procedure [Fletcher, 1987]. This is equiva- 
lent to a generalized elimination of variables and 
effects a search exclusively in the R"*"* feasible 
subspace (for d parameters and s constraints). 
By requiring every step to remain in this sub- 
space, we are guaranteed that the constraints, 
and thus our a priori knowledge and structural 
model <S, will not be violated. 

The projection procedure, sketched geometri- 
cally in Figure 8, is repeated until a suitable 
termination criteria is met, such as negligible 
projected step size, which is the least squares 
optimal constrained solution. 

Figure 9 shows input, segmentation and posture 
estimate images for 5 frames of a test sequence 
using a 5-component human being model as in 
Figure 7. We are currently extending our al- 
gorithms to conduct an extensive experimental 
analysis of the posture estimation model pro- 
posed here. 

* Although, as indicated in [Redner and Walker, 1984], 
convergence results do hold for families of probability 

densities whose parameters axe not independent of one 
another. 
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Figure 9: The input images in this test sequence (a) were analyzed using a 5-component 14 DOF 
articulated human model to recover the result MAP segmentation (b), and articulated 
motion (time-varying postures) of the object (c). The graphs in (c) are contours of 
the estimated mixture process, with components fit to rigid object hnks (2 forearms, 2 
arms, and body trunk). 

5.3    Event Recognition Using HMM 

The objective of motion understanding is to 
provide computers with the ability to identify 
motions captured by video cameras. The def- 
inition of what is a motion varies across ap- 
plications. For example, in a dance applica- 
tion the motions could be the possible move- 
ments (plie, pirouette, etc.) in ballet. A char- 
acteristic of motions that does extend across 
applications is the fact that they occur in the 
spatio-temporal domain where both the evolv- 
ing shape and the trajectory of the object can be 
expressed. Motion understanding differs from 
the classical problem of object tracking in that 
for tracking, the output of the system is a trajec- 
tory defining the position of the object in time. 
The output of a motion understanding system 
is a sequence of semantic labels (typically verbs) 
describing the motions identified in the video se- 
quence. Motivating the development of motion 

understanding is the possibility of applications 
such as computerized sports analysis, immer- 
sive video, intelligent surveillance systems and 
intuitive machine interfaces. 

Our approach to motion understanding exploits 
finite state estimation. The new algorithm is 
a hidden Markov model, probabilistic, feature- 
based technique whose purpose is to identify 
the motions performed in an image sequence 
[Schlenzig", 1997]. 

The assumptions which make this technique fea- 
sible are: 

1. The   motions   we   are   interested   in 
identifying can be enumerated.   The 
system is armed with a set of possible mo- 
tions from which it must choose the best 
one. For the case where the image sequence 
contains a completely novel motion, the 
system returns an unknown response.   On 
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line learning of new motions is not possible, 
but the architecture of the system allows 
new motions to be incorporated without 
the need to retrain on all possible motions. 
Instead only the transition probabilities for 
the new motion must be determined. 

2. Each motion can be described as a 
time sequence of static poses. The lo- 
cation of the centroid of the object in mo- 
tion can also be considered a "pose". This 
allows us to recognize activities of a rigid 
body undergoing translation. Some appli- 
cations will require that both the shape of 
the object and its location be used in de- 
termining the observation symbol. 

3. A technique exists for distinguishing 
amongst the poses. Image processing 
must provide robust determination of the 
shape of the object and/or the location of 
its centroid. For the system to be useful, 
recognition must occur across a significant 
variety of instantiations. 

Figure 8: Geometry of the ECM algorithm. 
At each iteration, the ECM must 
produce a valid posture estimate by 
projecting the intermediate EM es- 
timate fl* onto the feasible space 
0 = 0. This is implemented as 
a two-step procedure at each iter- 
ation: (1) jump in the constraint 
manifold tangent plane in the direc- 
tion of the EM iterate projection, 
followed by (2) projection in the tan- 
gent plane complement space back 
onto the constraint manifold. 

No assumptions are made about the sequence 
containing a single motion. Instead, we depend 
on the algorithm to cope with and identify mo- 
tion transitions. 

The motion estimator, 0„ is assumed to have 
the form 

4>n = E{(t>n\Zn} (12) 

where </>„ is an indicator vector describing the 
true gesture information and Z„ is the measure- 
ment data available at time n. The derivation 
of the estimator [Krishnan, 1984, Sworder, 1991, 
Sworder et al, 1995] yields the update equation 

#n     =     Q'^ndt + P^^XD'R-^Un    (13) 

P<t><j>     =    (I>n4>'n - ^n4>n 

Rn    =   diag{XD4>'n) 

where the first right-hand term in Equation 13 
is the effect of the model and the second term 
provides the change due to the current measure- 
ment. In Equation 13, du, is the vector Cj where 
i is the current pose symbol, A is the image 
frame capture rate and dt = 1. The discerni- 
bility matrix, D, contains the probabilities de- 
scribing the observation process. 
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The first step in using the finite state estima- 
tor for motion understanding involves determin- 
ing the parameters of the hidden Markov model. 
Previous attempts at using HMMs for image se- 
quence analysis have used techniques which it- 
eratively determine the number of states, what 
the states are, and the transition probabilities 
based on training data. These methods, while 
easy to use, destroy some of the greatest ben- 
efits of using HMMs. Typically the results do 
not even allow one to clearly distinguish what 
has been defined to be a state. This prevents 
the designer from incorporating a priori known 
information into the estimator. 

In designing the estimator, the user has two 
powerful sets of parameters with which to influ- 
ence the behavior of the system. The diagonal 
elements of the rate matrix, Q, are proportional 
to the mean performance time for each activity. 
The off diagonal elements represent the proba- 
bilities of changing from a pose in motion A to 
a pose in motion B. Because the motions are 
dictated by the application and the poses are 
chosen by the designer, this data is easily ob- 
tained from sample sequences. 

The discernibility matrix, D, encodes how 
well the image processor is able to distinguish 
amongst the expected poses. It also allows the 
designer to implicitly describe the classification 
accuracy and the resolution available in locat- 
ing the centroid of the object. The discernibility 
matrix has a predictable effect on the estima- 
tor. If the designer is overly conservative in his 
expectations of the performance of the image 
processor, as evidenced by low probabilities of 
correct identification, then the system will re- 
spond by somewhat disregarding the measured 
information at each time step. This will slow 
down the transitions from one motion to the 
next. If the discernibility matrix is the iden- 
tity matrix then each symbol observation will 
be assumed to be always correct, and if errors 
actually do occur, the estimator will typically 
incorrectly indicate a motion transition. 

In addition to the selection of parameters, the 
designer must choose the method by which the 
system probabilities will be interpreted. The 
most straightforward approach is to simply re- 

spond with the activity associated with the 
maximum likelihood, but this has several short- 
comings. First, the system will always respond 
with an answer from the set of possibilities. 
This contradicts our earlier statement that in 
the case of a novel activity occurring in the im- 
age sequence the system should respond with 
an unknown. To achieve this there must be a 
lower bound set on what is an acceptable level 
of confidence for an activity before it is identi- 
fied as the chosen one. It also makes sense to 
require a minimum distance between the max- 
imum likelihood and it's nearest neighbor. For 
example, if there exist three possible activities 
and the current probabilities of them occurring 
are [0.5,0.45,0.05] respectively then we would 
not want the system to confidently proclaim 
that the first activity is occurring. Instead, the 
system should admit to confusion, and wait for 
additional measurements which will hopefully 
make things clearer. Access to the probability 
of each activity also allows us to impose a risk 
function on the decision making process. This 
enables us to incorporate a priori known infor- 
mation of the type "it's better to err by saying 
motion A is occurring if motion B is actually 
happening than it is to err in saying motion B 
is occurring when it isn't". 

To illustrate the usage of the estimator, consider 
the following example that illustrates the use of 
the filter for the 3 motion/4 pose system given in 
Figure 10. Here the set of recognizable motions 
is 6i = {^, B, C} and the set of poses is p[ = 
{1,2,3,4}. The Kronecker product of the two 
yields (/>{ = { A\, A2, A3, A4, Bl, B2, B3, 
B4, Cl, C2, C3, C4 }. Motion A consists of 
a sequence of pose 1 followed by pose 2 while 
motion B is defined to be a sequence of pose 2 
followed by a sequence of pose 3, and motion C 
is defined to be a sequence of pose 1 followed by 
a sequence of pose 4. 

The rate matrix, Q, is found by first identifying 
the expected execution time for each motion. 
For this example, it was decided that each pose 
is expected to last around 4.2 time steps. There- 
fore, the diagonal elements of the rate matrix 
are 0.24. To validate the performance of the Q 
matrix one can run the filter with no measure- 
ment inputs and verify that the motion proba- 
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Figure 10: The first example consists of three 
types of motion (indicated by 
shape) and four possible poses (in- 
dicated by number). Motion A 
(circles) consists of pose 1 and pose 
2, motion B (triangles) includes 
both pose 2 and pose 3, and mo- 
tion C (squares) is made up of pose 
1 and pose 4. 

bilities achieve the expected equilibrium states. 

The upper graph in Figure 11 gives the observa- 
tion symbol at each time step using the given Q 
and D. Observation errors occur at time steps 
50 and 54. The evolutions of the probabilities 
for each of the possible motions are given in Fig- 
ure 12. The output of the filter is illustrated as 
a solid line in the lower graph in Figure 13. For 
this example, the maximum likelihood was used 
to identify the current motion. If the maximum 
likelihood was less than 0.5 then the output of 
the system was set to unknown (indicated by * 
in the figure). The true motion is shown in the 
upper graph of figure 13. 

The results show that the system is uncertain at 
times of motion transitions which causes some 
delay in identifying an event. This delay is in- 
significant when compared to the latency that 
exits in batch processing systems where the user 
would have to wait until the termination of a 
motion before analysis could begin. 

Note that around time step 50 the filter makes 
an error. This is caused by two factors. First, 
there is a long sequence of observations of pose 
1, a pose that is shared between motions A and 
C. Second, this is followed by an incorrect ob- 

servation of pose 4. This causes a spike in the 
probability of motion C which is large enough 
to confuse the system. 
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Figure 11: The input data generated using 
the given Q and D. The upper 
graph shows only the transitions 
from motion i to motion j, i ^ j- 
The lower graph shows the obser- 
vations for all time steps. 

Of particular importance in the application of 
finite state estimation to the problem of motion 
understanding is the ease in which a new collec- 
tion of motions can be modeled and identified. 
Given a sampled sequence of images one can de- 
termine the mean execution times and the tran- 
sition probabilities. Furthermore, the designer 
has the means to easily incorporate a priori 
known information into the system using both 
the rate transition matrix and the discernibility 
matrix. The designer can imbue additional in- 
formation and constraints through the limiting 
of feasible transitions. For example, a motion 
grammar could be imposed upon the system 
such that motion B can only occur after mo- 
tion A. With such flexibility it is expected that 
finite state estimation will permit real world ap- 
plications of motion understanding. 

5.4    Three-Dimensional Modeling 
and Visualization 

Conventional videos present image sequences 
seen from predetermined camera viewpoints. 
With the advancement of image processing and 
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Figure 12: Each graph presents the evolu- 
tion of the probabihty of a given 
motion. The actual motions are 
shown in red. 

generation techniques, it is now possible to cap- 
ture spatial-temporal models of real scenes and 
events, and these recordings can be watched in a 
three-dimensional fashion, with the viewpoints 
controlled by the viewer during playback. 3D 
video possesses the interactive characteristics 
of virtual reality systems, yet its contents are 
based on real environments. 

The key issue of 3D video generation is the 
capture and modeling of real scene geometry 
and the rendition of the views from arbitrary 
perspectives. Generally, researchers take two 
types of approaches toward the virtual view 
synthesis problem: model-based approaches, 
and image-domain methods. Model-based ap- 
proaches first try to recover the 3D model of 
the environment, including object shapes and 
colors. Then for playback, the models are 
rendered from the desired viewpoint. Works 
in this category include [Kanade et ah, 1995, 
Tseng and Anastassiou, 1995, Puchs et al., 
1994]. Image-domain methods avoid the issue 
of detailed shape recovery but instead gener- 
ate the new views via direct image transfor- 
mation on existing camera views. Works of 
this type include [Chen and WiUiams, 1993, 
Skerjanc and Liu, 1991, Seitz and Dyer, 1995, 
McMillan and Bishop, 1995, Levoy and Hanra- 
han, 1996, Gortler et al, 1996]. Hybrid meth- 
ods, combining the characteristics of each, also 

Figure 13: At each time step the probabili- 
ties of the motions are compared 
to select the most likely (maxi- 
mum probability). If the maxi- 
mum probability is greater than 
0.5 the system confidently identi- 
fies the current motion. In the case 
where the maximum probability is 
not greater than 0.5, the system 
admits confusion. 

exist. One such work is [Debevec et al., 1996]. 

In this research the virtual view generation 
methods are based on the MPI-Video frame- 
work. An important assumption in MPI- Video 
is that the knowledge about the static environ- 
ment is known a prior, therefore the problem 
transforms to the segmentation and represen- 
tation of dynamic objects. Another assump- 
tion, that cameras are stationary, greatly sim- 
plify the complexity of virtual view generation. 
With precise camera calibration to obtain their 
parameters expressed in a common world co- 
ordinate system, MPI-Video can support re- 
alistic 3D video, immersive video, using both 
modeling-based and image-domain approaches. 

5.4,1    The Model-based Approach 

Because the precise location of cameras is 
known, the extent of volume occupied by dy- 
namic objects can be accurately determined. 
Our approach, shown in Figure 14, employs 
voxel occupancy determination to obtain full 
3D models of dynamic objects, and an efficient 
method for "painting" the shape using real cam- 
era views. The result is a highly effective and 
realistic presentation of dynamic video with full 
3D viewpoint control. 
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Figure 14: Overview of the model-based ap- 
proach. Given multiple camera 
images of the same scene (top), 
the 3D shapes of the scene ob- 
ject are first reconstructed (mid- 
dle), and then the surface col- 
ors are determined, resulting in a 
photo-realistic 3D video sequence 
(bottom) 

The procedure to create model-based immersive 
video involves proper studio setup and data ac- 
quisition, camera calibration, object segmenta- 
tion, shape recovery, color mosaicing, and play- 
back. The last four steps, for model generation 
and rendering, are briefly explained below. For 
a detailed discussion, see [Moezzi et al, 1997]. 

of each segmented camera images. As shown in 
Figure 15, all voxels hit by any such rays must 
be empty, and the remaining voxels represent 
the portion of space occupied by objects. To 
obtain efficient representation, we convert the 
voxel representation into a polygonal-surface- 
based one using the Marching Cube algorithm 
[Lorensen and Cline, 1987]. 
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Figure 15: Voxel occupancy determination. 
Voxel A projects to "object- 
occupied" regions in all cameras 
and is determined occupied; Voxel 
B projects to "empty" regions in 
Cameras 1 and 2 and is declared 
empty. 

5.4.2    Object Segmentation 

We can simply determine the extent of dynamic 
objects in each camera view by subtracting from 
them the known background images. Practi- 
cally, noise in the data and shadow or reflec- 
tions make segmentation much more difficult, 
so manual cleanup may be necessary. Develop- 
ment of more intelligent segmentation methods 
are part of the ongoing research in this project. 

5.4.3    Shape Recovery 

With the segmentation results from each cam- 
era, we can determine the dynamic object shape 
with volume intersection methods. Specifically, 
we divide the space into a set of voxels, and 
project rays from pixels in the "empty" region 

5.4.4    Color Mosaicing 

We have the object shape, but its surface col- 
ors are still unknown. We can simply project 
rays from each pixel in the object portions of 
real camera views into space, and the first poly- 
gon on the surface hit by the ray will acquire the 
pixel colors. But this method requires too much 
computation and is slow. Too speed up process- 
ing, we utilize "color mosaicing", or first color- 
ing each polygon with a color value converted 
from its index. Then, taking advantage of the 
specialized graphic hardware in high-end work- 
stations, we render the object model from the 
viewpoints of real cameras, and by comparing 
the renderings with real camera views pixel-by- 
pixel, we can easily determine the color of each 
polygon. 
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5.4.5    Playback 

We determine the 3D object models in a frame- 
by-frame basis. Once we have models of all 
frames, we simply load them into memory and 
rapidly switch between them. Provided that the 
graphics hardware can render them rapidly, we 
can achieve real-time playback. A comparison 
between the resulting rendering and an original 
image is shown in Figure  16. 

Figure 16: Comparsion between a real camera 
image (right) and the constructed 
3D model rendered from the same 
viewpoint of the camera (left). 

blocks to shapes of dynamic objects. The ap- 
proach taken is inspired by the works of De- 
bevec, et al. [1996]. The interactive modehng 
program utilizes domain knowledge to guide the 
user during the modeling process. 

5.4.8 Incremental Enhancement of 
Object Models 

In video, neighboring frames often exhibit a 
high degree of coherence. By exploiting this rich 
source of information, we can check our rough 
model obtained previously and correct any "de- 
fects." By utilizing temporal knowledge, we can 
gradually refine the models and have accurate 
shape information. 

5.4.9 Plenoptic Model-based 
Representation 

With the approximations for object shape, the 
next task is to capture and generate view in- 
formation. We are developing representations 
that are based on plenoptic functions [McMillan 
and Bishop, 1995, Levoy and Hanrahan, 1996, 
Gortler et al, 1996]. By choosing the proper 
cameras we can re-construct the plenoptic field, 
and then virtual views are generated by sam- 
pling the proper subsets of the field. 

5.4.6 The Image-Domain Approach 

While the model-based approach can produce 
excellent results for controlled environments, 
more general conditions require image-domain 
transformation due to limitation of segmenta- 
tion techniques. Also, visibility for pixels need 
to be mapped correctly. If we choose cameras 
for which the monotonicity constraint [Seitz and 
Dyer, 1995] holds, it is guaranteed that physi- 
cally correct results can be obtained. To en- 
sure we can apply this constraint, we need to 
have a good approximation of the dynamic ob- 
ject shape. 

5.4.7 The Interactive Modeler 

Currently we are developing techniques that 
will utilize interactive manual fitting of simple 

6    Conclusions 

We have described the infrastructure of MPI- 
Video in the context of VSAM application. 
MPI-Video relies on two important concepts. 
The first, content-based interactivity, allows a 
user of a system to access information based 
on context, thus allowing the user to retrieve 
useful information even when the volume of 
data available is large. The second, gestalt 
perception, refers the merging of data from 
multiple image sensors into a single percep- 
tion that conveys more information than just 
the individual images. We have focused on 
the assimilation of multiple streams of video 
into a single, integrated representation of the 
world. This will form the basis for future work 
which includes building a database subsystem 
to support content-based query operations, and 
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a query environment which supports navigation 
and querying of the wealth of data input to, and 
derived by, the system. 

Research issues we are pursuing to assimilate 
data for MPI-Video VSAM include assimila- 
tion of motion and optical flow, determination 
of kinematic structure of objects in a scene, 
event recognition, and three-dimensional visu- 
alization. Assimilation of motion and optical 
flow will allow MPI- Video to exploit the abun- 
dance of motion information available in mul- 
tiple image sequences. In VSAM applications, 
understanding the activity of humans is impor- 
tant. Recovery of kinematic structure of hu- 
mans and recognizing what they are doing fa- 
cilitates context-based addressing of sequences 
involving human activity. Visualization meth- 
ods permit easier user interaction with the MPI- 
Video VSAM system. 
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Abstract 
A technique for constructing detailed 3-D mod- 
els of buildings from video and other data 
sources is described. In addition, a ground- 
truth model of a moderately complex building 
is presented, in conjunction with a description 
of a set of video sequences and still images that 
can be used for evaluating existing techniques 
or developing new ones. The proposed model- 
ing technique is called sketch-first modeling be- 
cause a user first constructs a quick sketch of 
the building to be modeled, and then an en- 
hanced bundle-adjustment procedure computes 
the locations of the cameras and the 3-D loca- 
tions of the sketched primitives. The sketch can 
be as weak as a set of building components and 
constraints on them (such as "vertical walls" or 
"perpendicular lines") or as strong as an ap- 
proximate 3-D model. There are several advan- 
tages of starting with a sketch. First, it provides 
a way to directly incorporate known world con- 
straints into the solution procedure. Second, it 

'This work was sponsored by the Office of Research 
and Development under ORD Contract No. 93-F151700- 
000. The views and conclusions contained in this doc- 
ument are those of the authors and should not be in- 
terpreted as representing the official policies, either ex- 
pressed or implied, of the United States Government or 
SRI International. 

can help keep track of the portions of the build- 
ing that have been imaged. Third, it can help 
identify matching mistakes by locating points 
that are not consistent with perspective imag- 
ing of planar faces. And fourth, it can help iden- 
tify points that are not on the building, such as 
points on vegetation. 

1    Introduction 

The computer graphics community has made 
dramatic progress in the generation of realis- 
tic images from three-dimensional (3-D) models. 
The new techniques, however, are not practical 
for application to such key military tasks as sim- 
ulation and mission rehearsal, because it is too 
expensive and time consuming to construct the 
models to support these applications. As a re- 
sult, there is a critical need for faster and less 
costly techniques to build detailed 3-D models 
of complex real environments. 

Current modeling techniques are interactive; a 
person either constructs 3-D sketches of an envi- 
ronment by looking at pictures of it or by apply- 
ing photogrammetric techniques to inter-relate 
several images, measuring selected 3-D points, 
and then describing volumes and surfaces that 
capture the geometry of the scene.    In both 
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cases, the process is tedious, which limits the 
level of detail incorporated into models, which 
in turn hmits their utility. 

The computer vision community has recently 
developed (and is still in the process of devel- 
oping) techniques for automatically extracting 
3-D information from a set of snapshots and 
from long sequences of images. This progress, 
however, is so new that the techniques have not 
been evaluated, except in a qualitative way. 

Given this situation, we proposed to do the fol- 
lowing: 

1. Survey existing modeling techniques, from 
both the computer vision and photogram- 
metric communities 

2. Construct an accurate ground-truth model 
of a complex building 

3. Gather sets of controlled imagery of the 
site, which can be used for both develop- 
ing algorithms and evaluating them 

4. Explore ways to combine computer vision 
techniques for automatically extracting 3- 
D information from long sequences of im- 
ages (such as video) with photogrammet- 
ric techniques for inter-relating large sets 
of images 

5. Provide a systematic analysis and evalua- 
tion of the model construction techniques 
developed in (4) 

Within our team, Calgis has extensive experi- 
ence in surveying and photogrammetry and has 
developed a software package called UMENS 
that includes several techniques for interactively 
extracting information from one or more pho- 
tographs. In addition, UMENS includes a gen- 
eralized version of the photogrammetric bundle 
adjustment procedure that works with hundreds 
of images and supports constraints on scene fea- 
tures, such as requirements that a set of 3-D 
points lie on a vertical line or that a set of lines 
lie in a horizontal plane. In this project, Calgis 
is concentrating on tasks 1, 2, 3, and 5. SRI In- 
ternational has developed a set of techniques for 
identifying and tracking features through video 

sequences, plus techniques for sketching build- 
ings from one or more images. In this project, 
SRI is concentrating on tasks 1, 4, and 5. The 
project has been under way for approximately 6 
months. In this paper, we summarize our liter- 
ature survey, and then briefly describe our ap- 
proach, current status, and future plans. 

2    Summary of Our Literature 
Survey 

Video has many characteristics that make it a 
sensor of choice for some mapping applications. 
Among its advantages are low cost, real-time or 
near real-time operation, and data redundancy. 
In the past five years, video photogrammetry 
has begun to be used in architectural mapping 
[Streilein and Gaschen, 1995]. In general, it has 
been approached as traditional photogramme- 
try with accuracy ranging from 1/300 to 1/800 
of the photographic distance. 

The basic disadvantage of video imagery is 
its relatively low resolution compared to film. 
Standard video recorders have an image reso- 
lution of approximately 400 lines, compared to 
approximately 1500 lines for 35-mm slide film. 
In addition, video cameras generally have large 
lens distortions that complicate the mathemati- 
cal models (and calibration) of the sensors, lim- 
iting their effective mapping accuracies. 

Recently, the Global Positioning System (GPS) 
has been used for aerial mapping and map- 
ping roads and railroad tracks from moving cars 
[El-Sheimy et al., 1995]. For this project, we 
extended its use to ground-level architectural 
mapping from video sources. 

At the beginning of the project, we made an 
extensive literature survey of techniques for ex- 
tracting 3-D information from long monocular 
image sequences. This section is a short sum- 
mary of that survey [Luong et al., 1997]. 

The analysis of long monocular sequences has 
been known for many years in the computer vi- 
sion community as the "structure-from-motion" 
problem. Only recently, however, have tech- 
niques been designed to take advantage of the 
redundancy afforded by a videotape as opposed 
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to a set of still photographs. 

In this short survey, we describe the three pri- 
mary approaches (minimization, recursive, and 
factorization) and mention a few techniques 
that do not fit into these classes. Note that we 
only consider methods designed specifically to 
handle multiple frames taken by a single camera 
- although stereo sensors have been applied to 
a few robotics applications, they are not widely 
available. 

2.1    Minimization Methods 

Minimization methods use optimization tech- 
niques to iteratively refine an initial estimate of 
the parameters. They typically are applied in 
batch mode and have the drawback that they 
may get stuck in a local minimum, depending 
on the starting value and the shape of the op- 
timization surface. The computation is usually 
quite slow (a few minutes). On the positive side, 
many optimization techniques have been devel- 
oped for specific tasks that converge quickly (for 
example, in less than a handful of iterations) 
and (almost) reliably to the optimal result. 

Some methods first compute the motion, and 
then calculate the 3-D structure of the scene 
[Spetsakis and Aloimonos, 1991, Shariat and 
Price, 1990, Luong and Faugeras, 1997]. These 
techniques are based on the epipolar constraint, 
or a derived form of it, which makes it possible 
to eliminate the structure from the computa- 
tion. The advantage is a reduction in the num- 
ber of parameters to be minimized. The main 
drawback is that the epipolar constraint pro- 
vides only one equation per point, since the con- 
straint is in only one direction. This is unlike 
the equations based on the projection, which 
will be discussed next. However, it has been ar- 
gued that not incorporating structure into the 
calculations results in less stable results only if 
global consistency across views is not enforced. 
The computation of a global representation re- 
quires taking into account scale factors between 
pairs of views. 

A second class of method aims to recover struc- 
ture and motion simultaneously. The idea 
is to perform a large-scale optimization, usu- 

ally using the Levenberg-Marquardt (LM) min- 
imization algorithm. The objective function 
to be minimized is the diff'erence between the 
measured coordinates and the coordinates de- 
rived from the unknown points and projec- 
tions. This is similar to the idea of "bundle 
adjustment" in photogrammetry. This method 
was combined with a motion model in [Broida 
and Chellappa, 1991]. It has regained interest 
within the computer vision community for deal- 
ing with uncalibrated images [Mohr et al., 1993, 
Szeliski and Kang, 1994, Hartley, 1994]. These 
methods are good for enforcing all the con- 
straints of the problem. They produce a 3-D 
reconstruction of the scene and an estimate of 
the motion. The principal drawback is that they 
can get trapped into local minima; therefore, a 
good initialization might be required. In ad- 
dition, the computational requirement can be 
high, even if sparse methods are used to speed 
them up. The number of variables is at least 
(3*M + 6*(N-1)), if we assume that M points 
are observed in N views. 

2.2    Recursive Methods 

An algorithm is said to be recursive when the so- 
lution for frame K-l-1 is determined from the so- 
lution for frame K and that data at frame K-l-1, 
with no overhead as more frames are added. Old 
observations can also be discarded. These ap- 
proaches are necessary if there is a requirement 
for real time. Even if it is not the case, these 
approaches can deal with a lot of data in a rea- 
sonable amount of time. 

The problem is formulated by posing structure 
from motion as a parameter estimation prob- 
lem. Almost all these approaches are based on 
the Extended Kalman Filter (EKF). Because of 
the nonlinear nature of the measurement and 
plant equations, the state estimates are not suf- 
ficient statistics for the past data (in contrast 
with the linear case and the Kalman Filter, 
which is optimal), so degradation can occur, 
for instance, if the initialization is not precise 
enough. For nonlinear optimization, the re- 
cursive methods are not optimal, in contrast 
to the batch methods [Weng et ai, 1993], al- 
though results close to optimal could be ob- 

327 



tained [McLauchlan and Murray, 1995]. On 
the other hand, if the models are only ap- 
proximations to the true plant and measure- 
ment equations, then small deviations from the 
models are tolerated without explicit modeling, 
thanks to the "limited memory" of the system, 
which tracks the actual parameters and "for- 
gets" about data taken at earlier times. 

In [McLauchlan and Murray, 1995] it was 
claimed that better results are obtained with 
a complete parameterization of the structure 
(X,Y,Z), a partial representation Z (like in 
[Azarbayejani and Pentland, 1995]) being bet- 
ter than no structure (as advocated by Soatto 
et al). However, in [Soatto and Perona, Nov 
1995] it is argued that it is not the inclusion of 
the structure that makes a scheme robust, but 
it is the formulation of the problem as a global 
model (which refers to a common reference, for 
instance that of the initial time instant, some- 
times called "object-centered") that does it. 

Few recursive methods decouple the estima- 
tion of motion from the estimation of structure. 
Apart from [Weng et al, 1987], which is based 
on a particular motion model, this approach has 
been mostly advocated by Soatto and coworkers 
[Soatto et al., 1994, Soatto and Perona, 1995, 
Soatto and Perona, in press 1996, Soatto and 
Perona, 1996]. If the feature points are available 
throughout the sequence, then it is advisable to 
use a global model (which refers to a common 
reference - for instance, that of the initial time 
instant). These models have been found to be 
more robust and precise, and are more easily im- 
plemented using the structure. The main prob- 
lem with global models is that they cannot han- 
dle occlusions, in the sense that information for 
each point can be integrated in time (or across 
different frames) only to the extent that it is 
visible. In the case of a minimization approach, 
this can be taken care of by reweighting. In the 
case of a recursive approach, there is a transient 
from the initialization that affects the estimates 
of all other parameters. Therefore, there is a 
tradeoff: if feature points have a lifespan that is 
long enough (longer than the convergence rate 
of the optimization/filtering scheme, typically 
10 to 20 frames) then it is better to use a global 
scheme.   Otherwise, it might be better not to 

use a global scheme. 

For the methods that compute structure and 
motion together, there are two broad approach 
classes. In the first, for each new image, the 
old shape estimate is combined with the infor- 
mation contained in the new image, which is 
considered as the measurement. Each new im- 
age only partially constrains the shape. Typi- 
cal examples, where the extended Kalman Fil- 
ter is used, are [Broida and Chellappa, 1990] 
(constant motion model) and [Azarbayejani and 
Pentland, 1995] (no explicit motion model). In 
[McLauchlan and Murray, 1995], which intro- 
duced the Variable State Dimension Filter, no 
motion model is used at all. 

The alternative is to apply a two-frame algo- 
rithm for each new frame [Kumar et ai, 1989, 
Cui et al., 1990, Oliensis and Thomas, 1991, 
Soatto et al., 1993]. The measurement is the 
result of this algorithm. An advantage of this 
approach is that no model of the motion is re- 
quired. A potential drawback is that if the in- 
terframe motion is too small, the result obtained 
with a two-frame algorithm can become unsta- 
ble. 

2.3    Factorization Methods 

This class of methods assumes a linear projec- 
tion (orthographic [Debrunner and Ahuja, 1990, 
Tomasi and Kanade, 1992], weak perspective 
[Weishall and Tomasi, 1995], paraperspective 
[Poelman and Kanade, 1994], aflfine with self- 
calibration [Quan, 1994]). It computes simul- 
taneously general structure and motion using 
a simple and elegant scheme. A "measurement 
matrix" is factored in a product of structure and 
motion by using the fact that it has theoretical 
maximal rank 3. The advantages are 

• No hypothesis is made on the motion, or 
on the structure. 

• All the data in all the images are treated 
uniformly. 

• Solution is via linear methods, either batch 
or incremental [Kanade and Morita, 1994, 
Weishall and Tomasi, 1995] (because of the 
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linearity of the equations, these two formu- 
lations are equivalent, unlike the nonlinear 
case). No initialization is required and con- 
vergence is guaranteed. 

• Because of the linear camera model, there 
are very few intrinsic parameters. Usually, 
the knowledge of the aspect ratio is suffi- 
cient. 

The drawbacks are 

• The main problem is that the linearity of 
the projection is only an approximation. 
No real camera is affine, they are all per- 
spective. The approximation is valid only 
within a certain domain, when the relative 
depths in the scene have a small variation 
with respect to the distance to the camera. 

• The method works best only if every prim- 
itive is visible in every image. 

• It is not possible to incorporate a full sta- 
tistical error model (weighting according to 
uncertainty, outlier detection) beyond the 
implicit least-squares tradeoff. 

2.4    Other Approaches 

Several methods have been tried with the goal of 
reconstructing structure in a more efficient and 
reliable way than the bundle adjustment meth- 
ods, by exploiting some particular properties of 
the projection, in order to partly linearize the 
problem. 

In [Kumar et al., 1992], the reconstruction of 
structure is performed in two steps to overcome 
the sensitivity to errors in relative orientation. 
In a first step, the scene is partly reconstructed 
based on "shallow structures," whose extent in 
depth is small compared to the distance to the 
camera. 

The goal of [Oliensis, 1994] is to address the 
case where (a) the depth variation in the scene 
is large, and therefore linear methods are not 
applicable and (b) the baseline is small, and 
therefore methods that rely on only a few im- 
ages are unstable.   The algorithm first cancels 

the rotation by using linear techniques and then 
proceeds iteratively to compensate for the errors 
introduced by the approximations. 

In [Christy and Horaud, 1994] an iterative 
method is provided to solve the bundle ad- 
justment equations. The method requires only 
three to five affine iterations, which are linear. 
It is easier to analyze since the relation between 
perspective and weak perspective has been clar- 
ified. 

An extension of the factorization methods is in- 
troduced for projective reconstruction in [Sturm 
andTriggs, 1996]. 

In [Faugeras et al, 1995], a method is pre- 
sented to perform a Euclidean reconstruction 
from multiple uncalibrated views, which can be 
taken by different cameras. In [Faugeras and 
Laveau, 1994], a technique is presented to gen- 
erate novel views of a scene without the need to 
compute an explicit 3-D model. This method 
might be a good complement to the previous 
one, in cases where it is difficult to get geomet- 
ric information from the scene. 

2.5    The Berkeley Facade Project 

The Facade Project [Debevec et ai, 1996] at 
the University of California at Berkeley is the 
closest system to our proposed sketch-first mod- 
eling technique. Facade is a system designed 
to model and render architecture from pho- 
tographs. The modeling approach, which com- 
bines both geometry-based and image-based 
techniques, has two components. The first com- 
ponent is a domain-specific photogrammetric 
modeling method that facilitates the recovery of 
the basic geometry of the photographed scene, 
exploiting the constraints that are characteris- 
tic of architectural scenes. The user must com- 
pletely specify a polyhedral model, as well as 
the model-to-image correspondences. The cam- 
era pose and the metric parameters of the model 
are recovered automatically. The second com- 
ponent is a model-based stereo algorithm, which 
recovers the local geometric deviations from the 
basic model. 

Facade,  however,  was designed to work with 
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a set of snapshots, not video. As a result, it 
requires the user to hand mark all the corre- 
spondences, whereas in a video-based system, 
the temporal continuity could be exploited for 
automatic tracking of features. An additional 
benefit of using video would be to exploit the 
massive redundancy of information to gain ro- 
bustness and precision over the use of a sparse 
set of photographs. 

3    Ground-Truth Model 

Calgis and SRI evaluated several candidate 
building sites before selecting an interesting 
building complex (136 x 47 x 19 m) for this 
project. Considerations that favored this se- 
lection included the availability of numerous 
distinctive structural features, such as building 
corners and window corners, for use as control 
points (thereby avoiding the need for placing 
special targets on the building); a diverse mix of 
rectangular and nonrectangular building com- 
ponents; a wide variety of building heights; and 
a set of unobstructed views of major portions of 
the building. 

With the objective of creating a high-precision 
photogrammetrically mapped model for the 
building complex, two types of photographic 
coverage were acquired - aerial images and 
ground-level images. A wide-angle (152 mm fo- 
cal length, 230 x 230 mm format) metric aerial 
camera was used for planimetric mapping of the 
building complex and its immediate surround- 
ings. The building was covered by a pair of 
overlapping vertical aerial photographs and a 
pair of obliques. 

To accurately map all faces of the building, a 
Wild P32 metric terrestrial camera (focal length 
64.09 mm, 60 x 80 mm format) was used to ac- 
quire overlapping terrestrial photographs from 
a series of locations around the perimeter of the 
complex. Fifty photos were taken to provide full 
coverage. 

Photogrammetric mapping requires some points 
with known 3-D object space coordinates, which 
can be identified in each set of overlapping pho- 
tographs. Such control points are usually es- 
tablished through physical measurements car- 

ried out in object space. When a large set 
of overlapping photos that constitute a block 
are to be processed, the object-space measured 
control points are used to densify such control 
through block adjustment. Following this ap- 
proach, field survey measurements were used to 
establish suitable points to control the aerial 
photographic model, and to provide sufficient 
control points, appropriately distributed over 
the external faces of the building, to permit a 
satisfactory bundle adjustment solution for the 
terrestrial photo block. In total, 150 photo ID 
points were established on the building with an 
accuracy of 0.03 m, using traditional surveying 
measurements. These points were tied to a net- 
work of 12 GPS control points that has an accu- 
racy of 0.02 m. Since GPS surveying techniques 
usually provide somewhat poorer accuracy in 
the height component, differential leveling was 
used to establish the height component. 

All photos were scanned at a resolution of 0.015 
mm; 6189 line features were digitized to an ac- 
curacy of 0.05 m, using an Intergraph Images- 
tation Workstation and the UMENS software. 

4    Video Imagery 

The methodology for establishing the kinematic 
positioning of a GPS antenna in motion is well 
known. The fundamental need, in this project, 
however is to determine the spatial position of 
the video camera when each video frame is ac- 
quired. This poses two problems. First, the spa- 
tial offset between the video camera (perspec- 
tive center) and the GPS antenna (phase cen- 
ter) must be determined and maintained (with- 
out changes) during the image collection phase. 
And second, the temporal relationship between 
the video frames and the antenna location must 
be established. 

Trimble GPS receivers provide an option to out- 
put 1 timing pulse per second, synchronized 
with GPS time. They also output informa- 
tion to a message file that identifies the Uni- 
versal Time (UT) corresponding to each pulse. 
Horita, Inc. markets an interface to Trimble re- 
ceivers that generates timing signals to be added 
to the audio track of a videotape.   These sig- 
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nals are synchronized with the GPS receiver's 
output timing pulses. They provide tags that 
can be used to identify the GPS location of the 
frame. This device also adds frame numbers (0 
through 29) to tagging information. When such 
a time-tagged video tape is replayed, the time 
and frame number can be displayed with each 
frame. This commercial device was specially 
modified to interface the Sony camcorders to the 
Trimble 4000SSI GPS receiver. All 30 frames (0 
to 29) shot within a second are marked with the 
same UT. Interpolation can be used to estimate 
the time of each frame. 

This approach was successfully implemented for 
collecting data with a single video camera, as 
well as for a pair of genlocked stereo cameras, 
with a base line of 2.0 m. To date, we have 
taken three types of video sequences - stereo 
video with GPS data, monocular video with 
GPS data, and handheld video without GPS. 

5    Sketch-First Modeling 

A standard photogrammetry-based approach to 
constructing 3-D models from a set of images is 
to 

1. interactively identify points that occur in 
two or more images 

2. automatically compute the relative posi- 
tions and orientations of the cameras that 
took the images, using photogrammetric 
techniques 

3. automatically compute the 3-D locations of 
the selected points by intersecting the ap- 
propriate rays from multiple cameras 

4. interactively identify model primitives, 
such as planes and lines, that occur in the 
scene 

5. interactively construct 3-D models of ob- 
jects in the scene by combining and extend- 
ing the model primitives 

This process is effective, but time consuming, 
because a person must identify numerous of 
matching points, and then construct the model 

from the computed 3-D points. If video data are 
provided, instead of snapshots, an additional 
step would be inserted before step 1. The user 
would interactively select a set of "key frames" 
from the video, and then use them as the set of 
images. 

Computer vision techniques have the potential 
for reducing the involvement of a person in the 
three interactive steps in this process. First, 
computer vision techniques could perform step 
1 automatically, or almost automatically. They 
could select and match the points needed to 
compute the relative locations of the cameras. 
Video data would simplify this process because 
the temporally coherent nature of the image se- 
quence facilitates the tracking of points from 
image to image, which could establish matches 
from one key frame to another. In fact, the 
system could automatically select key frames 
based on the amount of overlap between new 
frames and old ones. Second, computer vision 
techniques could perform the segmentation and 
modeling steps, numbered 4 and 5. Given a 
cloud of points and/or line segments, the tech- 
niques would segment the features into planes 
and extended lines, and then fit planes and 
lines to the associated features, being careful 
to throw out features that do not belong. 

In our experience, current computer vision tech- 
niques are better at selecting, matching, and 
tracking features than in segmenting clouds of 
features and fitting 3-D structures to them. 
Therefore, in the near term, we foresee a person 
doing the bulk of the segmentation and model- 
ing. If that is the case, then we propose that the 
whole process could be simplified by having the 
person first draw a quick sketch of the model 
components and then identify a few matching 
features in the images. The program could use 
the sketch to guide the rest of the processing. 

We propose to develop a sketch-first modeling 
technique that is based on this line of reasoning. 
It begins by having the user define the basic el- 
ements of the model, state constraints between 
them, and identify a few matching features in 
the images. We envision a sketch vocabulary 
that includes "points," "lines," "planes," and 
"rectangular solids" as feature primitives, "hor- 
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izontal" and "vertical" as unary properties, and 
"in a plane," "perpendicular," and "coplanar" 
as binary relationships between primitives. 

Note that the sketch is not necessarily a com- 
plete explicit model of the building, nor does it 
have to be metrically accurate. For our pur- 
poses, since we are using the UMENS bun- 
dle adjustment software, it can be a list of 
constraints on features. Thus, our sketch-first 
approach could work with a variety of sketch 
types, depending on the underlying solution 
procedures. At one extreme, the system could 
work directly with parameterized constructive 
solid geometry models, and at the other ex- 
treme, it could work with lists of constraints 
derived from separate images. 

There are several potential benefits of starting 
with a sketch. First, the sketch defines key 
building primitives and associates nanies with 
them, either implicitly or expHcitly. Second, it 
provides a way to specify 3-D constraints to ob- 
served features. For example, a user can specify 
that one line is horizontal and another is per- 
pendicular to it. Third, it can help keep track 
of the portions of the building that have been 
imaged. Fourth, it can help identify matching 
mistakes by locating points that are not consis- 
tent with plane-to-plane transformations. Fifth, 
it can help identify points that are not on the 
building, such as points on vegetation. 

5.1    The Technique 

The high-level steps in our proposed sketch-first 
modeling technique are 

Instantiate the Data Set - select the images 
and optionally estimate the parameters of 
the associated cameras. 

Generate a Sketch - select building primitives, 
identify a few occurrences of matching fea- 
tures in the images, and specify constraints 
on the primitives constraints. 

Compute the 3-D Geometry - apply pho- 
togrammetric techniques to estimate the 
locations of the cameras and the building 
primitives, simultaneously. 

Complete the Model - edit the model, select 
image patches for rendering the surfaces, 
and generate crude models of vegetation. 

Our approach to implementing these steps is as 
follows: 

Instantiate the Data Set - 

1. Interactively select relatively few im- 
ages to be used for sketching the 
building. A person examines the 
available data (snapshots, aerial im- 
ages, videos, and maps) and selects 
ones that cover the building, prefer- 
ably in an overlapping fashion so that 
key features are visible in two or more 
images. For video sequences, an auto- 
matic technique can identify features, 
track them, and select key frames that 
guarantee a pre-specified amount of 
overlap between frames. 

2. (Optional) Interactively estimate the 
"camera parameters" for the selected 
images and maps. If the parameters 
are known from meta data associated 
with the imagery, use them. If not, 
use a combination of contextual infor- 
mation and single-image and multiple- 
image techniques to estimate the pa- 
rameters. For example, if a trihedral 
building corner is visible in an uncali- 
brated image, use sets of parallel lines 
on the planes meeting at the corner to 
estimate the internal parameters, such 
as focal length and piercing point of 
the camera. 

Generate a Sketch - Interactively construct 
a sketch of the building. This is usually 
performed by analyzing one aspect of the 
building at a time. The person generates 
lists of features and constraints for one as- 
pect, and then moves on to another one, 
tying them together by identifying common 
features or by adjusting primitives to agree 
with multiple views. 

1. Automatically     generate     lists     of 
information-rich   (i.e.       interesting) 
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features, such as points and lines, in 
the imagery of the current aspect. 
(We have applied "interest operators" 
to locate distinctive points and edge- 
detection and line-fitting algorithms 
to locate prominent line segments.) 
If key features are missed by the 
automatic techniques, they can be 
added interactively. 

2. Interactively define a local coordinate 
system for this aspect. One way to 
do this is to select detected line seg- 
ments that define a rectangular trihe- 
dral vertex. For some buildings one 
coordinate system is sufficient for the 
whole building. For others, multiple 
coordinate systems may be required, 
if they have sections that meet at odd 
angles. 

3. (Optional) Interactively outline re- 
gions in the images that are cov- 
ered by vegetation, such as trees and 
bushes. These outlines can save time 
by limiting the application of auto- 
matic analysis techniques to regions 
that are appropriate. In addition, 
they can be used at the end of the 
modeling process to construct crude 
volume models of the vegetation. 

4. Interactively sketch a set of building 
components by selecting primitives, 
such as a rectangular solid, and then 
roughly aligning them with detected 
features in one image. For example, 
after selecting a rectangular block to 
represent the basic shape of the build- 
ing (aligned with the selected local 
coordinate system, by default), move 
it and resize it so that it is approxi- 
mately positioned correctly in the im- 
age. With approximate camera mod- 
els for the images, primitives can be 
interactively sized in 3-D to match 
several images. Without approximate 
camera models, but with the images 
taken from a video sequence, use the 
tracking results through the sequence 
to automatically identify correspond- 
ing features.   If there are no camera 

models and the imagery is an unre- 
lated set of pictures (i.e., not video), 
interactively point at a few features of 
the solid, such as its edges and faces, 
and identify them in the other images. 

5. Interactively add details, such as a 
row of windows, to the sketch by 
selecting the plane of the windows, 
drawing one window, and then spec- 
ifying the pattern on the plane. The 
system can automatically recognize 
occurrences of a sketched feature, such 
as a window, by adjusting its size and 
shape as it is moved over the plane, 
and then identifying matching lines. If 
vegetation regions have been specified 
(in step 3d), skip those areas. This 
technique can quickly populate many 
details on a basic model. 

Compute the 3-D Geometry - 

1. Semiautomatically select points along 
the line segments detected in the im- 
ages and identify their corresponding 
points in other images. UMENS cur- 
rently only works with points and con- 
straints on them, not lines. Therefore, 
we need to select specific points along 
the lines and add a constraint that 
they lie on a 3-D line. If there are 
naturally occurring distinctive points 
along the line caused by such things as 
window frames or wall textures, they 
can be used as specific 3-D points. 
If not, there are techniques for con- 
structing corresponding points in two 
views of a planar surface. For exam- 
ple, if we have identified two paral- 
lel line segments that define a rectan- 
gle in the world, the image locations 
of their end points (if visible) can be 
used to generate a set of correspond- 
ing points along the lines in the im- 
ages. 

2. Automatically compute the locations 
of the cameras and the locations of 
the feature points by applying the 
UMENS   bundle   adjustment   proce- 
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dure, which computes the resection of 
all the cameras. 

3. Automatically compute the 3-D lo- 
cations of the feature points by in- 
tersecting the rays from the resected 
cameras. 

4. Automatically fit lines and planes to 
the 3-D feature points associated with 
the line and plane features. Eliminate 
points that are gross errors. 

Complete the Model - 

1. Interactively edit the computed model 
by examining its predicted appear- 
ance in several images. 

2. Select image patches to be used for 
rendering the 3-D models. If the vege- 
tation regions have been specified, this 
can be done automatically, selecting 
image patches that are as free of vege- 
tation as possible. If not, interactively 
select the image (or images) for ex- 
tracting the appropriate patches. 

3. (Optional) Construct volumetric 
models of the vegetation. 

5,2    Current Status 

To date we have made the following progress on 
the steps described above: 

Instantiate the Data Set - We have developed 
an automatic technique for selecting inter- 
esting point features in individual video 
frames; track them from frame to frame; 
estimate the overlap of the current image 
with previous images; select key frames, 
when the overlap drops below a specified 
amount; and incrementally add interesting 
points in new image regions. To do this 
we have developed a blackboard mecha- 
nism that keeps track of the portions of the 
scene that have been viewed by the video 
sequence. Our blackboard is similar to a 
mosaicked image, except that our primary 
purpose is to identify "tie" points for inclu- 
sion in the bundle adjustment procedure. 
Therefore, whenever a new image overlaps 

a previous image, whether it was the imme- 
diately preceding image or an image much 
earlier in the sequence, we can identify pre- 
viously tracked points and predict their lo- 
cations in the current images. If we can 
find them in the new image, we add the 
matching locations and image numbers to 
their list of matches. 

In addition, we have developed an au- 
tomatic technique for checking and refin- 
ing tracked feature points by comparing 
the frame-to-frame results with indepen- 
dent matches produced by "hopping" over 
several frames. We found that the image- 
to-image matches drift slowly and occasion- 
ally make gross mistakes. Thus, if we ini- 
tially see a feature in image 17 and track 
it through image 62, it may have drifted 
2 or 3 pixels from the point that a person 
would have picked. To minimize this drift, 
we periodically make matches over several 
images, for example, image 17 to image 37. 
If the image-by-image match is close to the 
"hop" match, we reset the feature's loca- 
tion to the hop match's location. If the 
matches are quite different, we mark the 
point as untrustworthy. 

We have experimented with UMENS tech- 
niques for interactively estimating camera 
parameters for images that do not have 
meta data. We have used sets of parallel 
lines to estimate focal length and the sizes 
of known objects to establish scale. 

Generate a Sketch - We have interactively 
constructed sketches from one or more im- 
ages. We used the RCDE to define the local 
coordinate systems, and then to populate a 
scene with building components that were 
aligned with that system. 

Compute the 3-D Geometry ~ We generated 
a list of a few techniques for constructing 
points along sets of lines viewed in two per- 
spective images. 

We interactively computed the camera lo- 
cations associated with several images, us- 
ing the UMENS bundle adjustment soft- 
ware,   and then automatically computed 
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the 3-D locations of feature points (using 
UMENS software). 

In addition, we have experimented with 
techniques for robustly fitting planes to sets 
of 3-D points. 

Complete the Model - We interactively edited 
a set of 3-D models, using the RCDE Sys- 
tem. 

6    Characterization and Evaluation 
of the Methods 

We plan to evaluate the new technique along 
two dimensions, the amount of effort required 
to construct a detailed 3-D model and the accu- 
racy of the final result. In addition, we plan to 
evaluate the utility of incorporating individual 
components, such as automatic feature track- 
ing, into the UMENS modeling system. 

These evaluations, particularly the amount-of- 
effort-based measurements, are difficult because 
there are user training issues, computer speed 
issues, and scene complexity issues. The evalu- 
ation of the final model is more straightforward, 
but geometric accuracy is not the only aspect 
that determines the utility of a model for such 
tasks as simulation and mission rehearsal. If it 
takes months to construct, the crisis may have 
passed before a model can be built. 

Calgis is compiling a detailed list of man-hours 
required to construct the ground-truth model 
from aerial images, ground survey points, and 
metric photographs. This level of effort will 
be used as an estimate of the time required 
by current techniques. In June, when we use 
the sketch-first modeling technique to model the 
same building, we will document the amount of 
time required for each step and compare it to 
Calgis's list of man-hours. 

The Calgis 3-D geometric model will be sub- 
stantially more accurate than we expect to be 
able to generate from video data. (Calgis ex- 
pects that the absolute geo-referenced locations 
of building features, such as the corners of win- 
dows, will be mapped to within 5 cm.) As a re- 
sult, we plan to use the Calgis model as ground 
truth.   We will characterize the geometric er- 

rors in a proposed building model by computing 
statistics on the differences between the ground 
truth locations and the model's locations. 

7    Future Plans 

We plan to make portions of the ground truth 
model and experimental data available to any- 
one interested in working with it. 

With respect to the sketch-first modeling tech- 
nique, our plans are to complete an initial im- 
plementation by June and use it to model the 
building for which Calgis has constructed a 
ground-truth model. We will characterize the 
effort required and the accuracy of the result. 
This initial implementation will be a combina- 
tion of interactive and automatic steps that rep- 
resents a step toward a faster and less costly 
system for constructing detailed 3-D models of 
real scenes. 

References 

[Azarbayejani and Pentland, 1995] 
A. Azarbayejani and A. Pentland. Re- 
cursive estimation of motion, structure, 
and focal length. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 
17(6):562-575, 1995. 

[Broida and Chellappa, 1990] T.J. Broida and 
R. Chellappa. Recursive 3-d motion estima- 
tion from a monocular image sequence. IEEE 
T-AES, 36(4):639-656, 1990. 

[Broida and Chellappa, 1991] T.J. Broida and 
R. Chellappa. Estimating the kinematics and 
structure of a rigid object from a sequence 
of monocular images. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 
13(6):497-513, 1991. 

[Christy and Horaud, 1994] S. Christy and 
R. Horaud. Euclidean shape and motion 
from multiple perspective views by affine it- 
erations. Technical Report RR-2421, INRIA, 
December 1994. 

[Cui et ai, 1990] N. Cui, J.J. Weng, and R Co- 
hen. Extended structure and motion analysis 

335 



from monocular image sequences. In Proc. In- 
ternational Conference on Computer Vision, 
pages 222-229, 1990. 

[Debevec et al, 1996] P. Debevec, C.J. Taylor, 
and J. Malik. Modeling and rendering archi- 
tecture from photographs. Technical Report 
UCB/CSD-96/893, University of California, 
Jan 1996. derived papers in ECCV and Sig- 
graph. 

[Debrunner and Ahuja, 1990] C. Debrunner 
and N. Ahuja. A direct data approximation 
based motion estimation algorithm. In 
Proc. International Conference on Pattern 
Recognition, pages 384-389, 1990. 

[El-Sheimy et al, 1995] N.M El-Sheimy, K.P. 
Schwartz, and M. Gravel. Mobile 3-d po- 
sitioning using gps/ins/video cameras. In 
1995 Mobile Mapping Symposium, ASPRS, 
Columbus, Ohio, May 1995. 

[Faugeras and Laveau, 1994] Olivier Faugeras 
and Stephane Laveau. Representing three- 
dimensional data as a collection of images 
and fundamental matrices for image synthe- 
sis. In Proc. International Conference on Pat- 
tern Recognition, pages 689-691, Jerusalem, 
Israel, 1994. 

[Faugeras et al, 1995] Olivier Faugeras, 
Stephane Laveau, Luc Robert, Cyril Zeller, 
and Gabriella Csurka. 3-d reconstruction 
of urban scenes from sequences of images. 
In A. Gruen, O. Kuebler, and P. Agouris, 
editors, Automatic Extraction of Man-Made 
Objects from Aerial and Space Images, 
pages 145-168, Ascona, Switzerland, April 
1995. ETH, Birkhauser Verlag. also INRIA 
Technical Report 2572. 

[Hartley, 1994] R.I. Hartley. An algorithm for 
self calibration from several views. In Proc. 
Conference on Computer Vision and Pattern 
Recognition, pages 908-912, Seattle, WA, 
1994. 

[Kanade and Morita, 1994] T. Kanade and 
T Morita. A sequential factorization method 
for recovering shape and motion from 
image  streams.     In  Proc.   DARPA  Image 

Understanding Workshop, pages 1177-1187, 
Monterey, California, 1994. 

[Kumar et al., 1989] R. Kumar, A. Tirimalai, 
and R. Jain. A non linear optimization al- 
gorithm for the estimation of structure and 
motion parameters. In Proc. Conference on 
Computer Vision and Pattern Recognition, 
pages 136-^143, 1989. 

[Kumar et al., 1992] R. Kumar, H. Shawney, 
and A.R. Hanson. 3d model acquisition from 
monocular image sequences. In Proc. Confer- 
ence on Computer Vision and Pattern Recog- 
nition, pages 209-215, 1992. 

[Luong and Faugeras, 1997] Q.-T. Luong and 
O.D. Faugeras. Self calibration of a moving 
camera from point correspondences and fun- 
damental matrices. Intl. Journal of Computer 
Vision, 22(3), 1997. 

[Luong et al., 1997] T. Luong, R. Munjy, and 
R.C. Bolles. Structure from long monocular 
image sequences: A survey. Technical report, 
SRI International and Calgis, Inc., 1997. 

[McLauchlan and Murray, 1995] P.F. 
McLauchlan and D.W. Murray. A uni- 
fying framework for structure and motion 
recovery from images sequences. In Proc. In- 
ternational Conference on Computer Vision, 
pages 314-320, Cambridge, Ma, 1995. 

[Mohr et al., 1993] R. Mohr, F. Veillon, and 
L. Quan. Relative 3d reconstruction us- 
ing multiple uncalibrated images. In Proc. 
Conference on Computer Vision and Pattern 
Recognition, pages 543-548, NYC, 1993. 

[OHensis and Thomas, 1991] J. Oliensis and 
J. Thomas. Incorporating motion errors 
in multiframe structure from motion. In 
IEEE workshop on visual motion, pages 8- 
11, Princeton, NJ, 1991. 

[Oliensis, 1994] J. Oliensis. A linear solution 
for multiframe structure from motion. In 
Proc. DARPA Image Understanding Work- 
shop, pages 1225-1231, Monterey, Cahfornia, 
1994. 

336 



[Poelman and Kanade, 1994] C.J. Poelman 
and T. Kanade. A paraperspective factoriza- 
tion method for shape and motion recovery. 
In Proc. European Conference on Computer 
Vision, pages B 97-108, Stockholm, Sweden, 
1994. 

[Quan, 1994] L. Quan. Self-calibration of an 
affine camera from multiple views. Techni- 
cal Report RT 125 IMAG - 26, LIFIA, Dec 
1994. To appear in IJCV. 

[Shariat and Price, 1990] H. Shariat and 
K. Price. Motion estimation with more 
than two frames. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 
12(5):417-434, 1990. 

[Soatto and Perona, 1995] S. Soatto and P Per- 
ona. Dynamic rigid motion estimation from 
weak perspective. In Proc. International 
Conference on Computer Vision, pages 321- 
328, Cambridge, Ma, 1995. 

[Soatto and Perona, 1996] S. Soatto and 
P. Perona. Motion from fixation. In Proc. 
Conference on Computer Vision and Pattern 
Recognition, pages 817-824, San Francisco, 
CA, 1996. 

[Soatto and Perona, in press 1996] S. Soatto 
and P. Perona. Recursive 3-d visual motion 
estimation using subspace constraints. Int. 
J. of Computer Vision, in press, 1996. 

[Soatto and Perona, Nov 1995] S. Soatto and 
P. Perona. Reducing "structure from motion" 
2: experimental evaluation, submitted to the 
IEEE trans. PAMI, Nov. 1995. short version 
in the proc. of the CVPR 96. 

[Soatto et al., 1993] S. Soatto, P. Perona, 
R. Frezza, and G. Picci. Recursive motion 
and structure estimation with complete error 
characterization. In Proc. Conference on 
Computer Vision and Pattern Recognition, 
pages 428-433, New-York, NY, 1993. 

[Soatto et al, 1994] S. Soatto, R. Frezza, and 
P. Perona. Motion estimation on the essen- 
tial manifold. In Proc. European Conference 
on Computer Vision, pages B-61-72, Stock- 
holm, Sweden, 1994. 

[Spetsakis and Aloimonos, 1991] M. Spetsakis 
and Y. Aloimonos. A multi-frame approach 
to visual motion perception. The Interna- 
tional Journal of Computer Vision, 3(6):245- 
255, 1991. 

[Streilein and Gaschen, 1995] A. Streilein and 
Stephen Gaschen. Close range techniques & 
machine vision. In ISPRS, Vol. XXX, Part 
5, Melbourne, Australia, March 1995. 

[Sturm and Triggs, 1996] P.        Sturm       and 
B. Triggs. A factorization based algo- 
rithm for multi-image projective structure 
and motion. In Proc. European Conference 
on Computer Vision, pages 11-709-720, 
Cambridge, UK, 1996. 

[Szehski and Kang, 1994] R. Szehski and S.B. 
Kang. Recovering 3d shape and motion from 
image streams using nonlinear least squares. 
JVCIR, pages 10-28, 1994. 

[Tomasi and Kanade, 1992] C. Tomasi and 
T. Kanade. Shape and motion from image 
streams under orthography: A factorization 
method. The International Journal of 
Computer Vision, pages 137-154, 1992. 

[Weishall and Tomasi, 1995] D.   Weishall   and 
C. Tomasi. Linear and incremental ac- 
quisition of invariant shape models from 
images sequences. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 
17(5):512-517, 1995. 

[Weng et al., 1987] J.J. Weng, T.S. Huang, and 
N. Ahuja. 3-d motion estimation, under- 
standing and prediction from noisy image 
sequences. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 9(3):370- 
389, 1987. 

[Weng et al., 1993] J. Weng, N. Ahuja, and 
T.S. Huang. Optimal motion and struc- 
ture estimation. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 
15(9):864-884, 1993. 

337 



Visibility Estimation from a Moving 
Vehicle Using tlie RALPH Vision System 

Dean Pomerleau 
Robotics Institute, Carnegie Mellon University, 

5000 Forbes Avenue, Pittsburgh PA 15213 
pomerlea @ cs .emu .edu 

http://www.cs.cmu.edu/~pomerlea 

Abstract* 

Reduced visibility is a common casual factor in 
many traffic accidents. This paper describes a for- 
ward looking vision system which simultaneously 
track the lane and estimate visibility. The system 
estimates visibility by measuring the attenuation of 
contrast between consistent road features at various 
distances ahead of the vehicle. Results of experi- 
ments on simulated images, as well as live vehicle 
tests are presented. 

1. Introduction 

Reduced visibility caused by fog, rain, snow, dark- 
ness and glare is a frequent contributing factor to 
traffic accidents [AUport, 1989]. In fact, some of 
the most serious of all highway incidents, some- 
times involving dozens or even hundreds of vehi- 
cles, occur when reduced visibility conditions 
result in a chain reaction of crashes. Paradoxically, 
some advanced technology, like Adaptive Cruise 
Control (ACC) systems have the potential to 
decrease, rather than increase safety in these situa- 
tion by encouraging drivers to travel at a speed and 
headway distance that may not be safe for the 
ambient environmental conditions. This paper 
describes the first step in the solution to this prob- 
lem, a system that can estimate the ambient visibil- 
ity from a moving vehicle. 

1. This research was sponsored by Office of Naval research 
(ONR) under Contract N00014-95-1-O591. The views and 
conclusions contained in this document are those of the 
authors and should not be interpreted as representing the offi- 
cial policies, either expressed or implied, of ONR or the U.S. 
Government. 

There are several technologies typically employed 
to estimate visibility, including transmissometers, 
which measure the transmittance of the atmosphere 
over a baseline distance, and nephelometers which 
measure the scattering coefficient of an air sample 
caused by suspended particles [National Weather 
Service, 1996]. Unfortunately, these systems suffer 
from several drawback for automotive applications. 
Transmissometers require a transmitter and a 
receiver a substantial distance (typically hundreds 
of meters) apart, which is very difficult to imple- 
ment on a moving vehicle. Stationary transmis- 
someters located near stretches of roadway 
commonly plagued with poor visibility can be 
effective for a local area, but may miss nearby 
reduce visibility conditions because of the very 
localized nature of some reduced visibility phe- 
nomena. 

Nephelometers can be mobile, since they use a col- 
located transmitter and received to measure the 
backscatter of light off particles in the air. However 
they are prone to miss many of the important phe- 
nomena effecting how far a driver can truly see. 
These phenomena include: 

• Opacity of the atmosphere due to particu- 
lates 

• Ambient lighting conditions - sun, moon, 
overhead lights, direction of lighting 

• Headlights from the driver's own vehicle and 
other vehicles 

• Windshield transmissive properties due to 
dirt, water, snow or ice buildup. 

The only way to automatically estimate the cumu- 
lative influence of these factors on the driver's abil- 
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ity to see potential obstacles ahead is to employ a 
sensing system which reasonably match the 
driver's perceptual characteristics. The system 
described in this paper accomplishes this match by 
using a CCD video camera pointing out the wind- 
shield of the vehicle, and processing the same fea- 
tures as the human driver to estimate visibility. 

2. Approach 

Manual visibility estimates are typically made by 
attempting to detect high contrast targets at various 
known distances. The farthest distance at which a 
target can be reliably detected is considered the 
visibility distance. Ideally, an automated visibility 
estimation system should work the same way. 
Unfortunately, it is very difficult to consistently 
find high contrast targets at various known ranges 
from a moving vehicle. Even the features that are 
supposed to be consistent on a roadway, the lane 
markings, vary greatly in their appearance, and are 
in fact frequently missing or obscured. The Rap- 
idly Adapting Lateral Position Handler (RALPH) 
system [Pomerleau et al., 1996] overcomes this dif- 
ficulty when detecting the position and curvature of 
the road ahead in camera images by utilizing what- 
ever features are visible on the roadway, including 
lane markings, road/shoulder boundaries, tracks 
left by other vehicles, and even subtle pavement 
discolorations like the oil stripe down the lane cen- 
ter when necessary. 

The visibility estimation system described in this 
paper exploits RALPH'S ability to find and track 
arbitrary road features. In short, the system esti- 
mates visibility by measuring the attenuation of 
contrast between consistent road features at various 
distances ahead of the vehicle. 

2.1. Road Feature Detection 

To measure contrast between consistent road fea- 
tures, first these features must be detected in 
images of the road ahead. The algorithm the 
RALPH system uses to find road features is based 
on the observation that when viewed from above, a 
road resembles a ribbon of parallel bands formed 
by lane markings and other road features. To 
exploit this characteristics, RALPH first extracts 
from the image a trapezoidal region of the road 
ahead (See Figure 1). RALPH automatically varies 

Sample Window 

Aerial Image 

Figure   1:  Forward  looking  image  (left), 
RALPH'S sampling strategy (right). 

and 

the position of this trapezoid based on the vehicle's 
velocity and the current visibility, but under good 
conditions the top of the trapezoid is typically 
viewing the road between 50m and 120m ahead of 
the vehicle. RALPH resamples the image from this 
trapezoid. The horizontal extend of the trapezoid is 
set so that its width on the ground plane is identical 
at each row of the image. The horizontal distance 
that each row of the trapezoid encompasses is 
approximately 7.0 meters, about twice the width of 
a typical lane. This trapezoid is selectively sampled 
according to the strategy depicted in the schematic 
on the right of Figure 1 to create an aerial view of 
the road ahead. This sampling process results a low 
resolution (35x50 pixel) image in which important 
features such as lane markings, now appear parallel 
in the low resolution image (see schematic aerial 
view in the lower right of Figure 1, and the actual 
aerial view show in the lower left of Figure 1). 
Note that this image resampling is a simple geo- 
metric transformation (based on the assumption 
that the road is locally planar), and requires no 
explicit feature detection. 

RALPH then uses this aerial image to locate the 
road ahead. To accomplish this, RALPH uses a 
one-dimensional representation of the road, created 
by taking a cross section of the aerial image per- 
pendicular to the road, called the road template. 
The aerial image for the road in Figure 1 and road 
template created from a cross sections at the bot- 
tom of the image, are shown in Figure 2 

There are several things to note about the template 
cross section. First, the lane markings show up 
quite distinctly as the two highest peaks. Also 
apparent in the cross section are two sharp dips just 
outside the lane markings, caused by a black filled 
seam in the pavement on the left side of the lane, 
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Figure 2: An aerial road image (left) and cross 
sections taken from the bottom of the image 
(right). 

and the dark banding of a rumble strip on the right 
side. Finally, down the center of the lane the pave- 
ment is shghtly lighter in intensity than the more 
heavily worn pavement closer to the lane bound- 
aries, causing a wide shallow peak in the center of 
the cross section. 

RALPH exploits all of these features to find the 
road ahead by using the entire one-dimensional 
cross section as a template. For each row of the 
aerial image, RALPH shifts the template left or 
right until it best matches the particular row's cross 
section. The amount of shift required to match a 
particular row is proportional to the lateral dis- 
placement of the lane center at that row of the 
image. For more details on the algorithm RALPH 
employs to generate and maintain the template, and 
how RALPH finds the position and curvature of the 
road ahead using the template, see [Pomerleau et 
al., 1996]. 

2.2. Visibility Estimation 

In order to estimate visibility, the system uses the 
shifted road cross sections generated during the 
road detection process. Two such cross sections, 
one from the top of the aerial image, and one from 
the bottom, are shown in Figure 3. Notice that at 
the top of the image, relative far ahead of the vehi- 
cle, the peaks in the cross section are not quite as 
high, and the dips are not quite as low as the at the 
bottom of the image, close ahead of the vehicle. 
Qualitatively, it is this attenuation of contrast 
between features with increasing distance from the 
vehicle that the visibility estimation algorithm 
(described below) is measuring. 

To quantify the feature attenuation, the system esti- 
mates for several rows at the top and bottom of the 
image, the median intensity around the lane center, 

image uoiumn 

Figure 3: Road cross sections from top (dashed 
curve) and bottom (solid curve) of the aerial 

as well as the maximum deviation from this 
median intensity within the row. The system aver- 
ages the maximum intensity deviation for the rows 
at the top, and the rows at the bottom of the image, 
to overcome the effects of intermittent dashed lane 
boundaries and other image artifacts. The differ- 
ence between the average maximum intensity devi- 
ation at the bottom and the top of the aerial image 
is the system's estimate of contrast attenuation. 

In order to estimate visibility, it is not enough to 
simply measure contrast attenuation, since visibil- 
ity should be a fimction of distance. Therefore, the 
contrast attenuation as measured above is scaled 
based on the distance between the top and bottom 
of the RALPH'S view trapezoid (which can vary as 
mentioned previously). The resulting value is a 
measure of contrast attenuation per meter. 

The final step in estimating visibility is normaliza- 
tion. Even under clear conditions like that shown in 
Figure 1, the contrast in the aerial image is signifi- 
cantly attenuated, even over the relative short dis- 
tance between the bottom and the top of the image 
(see Figure 3). This is cause primarily by imaging 
artifact relating to the pixel spacing on the CCD 
array, and the camera's limited depth of field. 
Together these artifacts result in a blurring towards 
the top of the aerial image under all conditions. To 
eliminate the effect of this blurring on the visibility 
estimate, the contrast attenuation per meter value is 
normalized, so that the rate of attenuation on a 
bright clear day is equivalent to a visibility of 1.0, 
and visibility under degraded conditions are 
expressed relative to this baseline. 

Figure 4 depicts an example of a reduced visibility 
condition, night driving. In this situation, the 
driver's visual range is reduced due to the limited 
range of the vehicle's headlights. This can be seen 
in the reduced contrast towards the top of the view 
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trapezoid. Cross sections from the top and bottom 
of the aerial image for this night image are shown 
on the right of Figure 4. Note how the absolute 
intensity of the cross section, as well as the maxi- 
mum contrast in the cross section, are greatly 
reduced towards the top of the image when com- 
pared with results from the daytime scene shown in 
Figure 3. As a result of the greater feature attenua- 
tion, the visibility for this situation, as computed 
with the algorithm described above, has dropped 
to33% of the clear daytime visibility (reported as 
"0.33 vis" in the lower right comer of Figure 4). 

Figure 4: Night scene (left) with cross sections 
(right) from top (dashed) and bottom (solid) of 
the aerial image 

3. Results 

Two sets of experiments were conducted to test the 
visibility estimation algorithm's performance 
under a wide range of conditions. The first set of 
tests involved running the algorithm on a sequence 
of real road images in which various levels of sim- 
ulated fog had been introduced through image 
manipulation. The second set of experiments 
involved live on-road tests of the visibility estima- 
tion algorithm. 

3.1. Simulated Fog Experiments 

As part of a project to test lane tracking systems 
under reduced visibility conditions [Pomerleau et 
al, 1995], Battelle Memorial Institute previously 
generated a set of images depicting various levels 
of fog from an image sequence collected on Carn- 
egie Mellon's test vehicle, using Battelle's Electo- 
Optical Visualization and Simulation Tool 
(EOVAST) software. Given an original image, and 
accompanying estimates of camera characteristics, 
scene geometry and lighting conditions, the 
EOVAST software generates degraded versions of 
the same image as they would appear under user 

specified adverse weather conditions. The 
EOVAST software was originally developed for 
military targeting applications, and has been exten- 
sively validated for accuracy. For more details on 
EOVAST, and the results of the lane tracking tests 
under reduced visibility conditions see [Pomerleau 
etal., 1995]. 

In total, EOVAST was used to generate 120 
reduced visibility images from 30 original images. 
These images depicted an interstate highway under 
foggy conditions with 700, 400, 300 and 100 meter 
visibility. A single one of the 30 original image, 
along with the same image in each of the four 
reduced visibility conditions is shown in Figure 5. 
These 150 images (30 original + 120 fog) were 
used to test the visibility estimation algorithm. 
Figure 6 shows the mean and standard deviation of 
the algorithm's visibility estimates for each of the 
five visibility conditions. 

Original Image       700m Visibility        400m Visibility 

300m Visibility 100m Visibility 

Figure 5: Original Image and four versions of the 
same image with simulated fog. 

The first important characteristic of Figure 6 to 
notice is the substantial reduction in the algo- 
rithm's estimated visibility as the degree of fog 
increases (and hence the simulated visibility 
decreases). The second important attribute of 
Figure 6 is the large standard deviation in the algo- 
rithm's visibility estimates at each fog level (shown 
as the large spread in the error bars). Automatic 
visibility estimation with the algorithm reported 
here is a statistical process, since local variations in 
the underlying image features used to compute vis- 
ibility can mask the contrast attenuation caused by 
ambient environmental factors. Therefore a rela- 
tively large number of images (more than 30) is 
required to determine visibility with certainty. 
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Figure 6: Mean and standard deviation of visibility 
estimates for the original image set, and the 
four reduced visibility conditions. 

4. On-road Experiments 

To overcome the problem of limited image data, 
and to test the algorithm under realistic conditions, 
a set of in-vehicle experiments were conducted 
using Carnegie Mellon's Navlab 8 test vehicle. 
Navlab 8 is an Oldsmobile Silhouette minivan 
equipped with a black and white video camera 
mounted behind the rear view mirror pointed 
through the windshield, and a Pentium-100 proces- 
sor executing both the RALPH lane tracking algo- 
rithm and visibility estimation algorithm in real- 
time (15 frames per second). 

Data on the visibility estimation algorithm's per- 
formance was collected on a 15 mile stretch of 
interstate highway, which offers several pavement 
types (concrete and asphalt) as well as a variety of 
lane delineating techniques, including solid and 
dashed white lane markings, yellow lane markings, 
retroreflectors, and roadside rumble strips. Data 
was collected on this stretch of roadway under six 
different conditions (See Figure 7 for example 
images from each condition): 

• Daytime in good weather in the right lane 
• Daytime good weather in the left lane 
• Daytime in rainy weather 
• Early morning with glare from the rising sun 
• Nighttime with overhead lighting 
• Nighttime without overhead lighting 

The morning glare and the nighttime with overhead 
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Figure 7: RALPH tracking the lane under various 
conditions, and estimating visibility. 

lighting conditions occurred on only limited 
stretches of the 15 mile test road. Therefore the 
results reported below for these two conditions 
were compiled over only two and three miles of 
testing, respectively. 

Figure 8 shows the results of the experiments on 
the six conditions, in decreasing order of estimated 
visibility. First note the visibility estimates in the 
left and right lanes in good daytime conditions 
were nearly identical to each other, and were far 
above the estimates for the other conditions. The 
next best visibility was reported for the nighttime 
with overhead lights condition. As can be seen 
from Figure 7, the overhead lights increase the 
range at which the road features are discernible, 
resulting in a corresponding increase in estimated 
visibility. 

The nighttime condition with only headlight illu- 
mination was the situation the algorithm estimated 
to have the next best visibility, equivalent to 
approximately 30% of the good daytime visibility. 
Daytime rain, with significant water buildup on the 
windshield and substantial suspended spray in the 
air was determined by the algorithm to be the next 
to worse visibility condition tested. As Figure 7 
shows, it is quite a bit more difficult to detect the 
road features, as well as other vehicles in this situa- 
tion. However the lowest estimated visibility of the 
six tested was in the early morning glare condition. 
As is apparent in Figure 7, specular reflections off 
the pavement obscured the road features, and the 
very high ambient brightness saturated the camera, 
making it extremely difficult to detect the road (or 
anything else) anywhere except directly in front of 
the vehicle. 

343 



1.0 

§0.8 
S 
I 0.6 
■o 
a 0.4 

0.2 

■ ■ 

■ 

• 

X 

I 

H
 

Good Day        Night w/ Day 
Right Lane     Overhead Lts.       Rain    Day 

Good Day Night dare 
Left Lane 

Figure 8: Mean and standard deviation of visibility 
estimates for the original image set, and the 
four reduced visibility conditions. 

5. Discussion 

The visibility estimation algorithm presented in 
this paper appears to perform well under a wide 
variety of conditions. The rank ordering of six con- 
ditions tested corresponds reasonably well to ones 
intuitive notion of how difficult it is to see in these 
situations. Note that traditional instruments for 
estimating visibility, which only detect suspended 
particles in the atmosphere, would have report less 
than unlimited visibility in only one of the six con- 
ditions tested, daytime rain. Interestingly, it is the 
very property for which vision systems are often 
criticized, their reduced effectiveness in adverse 
environmental conditions, which gives the algo- 
rithm its power. This is because the conditions in 
which the vision system has trouble seeing features 
are the same ones in which people have difficulty 
seeing. 

One potential drawback of the visibility estimate 
technique presented is that it provides only a rela- 
tive visibility measure, and not an absolute esti- 
mate of how far ahead road features or obstacles 
can be detected. However for a reduced visibility 
warning system, or a system to adjust the set speed 
and following distance of an adaptive cruise con- 
trol, a consistent relative visibility measure may be 
sufficient. If an absolute measure of detection dis- 
tance is required, it should be possible to calibrate 
the relative visibiUty estimates provided by the 
algorithm, although this hypothesis remains to be 
tested. 

Live vehicle tests in fog still need to be conducted 

(fog is rare in Pennsylvania, particularly during the 
winter when these experiments were done). How- 
ever, the results from the simulated fog experi- 
ments, and the live daytime tests in rainy 
conditions suggest that the algorithm should per- 
form well, and report significantly reduced visibil- 
ity under foggy conditions. Another possibility 
would be to combine this visibility estimation tech- 
nique with a multispectral imaging device. By test- 
ing the visibility at different wavelengths, it may be 
possible to select the best wavelength(s) for opera- 
tion under the current conditions. 
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1. Introduction 

Nearly 15,000 people die each year in the US in 
single vehicle roadway departure crashes [10]. 
These accidents are often caused by driver inatten- 
tion, or driver impairment (e.g. fatigued or intoxi- 
cated drivers). A system capable of warning the 
driver when the vehicle starts to depart the road- 
way, or controlling the lateral position of the vehi- 
cle to keep it in its lane, could potentially eliminate 
many of these crashes. Nearly 70% of these 
crashes occur in rural or suburban settings on undi- 
vided two lane roads [10]. Since it is unlikely 
these roads will be upgraded in the foreseeable 
future, a system for preventing these crashes must 
rely on the existing road structure. 

Research into such systems has focused on 
machine vision techniques that detect particular 
features in video images of the road ahead of the 
vehicle, and determine the desired vehicle trajec- 
tory based on the relative positions of these fea- 
tures. Many of these systems [2] [4] [5] [7] rely on 
tracking specific features, such as lane markings, 
from one image to the next. Others depend on 
detecting regions of the image representing the 
road based on features such as color [1] [6] or tex- 
ture [11]. 

All these systems have a common characteristic. 
They all have a strong, a priori model of the road's 
appearance, and employ hand programmed detec- 
tion algorithms to locate these characteristic fea- 
tures. Unfortunately, roads are not always 
cooperative. Road markings vary dramatically 
depending on the type of road (e.g. suburban street 
vs. interstate highway), and the state or country in 
which it is located. For example, many California 
freeways use regularly spaced reflectors embedded 
in the roadway, not painted markings, to delineate 

lane boundaries. Further challenges result from the 
fact that the environmental context can greatly 
impact road appearance. Changes in illumination 
due to shadows, glare or darkness, and obstructions 
by other vehicles, rain, snow, salt or other foreign 
objects often cause dramatic changes in the road's 
appearance. Together these variations often invali- 
date the assumptions underlying vision algorithms, 
resulting in poor road detection performance. 

Alternative approaches that combine machine 
vision and machine learning techniques have dem- 
onstrated an enhanced ability to cope with varia- 
tions in road appearance [4] [8] [9]. ALVINN is a 
typical system of this type. ALVINN employs an 
artificial neural network to learn the characteristic 
features of particular roads under specific condi- 
tions. It utilizes this learned road model to deter- 
mine how the vehicle should be steered in order to 
remain in its lane. While systems of this type have 
been quite successful at driving on a wide variety 
of road types under many different conditions, they 
have several shortcomings. First, the process of 
adapting to a new road requires a relatively 
extended "retraining" period, lasting at least sev- 
eral minutes. While this adaptation process is rela- 
tive quick by machine learning standards, it is 
unquestionably too long in a domain like autono- 
mous driving, where the vehicle may be travelling 
at nearly 30 meters per second. Second, the retrain- 
ing process invariably requires human intervention 
in one form or another. These systems employ a 
supervised learning technique such a backpropaga- 
tion, requiring the driver to physically demonstrate 
the correct steering behavior for the system to 
learn. 

A truly flexible system should 1) flexibly exploit 
whatever features are available to determine vehi- 
cle location, 2) adapt almost instantly when the 
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Sample Window 

Figure 1: Exterior and interior views of the 
Navlab 5 testbed vehicle, 

available features change, and 3) perform this 
adaptation without human supervision. 

RALPH (Rapidly Adapting Lateral Position Han- 
dler) is a vision system developed jointly by Carn- 
egie Mellon University and AssistWare 
Technology, Inc. which demonstrates these charac- 
teristics. RALPH decomposes the problem of 
steering a vehicle into three steps, 1) sampling of 
the image, 2) determining the road curvature, and 
3) determining the lateral offset of the vehicle rela- 
tive to the lane center. The output of the later two 
steps are combined into a steering command, 
which can be sent to the steering motor on our 
Navlab 5 testbed vehicle, shown in Figure 1, for 
autonomous steering control [3] or compared with 
the human driver's steering direction as part of a 
road departure warning system. 

2. RALPH Sensor Configuration 

A typical scene of the road ahead, as imaged by a 
video camera mounted next to the rearview mirror 
on Navlab 5, is depicted on the left of Figure 2. 
RALPH can utilize either black and white or color 
images, using a color-based contrast enhancement 
technique described in [8]. Obviously much of this 
image is irrelevant for the driving task (e.g. the 
parts of the image depicting the sky or the dash- 
board of the vehicle). These parts of the scene are 
eliminated, and only the portions of the scene 
inside the red trapezoid are processed. While the 
lower and upper boundaries of this trapezoid vary 
with vehicle velocity (moving further ahead of the 
vehicle, towards the top of the image, as vehicle 
speed increases), they typically project to approxi- 
mately 20m and 70m ahead of the vehicle, respec- 
tively. 

The second, and perhaps more important aspect of 
the trapezoid's shape is its horizontal extent. It is 
configured so that its width on the ground plane is 
identical at each row of the image. The horizontal 
distance that each row of the trapezoid encom- 

Low Resolution 
Image 

Figure 2: Forward looking image (left), and 
RALPH'S sampling strategy (right). 

passes is approximately 7.0 meters, about twice the 
width of a typical lane. This trapezoid is selectively 
sampled according to the strategy depicted in the 
schematic on the right of Figure 2. This sampling 
process creates a low resolution (30x32 pixel) 
image in which important features such as lane 
markings, which converged towards the top of the 
original image, now appear parallel in the low reso- 
lution image. Note that this image resampling is a 
simple geometric transformation, and requires no 
explicit feature detection. 

2.1. Curvature Calculation 

The "parallelization" of road features described 
above is crucial for the second step of RALPH pro- 
cessing, curvature determination. To determine the 
curvature of the road ahead, RALPH utilizes an 
"hypothesize and test" strategy. RALPH hypothe- 
sizes a possible curvature for the road ahead, sub- 
tracts this curvature from the parallelized low 
resolution image, and tests to see how well the 
hypothesized curvature has "straightened" the 
image. 

The process RALPH utilizes to determine curva- 
ture is depicted in Figure 3. In this example, five 
curvatures are hypothesized for the original image, 
shown at the top. For each of the five hypothesized 
curvatures, the rows of the image are differentially 
shifted in an attempt to "undo" the curve and 
straighten out the image features. For left curve 
hypotheses, rows are shifted towards the right and 
for right curve hypotheses, rows are shifted left. 
For the more extreme hypothesized curvatures (on 
the far left and right), the rows of the original 
image are shifted further than for the less extreme 
curvatures (in the middle). For all the hypothesized 
curvatures, rows near the top of the image, corre- 
sponding to regions on the ground plane further 
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Figure 3: RALPH curvature hypotheses 

ahead of the vehicle, are shifted further horizon- 
tally than rows near the bottom of the image. This 
differential shifting accounts for the fact that for a 
given hypothesized curvature, the road will be dis- 
placed more at the top of the image, far ahead of 
the vehicle, than at the bottom. The exact shift dis- 
tance for each row in the transformed images is 
determined both by the geometry of the camera 
and the particular curvature hypothesis being 
tested. 

As can be seen from Figure 3, the second curvature 
hypothesis from the right, corresponding to a shal- 
low right turn, has resulted in a transformed image 
with the straightest features, and therefore should 
be considered the winning hypothesis. The tech- 
nique used to score the "straightness" of each 
hypothesis is depicted in Figure 4. After differen- 
tially shifting the rows of the image according to a 
particular hypothesis, columns of the resulting 
transformed image are summed vertically to create 
a scanline intensity profile, shown in the two 
curves at the bottom of Figure 4. When the visible 
image features have been straightened correctly, 
there will be sharp discontinuities between adja- 
cent columns in the image, as show in the right 
scanline intensity profile in Figure 4. In contrast, 
when the hypothesized curvature has shifted the 
image features too much or too little, there will be 
smooth transitions between adjacent columns of 
the scanline intensity profile, as depicted in the left 
profile of Figure 4. By summing the maximum 
absolute differences between intensities of adjacent 
columns in the scanline intensity profile, this prop- 

Column Column 
Figure 4: RALPH curvature scoring technique. 

erty can be quantified to determine the curvature 
hypothesis that best straightens the image features. 

An important attribute to note about this technique 
for determining road curvature is that it is entirely 
independent of the particular features present in the 
image. As long as there are visible features running 
parallel to the road, this technique will exploit 
them to determine road curvature. These features 
need not be located at any particular position rela- 
tive to the road, and need not have distinct bound- 
aries - characteristics required by systems that 
utilize strong a priori road models and edge detec- 
tion. 

2.2. Lateral Offset Calculation 

The next step in RALPH'S processing is to deter- 
mine the vehicle's lateral position relative to the 
lane center. This is accomplished using a template 
matching approach on the scanline intensity profile 
generated in the curvature estimation step. The 
scanline intensity profile is a one dimensional rep- 
resentation of the road's appearance as seen from 
the vehicle's current lateral position. By comparing 
this current appearance with the appearance of a 
template created when the vehicle was centered in 
the lane, the vehicle's current lateral offset can be 
estimated. 

Figure 5 illustrates this lateral offset estimation 
procedure in more detail. Here, the current scanline 
intensity profile is depicted on the left, and the tem- 
plate scanline intensity profile, generated when the 
vehicle was centered in the lane, is depicted on the 
right. By iteratively shifting the current scanline 
intensity profile to the left and right, the system can 
determine the shift required to maximize the match 
between the two profiles (as measured by the corre- 
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lation between the two curves). The shift distance 
required to achieve the best match is proportional 
to the vehicle's current lateral offset. 

Note that as with the curvature determination step, 
this process does not require any particular features 
be present in the image. As long as the visible fea- 
tures produce a distinct scanline intensity profile, 
the correlation based matching procedure can 
determine the vehicle's lateral offset. In particular, 
even features without distinct edges, such as pave- 
ment discoloration due to tire wear or oil spots, 
generate identifiable scanline intensity profile vari- 
ations which RALPH can exploit to determine lat- 
eral offset. This is a performance feature which 
edge-based road detection systems do not share. 

2.3. Adaptation to Changing Conditions 

Another important feature of RALPH stems from 
the simplicity of its scanline intensity profile repre- 
sentation of road appearance. The 32 element tem- 
plate scanline intensity profile vector is all that 
needs to be modified to allow RALPH to handle a 
new road type. Modifying this vector is extremely 
easy. In the current RALPH implementation there 
are four ways of adapting the template to changing 
conditions. 

The first method involves the driver centering the 
vehicle in its lane, and pressing a button to indicate 
that RALPH should create a new template. In 
under 100 msec, RALPH performs the processing 
steps described above to create a scanline intensity 
profile for the current road, and then saves it as the 
template. From that point on, RALPH can either 
actively control the steering wheel or warn the 
driver of road departure danger, using the newly 
created template to determine the vehicle's position 
relative to the lane center. 

A second method for acquiring a template appro- 
priate for the current road type is to select one from 
a library of stored templates recorded previously 
on a variety of roads. RALPH can select the best 
template for the current conditions by testing sev- 
eral of these previously recorded templates to 
determine which has the highest correlation with 
the scanline intensity profile created for the current 
image. 

The third method of template modification occurs 
after an appropriate template has been selected. 
During operation, RALPH slowly evolves the cur- 
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Figure 5: RALPH lateral offset determination 
technique. 

rent template by adding a small percentage of the 
current scanline intensity profile to the template. 
This allows the current template to adapt to gradual 
changes in the road's appearance, such as those 
caused by changes in the sun's angle. 

RALPH handles more abrupt scene changes, such 
as changes in lane marker configuration, using the 
final and most interesting template modification 
strategy. In this technique, RALPH uses the 
appearance of the road in the foreground to deter- 
mine the vehicle's current lateral offset and the cur- 
vature of the road ahead, as described above. At the 
same time, RALPH is constantly creating a new 
"rapidly adapting template" based on the appear- 
ance of the road far ahead of the vehicle (typically 
70-100 meters ahead). This rapidly adapting tem- 
plate is created by processing the distant rows of 
the image in the same manner as described previ- 
ously. The roads curvature is assumed to be nearly 
constant between the foreground and background, 
allowing RALPH to determine where the road is 
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ahead and therefore what the new template should 
look like when the vehicle is centered in its lane. 

If the appearance of the road ahead changes dra- 
matically, RALPH uses this technique to quickly 
create a template appropriate for the new road 
appearance. When the vehicle actually reaches the 
new road, RALPH determines that the template it 
was previously using is no longer appropriate, 
since it does not match the scanline intensity pro- 
file of the current image. It therefore swaps in the 
rapidly adapting template, and continues driving. 
Note that this rapid adaptation occurs in the time 
span of approximately 2 seconds, without any 
human intervention. 

3. RALPH Performance 

Extensive laboratory, test track and on-road experi- 
ments with the RALPH system have been con- 
ducted in order to characterize its performance. 
The results of these tests, presented below, indicate 
that RALPH can accurately estimate the vehicle's 
lateral position on the road, as well as the curvature 
of the road ahead, under a wide variety of condi- 
tions. 

3.1. Laboratory Tests 

An important factor determining autonomous driv- 
ing effectiveness is the accuracy of the sensing sys- 
tem employed. The crucial accuracy metric for 
RALPH is how well can it estimate the location of 
the road ahead of the vehicle, since it is the road 
location that will be used to determine the direction 
to steer the vehicle. 

In order to quantify RALPH'S ability to accurately 
determine the position of the road ahead, con- 
trolled laboratory tests were conducted in which 
accurate measurements of the road's actual loca- 
tion could be made. To facilitate these measure- 
ments, high quality video sequences of road scenes 
were collected using a Umatic 3/4 inch VCR. 
These scenes were gathered in the Navlab 5 test 
vehicle, using the same camera mounted in the 
same location (next to the rear view mirror) as in 
the on-vehicle experiments described in following 
sections. These sequences include both day and 
night operation, as well as images of a variety of 
road types, including both rural roads and multi- 
lane divided highways. The test road sequences 
recorded on videotape were all between four and 
nine   miles   in   length.   While   recording   the 

sequences, the driver repeatedly changed the vehi- 
cle's lateral position within the lane in order to 
obtain a wide range of images. 

The video sequences were subsequently replayed 
in the laboratory, and RALPH was used to track the 
road. More specifically, RALPH combined its esti- 
mates of the vehicle's lateral offset and the curva- 
ture of the road ahead into an estimate of the lane 
center location one second ahead (about 25m) of 
the vehicle. 

RALPH'S lane center position estimate was com- 
pared in real time with the estimate of lane center 
provided manually by the experimenter. The exper- 
imenter continuously indicated his estimate of the 
lane center location by keeping a crosshair cen- 
tered over the right lane marking one second ahead 
of the vehicle in the image using a computer 
mouse. The difference between RALPH'S estimate 
of lane position and the experimenter's estimate 
was stored for later analysis. 

The results of these tests are summarized in Table 
Table 1. For each of the conditions tested, the table 
shows the mean and standard deviation of the dif- 
ference between RALPH'S estimate of the lane 
center position, and the experimenter's estimate of 
the lane center position. In general, RALPH'S per- 
formance was quite good in all the conditions 
tested, with a total mean disagreement between 
RALPH and the experimenter of 13.2cm, which is 
just slightly larger than the width of a typical lane 
edge marker. As was expected, lower mean and 
standard deviation was observed in the conditions 
with the most consistent features. One such situa- 
tion is shown in Figure 6. It depicts a daytime high- 
way scene in which the lane markers are very 
clearly visible. Under these conditions, the mean 
disagreement between RALPH and the experi- 
menter was 11.4cm. The variance of the disagree- 
ment was 14.3cm. Note that a substantial portion 
of the disagreement between RALPH and the 
experimenter can be attributed to inconsistency in 
the experimenter's estimate of the lane center posi- 
tion. Accurately indicating the lane position 20m 
ahead using a mouse is a difficult task. In a series 
of repeatability tests, it was determined that the 
experimenter's estimate of lane position over two 
different trials on the same section of videotape 
varied by an average of 7.3cm. 
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Table 1: RALPH lane location estimation 
accuracy 

Condition 
Mean 
Error 
(cm) 

Error 
Std. 
Dev. 
(cm) 

Daytime 
Highway 

11.4 14.3 

Daytime 
Highway 

w/ Shadows 

13.8 18.9 

Nighttime 
Highway 

11.1 13.8 

Daytime 
Rural Road 

13.7 16.2 

Daytime Rural 
Road w/ Glare 

15.8 17.2 

Nighttime 
Rural Road 

13.8 16.8 

Total 13.2 16.2 

Figure 7: RALPH processing a daytime highway 
image with heavy shadows. 
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Figure 6: RALPH processing a daytime 

highway image. 

Figure 8: RALPH processing a nighttime 
highway image. 
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Figure 9: RALPH processing a daytime rural road 
image. 

Figure 10: RALPH processing an early morning 
rural road image with glare off road. 

On the same stretch of highway under conditions 
of heavy shadows (See Figure 7), the mean and 
standard deviation of RALPH'S lane position esti- 
mation error increased somewhat to 13.8cm and 
18.9cm, respectively. This increase in error was 
due primarily to the limited dynamic range of the 
camera, causing the shadowed regions of the image 
to be black and/or the areas in sunlight to be satu- 
rated. 

In contrast, RALPH'S lane location on the same 
stretch of highway ability improved slightly at 
night. As can be seen in Figure 8, the lane markers 
were very distinct in this situation, resulting in a 

mean error of 11.1cm and a standard deviation of 
13.8cm. 

RALPH'S performance on rural roads such as the 
one in Figures 9 was fairly similar to the highway 
results. The mean and standard deviation under 
favorable daytime conditions did increase slightly 
over the corresponding figures for favorable day- 
time highway images, to 13.7cm and 16.2cm, 
respectively. This increase was primarily caused by 
two factors. First, hills on the rural roads changed 
the perspective of the camera relative to the road. 
This resulted in slight additional lane position esti- 
mation errors, particularly at grade transition 
points. Second, there were several cross streets 
intersecting the section of rural road tested, which 
occasionally resulted in momentary inaccuracy 
when the lane markers disappeared. However the 
increase in average lane position estimation error 
due to these effects was small, on the order of two 
centimeters. 

One problem with lane tracking systems which 
rely exclusively on lane markers to locate the road 
ahead is that they sometimes have difficulty when 
glare off the pavement makes the markers hard to 
find. This type of glare typically occurs when the 
pavement is wet, and/or when the sun is low on the 
horizon. To quantify the effect of these conditions 
on RALPH, a video sequence was collected on the 
same rural road during the early morning hours 
heading into the rising sun. An example image 
from this sequence is shown in Figure 10. As was 
expected, the mean and standard deviation of 
RALPH'S error increased under these conditions, 
to 15.8cm and 17.2cm, respectively. However these 
increases were slight, again in the range of 2cm. 
RALPH was still able to accurately locate the road 
ahead under these conditions by adapting its pro- 
cessing to utilize the boundary between the bright 
pavement and the dark shoulder. This ability to 
adapt to changing conditions was determined to be 
particularly important in the on-road tests, 
described in Section 3.3. 

In summary, the laboratory tests indicate that 
RALPH can localize the position of the road ahead 
of the vehicle to within approximately the width of 
a single lane marker under a variety of conditions. 
To further characterize RALPH'S ability to perform 
repeatably and reliably, we also performed exten- 
sive test track and on-road experiments. 
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Figure 1 i: S-curve used for testing RALPH. 
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Figure 12: RALPH'S curvature estimate on two 
traversals through the s-curve. 

3.2. Test Track Experiments 

Additional controlled experiments were conducted 
on a road segment outside of Pittsburgh often used 
for testing. These tests involved repeatedly driving 
the same stretch of roadway at different speeds 
when there were no other vehicles on the test road. 

In the videotape experiments presented above, the 
goal was to quantify RALPH'S ability to find the 
position of the road ahead by combining RALPH'S 
estimate of the vehicle's lateral position and its 
estimate of the curvature of the road ahead. In the 
first set of test track experiments, the goal was to 
tease apart this combination, and measure 
RALPH'S ability estimate the curvature of the road 
ahead. In this experiment, the Navlab 5 test vehicle 
was driven manually through the S-curve shown in 
Figure 11. 

Careful measurement of the first curve indicates 
that it has an average radius of curvature of approx- 
imately 343m. Figure 12 shows RALPH'S estimate 
of the road curvature during two traversals of the 
entire S-curve at 55mph. 

Note the consistency in the curvature estimate 
between the two traversals. RALPH'S mean esti- 
mate for radius of curvature during the first tra- 
versal of the first curve was 373m, and the mean on 
the second traversal was 374m. Not only are the 
two estimates extremely close, but they match 
quite closely to the measured radius of 343m. In 
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Figure 13: Lane deviation in normal driving, and 
when the driver is distracted. 

fact, the 30m discrepancy between the measured 
curve radius and RALPH'S estimate may at least 
partially be attributed to uncertainty in the manual 
curvature measurement. 

The next set of experiments was done to determine 
if anomalous driver behavior can be detected using 
RALPH. This information is valuable not for 
autonomous driving, but rather for determining 
RALPH'S applicability as a tool to prevent road- 
way departure crashes. Again the driver drove 
twice through the S-curve at 55mph. The first time 
through, the driver concentrated on accurate driv- 
ing. The second time through, the driver was 
momentarily distracted by an in-cab distractor task. 
The distractor task required the driver to glance to 
the back of the vehicle for up to two seconds. The 
goal was to determine if the lane deviations result- 
ing from this momentary inattention could be 
detected in the lane tracking output RALPH pro- 
duces. 

A graph of RALPH'S estimate of the vehicle's lat- 
eral position, both during normal driving and while 
the driver was performing the distractor task are 
shown in Figure 13. As can be seen from the graph, 
the relatively large magnitude lane deviations 
resulting from momentary distraction are clearly 
discernible when compared with driver's normal 
lane deviations. This characteristic is extremely 
useful when using RALPH as a roadway departure 
warning system. 

The results of these test track experiments indicate 
that RALPH can repeatably detect both the curva- 
ture of the road ahead, as well as the excessive lane 
deviation by the driver. However these experiments 
neglected two important aspects of the autonomous 
driving task. First, in the test track experiments 
described above, RALPH was passively monitor- 
ing the vehicle's position on the roadway and the 
curvature of the road ahead. RALPH'S ability to 
Combine these measurements into a command for 
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the steering wheel which will keep the vehicle cen- 
tered in its lane was not tested. In addition, these 
experiments were conducted under favorable 
weather and lighting conditions. 

3.3. Open Road Tests 

One of the most significant potential drawbacks of 
driving systems that rely on video cameras for sen- 
sor input is their susceptibility to adverse condi- 
tions. Systems that rely on visible features to 
determine the vehicle's position on the road can 
have trouble when these distinctions become diffi- 
cult to detect, due to adverse weather, poor light- 
ing, or degraded pavement. To quantify this effect, 
a series of on-road tests of the RALPH system was 
conducted. 

The culmination of these experiments was a 2850 
mile test drive from Washington, DC to San Diego, 
CA in which RALPH'S steering commands were 
used to control the Navlab 5 testbed vehicle. 
Except for a few detours, the trip exclusively 
involved highway driving. The trip included many 
of the difficulties typically encountered in normal 
driving - nighttime driving, driving at sunset when 
the sun is low on the horizon, driving through rain 
storms, driving on poorly marked roads, and driv- 
ing through construction areas. 

During the 2850 mile trip, statistics about the 
RALPH'S driving performance were collected. The 
primary metric was the percent of the total trip dis- 
tance that RALPH was controlling the steering 
wheel. To measure this value, the assumption was 
made that if the steering wheel position disagreed 
significantly from RALPH'S commanded position, 
the safety driver had taken control of the wheel'. In 
more detail, when the steering direction suggested 
by RALPH differed from the actual steering wheel 
position such that following RALPH'S steering arc 
at the current speed would result in a difference in 
lateral acceleration of 0.04g or greater, then 
RALPH was judged to have been overridden by the 
safety driver. 

Overall, the results were quite encouraging. Using 
the above metric, RALPH was able to steer the 
vehicle autonomously for 98.1 percent (2796/2850 
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Figure 14: Examples of well marked roadway 
encountered in cross country test. 
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1. The motor on the Navlab 5 steering wheel used by RALPH 
to control the vehicle is purposefully weak, allowing the safety 
driver to easily override the command steering direction when 
necessary by simply overpowering the motor. 

Figure 15: Roads without strong markings (left) 
and with wet pavement (right). 

miles) of the trip. Due to the system's ability to 
adapt to changing conditions, RALPH was able to 
drive in situations which would be difficult for 
other lane keeping systems, particularly those that 
rely on finding distinct lane markers. Some of the 
different situations that RALPH was able to handle 
are illustrated in Figures 14 through 18. 

Some of the roads, like the two shown in Figure 14, 
were very much like one would expect on a major 
highway - nice pavement and good lane markings. 
Even when the lane markers we missing, as on the 
freshly paved road in the left hand image of Figure 
15, RALPH was able to continue driving by 
exploiting the boundary between the pavement and 
the off road area. This same type of road proved 
quite difficult at night however, when the edge 
formed by the pavement boundary was no longer 
visible. In particular, on the third night of the trip a 
ten mile stretch of new, unpainted highway like the 
one shown in the left image of Figure 15 accounted 
for a significant portion of the 1.9 percent of the 
distance that RALPH was not able to drive. Rain 
proved to be less of a problem. Even when the 
specular reflection off wet pavement obscured the 
lane markings, as in the right hand image of Figure 
15, RALPH was able to key off other, more subtle 
variations in the road's appearance to determine 
how it should steer. These additional features were 
typically formed by water pooling in ruts on the 
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Figure 16: Road with severely worn markings 
(left) and unpaved road (right). 
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Figure 17: California freeways with reflectors 
instead of painted lane markings. 

road, and by the tires of vehicle's ahead leaving 
tracks in the wet pavement. 

West of the Rocky Mountains, there were stretches 
of very poor roads, two of which are shown in Fig- 
ure 16. Often the lane markers were nearly invisi- 
ble due to wear (left). Several times there were 
long stretches of construction where the road was 
composed of a very fine, packed gravel, without 
any lane markings (right). During these stretches, 
RALPH was able to exploit the differences in 
appearance of the packed and loose gravel to con- 
tinue driving. 

The freeways in California posed an interesting 
challenge. Instead of having painted markings to 
delineate lanes, they have reflectors that are nearly 
invisible during the day (See left image. Figure 
17). In these situations, RALPH was able to drive 
using the diffuse discoloration from the oil spot 
down the center of the lane. RALPH also per- 
formed well on the 1-15 HOV lane into San Diego, 
which have no visible lane markings, but a strong 
boundary between the cement road surface and the 
asphalt shoulder (right image. Figure 17). 

The situation which gave the system the most diffi- 
culty was in city traffic, when the road markings 
were either missing or obscured by other traffic 
(See Figure 18). But in this and most of the other 
situations RALPH had difficulty with, it was able 
to recognize that it could not correctly steer, and 
inform the safety driver of its confusion. 

Figure 18: Challenging images from city driving. 

4. Conclusion and Future Work 

In conclusion, extensive tests of the RALPH 
vision-based lane position estimation system indi- 
cate that it is able to accurately detect the vehicle's 
position and orientation relative to the roadway in a 
wide variety of situations and can use this informa- 
tion to steer our tesbed vehicle. Current work on 
RALPH focuses on minimizing those few remain- 
ing conditions that do provide difficulty for 
RALPH, using technique such as active camera 
control to focus the system's attention on important 
aspects of the scene. In addition, work is currently 
under way to develop techniques which allow 
RALPH to reliably determine error bounds on its 
estimate of the road's location ahead. 

The simplicity of the RALPH algorithm suggests 
that a custom hardware implementation should be 
feasible. This has the potential to dramatically 
reduce both the size and the cost of subsequent ver- 
sions of RALPH. Our eventual goal is to build a 
system that is small enough to fit behind the rear- 
view mirror, and inexpensive enough to sell as 
option on passenger cars. Initially such a system 
would simply warn the driver if he is drifting off 
the road. In time such a system could potentially 
assume at least partial control, relieving the driver 
of the monotonous task of steering, just as standard 
cruise control has done for maintaining vehicle 
speed. 
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Abstract 

Digital video is rapidly becoming important for 
education, entertainment, and a host of multimedia 
applications. With the size of the video collections 
growing to thousands of hours, technology is 
needed to effectively browse segments in a short 
time without losing the content of the video. We 
propose a method to extract the significant audio 
and video information and create a "skim" video 
which represents a very short synopsis of the origi- 
nal. The goal of this work is to show the utility of 
integrating language and image understanding 
techniques for video skimming by extraction of sig- 
nificant information, such as specific objects, audio 
keywords and relevant video structure. The result- 
ing skim video is much shorter, where compaction 
is as high as 20:1, and yet retains the essential con- 
tent of the original segment. 

1 Introduction 

With increased computing power and electronic storage 
capacity, the potential for large digital video libraries is 
growing rapidly. These libraries, such as the Informedi- 
a""""^ Project at Carnegie Mellon [Wactlar et al., 1996], 
will make thousands of hours of video available to a 
user. For many users, the video of interest is not always a 

*This work was sponsored by the National Science Foundation 
under grant no. IRI- 9411299, the National Space and Aero- 
nautics Administration, and the Advanced Research Projects 
Agency. Michael Smith is sponsored by Bell Laboratories. The 
views and conclusions contained in this document are those of 
the authors and should not be interpreted as necessarily repre- 
senting official policies or endorsements, either expressed or 
implied, of the United States Government or Bell Laboratories. 

full-length film. Unlike video-on-demand, video librar- 
ies should provide informational access in the form of 
brief, content-specific segments as well as full-featured 
videos. 

Even with intelligent content-based search algo- 
rithms being developed [Mauldin, 1989], [TREC, 
1993], multiple video segments will be returned for 
a given query to insure retrieval of pertinent infor- 
mation. The users will often need to view all the 
segments to obtain their final selections. Instead, 
the user will want to "skim" the relevant portions of 
video for the segments related to their query. 

1.1 Browsing Digital Video 

Simplistic browsing techniques, such as fast-for- 
ward playback and skipping video frames at fixed 
intervals, reduce video viewing time. However, fast 
playback perturbs the audio and distorts much of 
the image information [Degen et al., 1992], and 
displaying video sections at fixed intervals merely 
gives a random sample of the overall content. 
Another idea is to present a set of "representative" 
video frames (e.g. keyframes in motion-based 
encoding) simultaneously on a display screen. 
While useful and effective, such static displays 
miss an important aspect of video: video contains 
audio information. It is critical to use and present 
audio information, as well as image information, 
for browsing. Recently, researchers have proposed 
browsing representations based on information 
within the video [Zhang et al., 1993], [Arman et al., 
1994b]. These systems rely on the motion in a 
scene, placement of scene breaks, or image statis- 
tics, such as color and shape, but they do not make 
integrated use of image and language understand- 
ing. 
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Original 
Video ^  11^  ^ 

Figure 1: Skim video for drastic reduction in viewing time 
witliout loss in content. Tlie most significant frames 
from a selected scene are chosen for browsing. 

An ideal browser would display only the video per- 
taining to a segment's content, suppressing irrele- 
vant data. It would show less video than the 
original and could be used to sample many seg- 
ments without viewing each in its entirety. The 
amount of content displayed should be adjustable 
so the user can view as much or as little video as 
needed, from extremely compact to full-length 
video. The audio portion of this video should also 
consist of the significant audio or spoken words, 
instead of simply using the synchronized portion 
corresponding to the selected video frames. 

1.2 Video Skims 

Figure 1 illustrates the concept of extracting the 
most representative video frames and audio infor- 
mation to create the skim. The critical aspect of 
compacting a video is context understanding, 
which is the key to choosing the "significant 
images and words" that should be included in the 
skim video. We characterize the significance of 
video through the integration of image and lan- 
guage understanding. Segment breaks produced by 
image processing can be examined along with 
boundaries of topics identified by the language pro- 
cessing of the transcript. The relative importance of 
each scene can be evaluated by 1) the objects that 
appear in it, 2) the associated words, and 3) the 
structure of the video scene. The integration of lan- 
guage and image understanding is needed to realize 
this level of characterization and is essential to 
skim creation. 

In the sections that follow, we describe the technol- 
ogy involved in video characterization from audio 

and images embedded within the video, and the 
process of integrating this information for skim cre- 
ation. 

2 Video Characterization 

Through techniques in image and language under- 
standing, we can characterize scenes, segments, 
and individual frames in video. Figure 2 illustrates 
characterization of a segment taken from a video 
titled "Destruction of Species", from WQED Pitts- 
burgh. At the moment, language understanding 
entails identifying the most significant words in a 
given scene, and for image understanding, it entails 
segmentation of video into scenes, detection of 
objects of importance (face and text) and identifica- 
tion of the structual motion of a scene. 

2.1 Language Characterization 

Language analysis works on the transcript to iden- 
tify important audio regions known as "keywords". 
We use the well-known technique of TF-IDF (Term 

TF-IDF = f (1) 

Frequency Inverse Document Frequency) to mea- 
sure relative importance of words for the video 
document [Mauldin, 1989]. The TF-IDF of a word 
is its frequency in a given scene, /^, divided by the 
frequency,/c of its appearance in a standard corpus. 
Words that appear often in a particular segment, but 
relatively infrequently in a standard corpus, receive 
the highest TF-IDF weights. A threshold is set to 
extract keywords from the TF-IDF weights, as 
shown in the bottom rows of Figure 2. 
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Figure 2:    Video Characterization Technology. Video Is segmented into scenes, and camera motion Is detected 
along with significant objects (faces and text). Bars show frames with positive results. 

2.2 Scene Segmentation 

Many research groups have developed working 
techniques for detecting scene changes [Zhang et 
al., 1993], [Hampapur et al., 1995], [Arman et al, 
1994a]. We choose to segment video by the use of a 
comparative color histogram difference measure. 
By detecting significant changes in the weighted 

N (2) 

-D(0=   ^\ff,(-)-fit^,M\ 

v = 0 

H (v) : Histogram of Color in lmage(0 

color histogram of each successive frame, video 
sequences are separated into scenes. Peaks in the 
difference, D(t), are detected and an empirically set 
threshold is used to select scene breaks. We have 
found that this technique is simple, and yet robust 
enough to maintain high levels of accuracy for our 
purpose. Using this technique, we have achieved 
91% accuracy in scene segmentation on a test set of 
roughly 495,000 images (5 hours). Examples of 
segmentation results are shown in the top row of 
Figure 2. 

2.3 Camera Motion Analysis 

One important aspect of video characterization is 
interpretation   of   camera   motion.   The   global 

distribution of motion vectors distinguishes 
between object motion and actual camera motion. 
Object motion typically exhibits flow fields in 
specific regions of an image. Camera motion is 
characterized by flow throughout the entire image. 

Motion vectors for each 16x16 block are available 
with little computation in the MPEG-1 video 
standard [MPEG-1, 1991]. An affine mode! is used 

ui x.,y.\ = ax. + by.- 
y I   i) I        I 

dx. + ey.+f 

(3) 

(4) 

to approximate the flow patterns consistent with all 
types of camera motion. Affine parameters 
a,b,c,d,e, and / are calculated by minimizing the 
least squares error of the motion vectors. We also 
compute average flow v and u . 

Using the affine flow parameters and average flow, 
we classify the flow pattern. To determine if a 
pattern is a zoom, we first check if there is the 
convergence or divergence point {xQ,yQ), where 
u[x.,y.) = 0 and vfA:.,)-.] = 0. To solve for {xQ,yQ), the 
following relation must be true: I" ''Uo 
If the above relation is true, ana {xQ^yg) is located 
inside the image, then it must represent the focus of 
expansion. If v and u , are large, then this is the 
focus of the flow and camera is zooming. If (xQ,yQ) 
is outside the image, and v or M are large, then the 
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Figure 3:    Camera motion analysis from MPEG motion vectors: A) Zoom distribution, B) Upward 

pan witli subtle object motion, C) Static, D) Significant object motion detected as pan. 

camera is panning in the direction of the dominant 
vector. 

If the above determinant is approximately 0, then 
ixo,yQ) does not exist and camera is panning or 
static. If V or M are large, the motion is panning in 
the direction of the dominant vector. Otherwise, 
there is no significant motion and the flow is static. 
We eliminate fragmented motion by averaging the 
results in a 20 frame window over time. Table 1 
shows the statistics for detection on various sets of 
images. Regions detected are either pans or zooms. 
Examples of the camera motion analysis results are 
shown in Figure 3. 

Table 1: Camera Motion Detection Results 

Data(Images) Regions Detected Regions Missed False Regions 

Species I - II (20724) 23 5 1 

PlanetEanhl-II (25680) 36 1 3 

CNHAR News (30520) 14 1 2 

Figure 4: Detection of human-faces. 

2.4 Object Detection 

Identifying significant objects that appear in the 
video frames is one of the key components for 
video characterization. For the time being, we have 
chosen to deal with two of the more interesting 
objects in video: human faces and text (caption 
characters). To reduce computation we detect text 
and faces every 15th frame. 

2.4.1 Face Detection 
The "talking head" image is common in interviews 
and news clips, and illustrates a clear example of 
video production focussing on an individual of 
interest. A human interacting within an environ- 
ment is also a common theme in video. The 
human-face detection system used for our experi- 
ments was developed by Rowley, Baluja and 
Kanade [Rowley et al., 1996]. It detects mostly 
frontal faces of any size and any background. Its 
current performance level is to detect over 86% of 
more than 507 faces contained in 130 images, 
while producing approximately 63 false detections. 
While improvement is needed, the system can 
detect faces of varying sizes and is especially reli- 
able with frontal faces such as talking-head 
images. Figure 4 shows examples of its output, 
illustrating the range of face sizes that can be 
detected. 

2.4.2 Text Detection 
Text in the video provides significant information 
as to the content of a scene. For example, statistical 
numbers and titles are not usually spoken but are 
included in the captions for viewer inspection. A 
typical text region can be characterized as a hori- 
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Figure 5: Stages of text detection: A) Input, B) Filter- 
ing, C) Clustering, and D) Region Extraction. 

zontal rectangular structure of clustered sharp 
edges, because characters usually form regions of 
high contrast against the background. By detecting 
these properties we extract regions from video 
frames that contain textual information. Figure 5 
illustrates the process of detecting text; primarily, 
regions of horizontal titles and captions. 

We first apply a 3x3 horizontal differential filter to 
the entire image with appropriate binary threshold- 
ing for extraction of vertical edge features. Smooth- 
ing filters are then used to eliminate extraneous 
fragments, and to connect character sections that 
may have been detached. Individual regions are 
identified by cluster detection and their bounding 
rectangles are computed. Clusters with bounding 
regions that satisfy the following constraints are 
selected: 

ClustcrSizc > 70pixcls 

Ciu.ster    FillFactor>0,45 

]      HorizonUil    Vertical A.specl Ratio > ()J5 

A cluster's bounding region must have a large hori- 
zontal-to-vertical aspect ratio as well as satisfying 
various limits in height and width. The fill factor of 

^^(^HI^HHH 

\r7Qljrtafiy iNSC\    ■ 

^■.* 

\NB(J News-,       ■; , ■%        .=-;,, LL- 

r       ■] 

^^,,.^^^^^*„.^„ 

the region should be high to insure dense clusters. 
The cluster size should also be relatively large to 
avoid small fragments. An intensity histogram of 
each region is used to test for high contrast. This is 
because certain textures and shapes appear similar 
to text but exhibit low contrast when examined in a 
bounded region. Finally, consistent detection of the 
same region over a certain period of time is also 
tested since text regions are placed at the exact 
position for many video frames. Figure 6 shows 
detection examples of words and subsets of a word. 
Table 2 presents statistics for detection on various 
sets of images. 

Table 2: Text Region Detection Results 

Data (Images) Regions Detected Regions Missed False Detections 

CNHAVNew.sdOSfi) 26 1 3 

CNHAR News (1526) 48 0 5 

Species 1 (264) 12 2 0 

Planet F.arlh 1-11(1712) 0 0 2 

Figure 6: Text detection results with various images. 

3 Technology Integration and Skim Creation 

We have characterized video by scene breaks, cam- 
era motion, object appearance and keywords. Skim 
creation involves selecting the appropriate key- 
words and choosing a corresponding set of images. 
Candidates for the image portion of a skim are cho- 
sen by two types of rules: 1) Primitive Rules, inde- 
pendent rules that provide candidates for the 
selection of image regions for a given keyword, and 
2) Meta-Rules, higher order rules that select a sin- 
gle candidate from the primitive rules according to 
global properties of the video. The subsections 
below describe the steps involved in the selection, 
prioritizing and ordering of the keywords and video 
frames. 

3.1 Audio Skim 

The first level of analysis for the skim is the cre- 
ation of the reduced audio track, which is based on 
the keywords. Those words whose TF-IDF values 
are higher than a fixed threshold are selected as 
keywords. By varying this threshold, we control the 
number of keywords, and thus, the length of the 
skim. The length of the audio track is determined 
by a user specified compaction level. 
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creatures arc doomed dinOSaurs became extinct mankind is Changing we arc replacing 

Figure 8:  Skim creation incorporating word relevance, significant objects (humans and text), and camera motion: A) 
For the word "doomed", the images following the camera motion are selected, B) The keyphrase tor dmo- 
saur" is long so portions of the next scene are used for more content, C) No significant structure for the word 
"changing", D) For the word "replacing" The latter portion of the scene contains both text and humans. 

similar scenes that are less than 5 seconds 
apart, are used for skimming. 

3. Short Sequences(SSN) 
Short successive shots often introduce a more 
important topic. By measuring the duration of 
each scene, we can detect these regions and 
identify "short shot" sequences. The video 
frames that follow these sequences and the 
exact sequence are used for skimming. 

4. Object Motion(OBM) 
Object motion is import simply because video 
producers usually include this type of footage 
to show something in action. We are currently 
exploring ways to detect object motion in video. 

5. Bounded Camera Motion(BCM/ZCM) 
The video frames that preceed or follow a pan 
or zoom motion are usually the focus of the 
segment. We can isolate the video regions that 
are static and bounded by segments with 
motion, and therefore likely to be the focal 
point in a scene containing motion. 

6. Human Faces and Captions(TXT/FAC) 
A scene will often contain recognizable 
humans, as well as captioned text to describe 
the scene. If a scene contains both faces and 
text, the portion containing text is used for 
skimming. A lower level of priority is given to 
the scenes with video frames containing only 

human-faces or text. For these scenes priority 
is given to text. 

7. Significant Audio(AUD) 
If the audio is music, then the scene may not be 
used for skimming. Soft music is often used as 
a transitional tool, but seldom accompanies 
images of high importance. High audio levels 
(e.g. loud music, explosions) may imply an 
important scene is about to occur. The skim 
region will start after high audio levels or 
music. 

8. Default Rule(DEF) 
Default video frames align to audio keyphrases. 

3.3 Image Adjustments 

With prioritized video frames from each scene, we 
now have a suitable representation for combining 
the image and audio skims for the final skim. A set 
of higher order Meta-Rules are used to complete 
skim creation. 

For visual clarity and comprehension, we allocate 
at least 30 video frames to a keyphrase. The 30 
frame minimum for each scene is based on empiri- 
cal studies of visual comprehension in short video 
sequences. When a keyphrase is longer than 60 
video frames, we include frames from skim candi- 
dates of adjacent scenes within the 5 second search 
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Figure 7:   Characterization data with skim candidates and keyphrases for "Destruction of Species". The skim candi- 
date symbols correspond to the following primitive rules: BCM, Bounded Camera Motion; ZCM, Zoom 
Camera Motion; TXT, Text Captions; and DEF Default Vertical lines represent scene breaks. 

Keywords that appear in close proximity or repeat 
throughout the transcript may create skims with 
redundant audio. Therefore, we discard keywords 
which repeat within a minimum number of frames 
(150 frames) and Hmit the repetition of each word. 

Our experiments have shown that using individual 
keywords creates an audio skim which is frag- 
mented and incomprehensible for some speakers. 
To increase comprehension, we use longer audio 
sequences, "keyphrases", in the audio skim. A key- 
phrase is obtained by starting with a keyword, and 
extending its boundaries to areas of silence or 
neighboring keywords. Each key phrase is isolated 
from the original audio track to form the audio 
skim. The average keyphrase lasts 2 seconds. 

3.2 Video Skim Candidates 

In order to create the image skim, we might think of 
selecting those video frames that correspond in 
time to the audio skim segments. As we often 
observe in television programs, however, the con- 
tents of the audio and video are not necessarily syn- 
chronized. Therefore, for each keyword or 
keyphrase we must analyze the characterization 
results of the surrounding video frames and select a 
set of frames which may not align with the audio in 
time, but which are most appropriate for skimming. 
To study the image selection process of skimming, 
we manually created skims for 5 hours of video 
with the help of producers and technicians in Carn- 
egie Mellon's Drama Department. The study 
revealed  that while  perfect  skimming  requires 

semantic understanding of the entire video, certain 
parts of the image selection process can be auto- 
mated with current image understanding. By study- 
ing these examples and video production standards 
[Smallman, 1970], we can identify an initial set of 
heuristic rules. 

The first heuristics are the primitive rules, which 
are tested with the video frames in the scene con- 
taining the keyword/keyphrase, and the scenes that 
follow within at least a 5 second window. A 
description of each primitive rule is given in order 
of priority below. The four rows above "Skim Can- 
didates", in Figure 7, indicate the candidate image 
sections selected by various primitive rules. 

1. Introduction Scenes(INS) 
The scenes prior to the introduction of a proper 
name usually describe a person's accomplish- 
ment and often precede scenes with large 
views of the person's face. If a keyphrase con- 
tains a proper name, and a large human face is 
detected within the surrounding scenes, then 
we set the face scene as the last frame of the 
skim candidate and use the previous frames for 
the beginning. 

2. Similar Scenes(SIS) 
The histogram technology in scene segmenta- 
tion gives us a simple routine for detecting sim- 
ilarity between scenes. Scenes between 
successive shots of a human face usually imply 
illustration of the subject. For example, a video 
producer will often interleave shots of research 
between shots of a scientist. Images between 
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US restless geology erased the record - our long-dead Moon - by still more violent events - event ot unimaginable force - Uene Sluiemaker a scientist I 

Keyphrases with the U.S. Geological Survey helped prove ■ another part of the evidence we can sec - collisions witli Karlh are extremely rare - they reconstruct 
these great collisions - O.K., Earl, let's shoot it - and we can see the ejecta curtain simply move out - these clumps eventually will mipact the surface 
• now this is the edge of the target - if we step back we find - this is what makes up the crater rays - and the Mi.xin's dark plains - as astronauts roam 
Ihe Moon's surface - most Moon rocks were between three and four billion - the samples gathered so carefully were not part - the early chapters of 
:he Moon's history began to emerge I 

Figure 9:  Skim video frames and keyphrases for "Planet Earth -1" (10:1 compaction). 

window. The final skim borders are adjusted to 
avoid image regions that overlap or continue into 
adjacent scenes by less than 30 frames. 

To avoid visual redundancy, we reduce the pres- 
ence of human faces and default image regions in 
the skim. If the highest ranking skim candidate for 
a keyphrase is the default, we extend the search 
range to a 10 second window and look for other 
candidates. The human face rule is limited if the 
segment contains several interviews. Interview 
scenes can be extremely long, so we look for other 
candidates in a 15 second search window. 

Figure 8 illustrates the adjustment and final selec- 
tion of video skims. It shows how and why the 
image segments, which do not necessarily corre- 
spond in time to the audio segments, are selected. 

3.4 Example Results 

Figure 9 shows the video frames and audio from 
the "Planet Earth" video. The image portion of the 
skim has captured information from 18 of the 64 
total scenes in the video. With the exception of the 

scene at frame 585, which lasts over 1,300 frames 
in the original video, most scenes are small and 
provide maximum visual information. An error in 
scene segmentation, near frame 702, causes this 
scene to split and, therefore, it is used twice for sep- 
arate keyphrases. Introduction scenes, bounded 
camera motion and human faces dominate the 
image skims for this segment. 

Figure 10 shows another example from the "Planet 
Earth" video with 16 of the 37 scenes represented. 
This segment contains many long outdoor scenes 
that provide little information. However, most 
primitive rules do not match these scenes so the 
search window is extended and they appear less 
frequently in the image skim. The scene at frame 
828 is an interview scene which contains 3 key- 
phrases and lasts several frames. Even with an 
extended search window, the scenes that follow do 
not match any of the primitive rules so the image 
skim is rather long for this scene. 

Figure 11 shows two types of skims for the "Mass 
Extinction" segment. Skim A was produced with 
our method  of integrated  image  and  language 

0D5 1044 "" 1030 1TT6^ 1152 
lo explore the.se neighboring planets - the first planet we would visit was Venus - it resisted exploration - our voyages revealed it - through the dense 

Keyphrases atmosphere winds up to two hundred miles an hour whip the clouds - no place can replicate the climate - but Death Valley, on a hot afternoon - how 
aid it become the hot desolate planet - Jim Head, a planetary scienUst at Brown University, is an authority - it's hot enough on the surface of Venus - 
Ihc heat that comes into the surface can actually be - they radioed back images - and Jim Head and his colleagues had a global - we can also see some 
very distinctive highland - this one. Maxwell Monies - we have the same problem the resolution - Jim Head and his colleagues use a very special - 
[he extensional forces are pulling  ^___  

Figure 10: Skim video frames and keyphrases for "Planet Earth -11" (10:1 compaction). 
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[)ur research shows us that mass extinctions are relatively common - this mass extinction is not triggered by some extraterresiriul phciuiniena - Man's desiruclion 
:)f the diversity of life - man lias the technology to change the world - human waste are threatening the web of life - A tapestry of lights track the human presence 
■ Fires in Africa fuel the struggle against famine - At NASA's GtxJdard Space Flight Center in Miuyland Compton Tucker draws - past eight years Tucker has 
observed subtle shifts - Discovery returns to space on a mission to photograph the harth - you sec these incredibly l-.u-ge fires - Compton Tucker has been monitor 
ing these tires - The destruction was triggered • homesteaders are transforming the wilderness - Norman Myers has voiced his concern - invited Myers to review 
lis most recent findings - we could have 2 or 3 smaller tires burning - we're pushing species down the Iul>es on our own planet - What splendid creatures lived here 

t>ur research shows us that mass extinctions are relatively - and diversity lost - and it tact may be regarded as a human meteorite - stripped away tor resources - 
against famine in the Third World - At NASA's Goddard Space Flight - Houston Discovery - Amazon they are stunned by what they see - images contimi that in 
.ine - roads - visible from space - as - is particularly disturbing - lires there at about 2:45 in the afternoon - more probes sent off to have a look at this little - in the 
long run. 11 matters enormously - a few becomes many becomes too many 

Figure 11:  Image and text output for the "Mass Extinction" segment: A) Skim creation using image 
and language understanding, B) Skim creation using fixed intervals for image and audio. 

understanding. Skim B was created by selecting 
video and audio portions at fixed intervals. This 
segment contains 71 scenes, of which, skim A has 
captured 23 scenes, and skim B has captured 17 
scenes. Studies involving different skim creation 
methods are discussed in the next section. 

Skim A has only 1632 frames, while the first scene 
of the original segment is an interview that lasts 
1734 frames. The scenes that follow this interview 
contain camera motion, so we select them for the 
keyphrases towards the end of the scene. Charts 
and figures interleaved between successive human 
subjects are selected for the latter scenes. 

3.5 User Evaluation 

The results of several skims are summarized in 
Table 3. The manually created skims in the initial 
stages of the experiment help test the potential 
visual clarity and comprehension of skims. The 
compaction ratio for a typical segment is 10:1; and 
it was shown that skims with compaction as high 
as high as 20:1 still retain most of the content. Our 
results show the information representation poten- 

tial of skims, but we must test our work with 
human subjects to study its effectiveness. 

We are conducting a user-study to test the content 
summarization and effectiveness of the skim as a 
browsing tool in a video library. Subjects must navi- 

Table 3: Skim Compaction Data 

Title Original(sec) Skim (sec) Comments 

K'nex, CNN Headline News 61.0 7.13 MC-AS 

Species Destruction T 68.6.'i 6.40 MC-AS 

Species Destruction II 123.23 12.43 MS 

International Space University lfi6.20 28.13 MS 

Rain Forest Destruction 107.13 5.36 MS 

Mass Fxtinction ."159.4 55.5 AC-AS 

Human Archeology 391.2 40.8 AC-AS 

Planet Fartli I 464.5 44.1 AC-AS 

Planet Farth II 393.0 40.0 AC-AS 

Comments 
MC - Manually Assisted Charactcri/ation 
AC - Automaied Characterization 
MS - Manual Skim Creation 
AS - Automated Skim Creadon 
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gate a video library to answer a series of questions. 
The effectiveness of each skim is based on the time 
to complete this task and the number of correct 
items retrieved. Although our evaluation results are 
tentative, the skim does appear to be an effective 
tool for brovi'sing, as evident by the difference of 
time that subjects spend in skim mode versus regu- 
lar playback mode. 

We use various types of skims to test the utility of 
image and language understanding in skim cre- 
ation. The following creation schemes are pres- 
ently being tested: 

A - Image and Language Characterization 
B - Fixed Intervals (Default) 
C - Language Characterization Only 
D - Image Characterization Only 

Figure 11 shows examples of skim type A and B. 
The visual information in skim A is less redundant 
and provides a greater variety of scenes. The audio 
for skim B is incoherent and considerably smaller. 
Although our skim does appear to provide more 
information, additional testing is needed. 

4 Conclusions 

The emergence of high volume video libraries has 
shown a clear need for content-specific video- 
browsing technology. We have described an algo- 
rithm to create skim videos that consist of content 
rich audio and video information. Compaction of 
video as high as 20:1 has been achieved without 
apparent loss in content. 

While the generation of content-based skims pre- 
sented in this paper is very limited due to the fact 
that the true understanding of video frames is 
extremely difficult, it illustrates the potential power 
of integrated language, and image information for 
characterization in video retrieval and browsing 
applications. 
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Abstract 
A major issue in building a prototype 

Automated Highway System is whether the 
system needs dedicated lanes, occupied only by 
computer-controlled cars that communicate and 
cooperate with each other; or whether the 
automated vehicles can be provided with enough 
sensing and intelligence that they can safely 
operate in regular highways, intermixed with 
vehicles driven by people. A major portion of 
the CMU research effort in Automated 
Highways is focused on determining the 
technical feasibility of operation in mixed traffic. 
This paper outlines the issues of mixed traffic vs. 
dedicated lanes, then describes CMU efforts in 
building complete demonstration systems, 
vehicle sensors, obstacle sensors, car tracking 
software, reasoning for tactical driving, and 
deployment scenarios. 

Mixed Traffic vs. Dedicated Lanes 
The National Automated Highway Systems 

Consortium (NAHSC) is embarked on a seven- 
year project to build a prototype automated 
highway. The goal is to develop the 
specifications for a system that will allow 
completely hands-off and feet-off automated 
driving of specially-equipped cars, trucks, and 
busses, operating on specially-equipped lanes of 
high-speed limited-access roads. The AHS user 
will drive the vehicle normally on surface streets 
to the AHS entrance ramp, indicate a destination, 
then turn control over to the automated system, 
which will handle the driving until the right exit 
is reached. 

We are in the middle of many important 
and interesting design studies: how should we 
handle obstacles? (detect them with onboard 
sensors? detect them with sensors built into the 
roadway? build strong fences and exclude all 
foreign objects?) Should automated vehicles 
platoon together, in tightly-linked groups of 10 

vehicles, or should they only run as free agents, 
separated by 10-30 meters? What is the role of 
the driver: passive passenger, who will probably 
become complacent and distracted and therefore 
unavailable to help the automated driving 
system; or careful observer, able to spot subtle 
signs of potential obstacles? 

Of all the design questions, perhaps the 
most interesting from a robotics viewpoint is 
whether the system should be based on dedicated 
lanes, or allow mixed traffic. The "dedicated 
lanes" approach means that vehicles will be 
allowed to operate under automated control only 
when in special lanes, physically separated from 
all manually-driven vehicles. The "mixed 
traffic" approach means that vehicles will be so 
capable of sensing and reacting to other vehicles, 
that they will be able to operate on freeways 
mixed in with human drivers. 

The consortium as a whole is undertaking 
several studies to analyze the mixed and 
dedicated options separately, and then to 
compare the possibilities. At a high level, the 
discussion comes down to economics vs. 
technical feasibility. It is probably technically 
easier to build a dedicated lane facility. All the 
automated vehicles can be in communication 
with each other, running at the same speed, 
cooperating when a vehicle needs to change 
lanes, and sharing information about detected 
obstacles. But having a dedicated lane facility 
requires building one; and there is a chicken- 
and-egg problem of who will build the lanes 
before cars are available to use them; and who 
will buy the cars unless there are lanes on which 
they can run? 

The mixed traffic option, on the other hand, 
would allow for relatively easy use of the entire 
network of freeways in the US. Some minor 
infrastructure may need to be added, depending 
on the technology used for lateral guidance, but 
at much lower financial cost than building new 
lanes, and probably at lower political cost than 
converting existing lanes for the sole use of 
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automated vehicles. Individuals who purchase a 
specially-equipped car could begin using it 
immediately, without having to wait for enough 
automated vehicles to be sold to justify having 
their own lane. The downside, of course, is the 
technical difficulty of driving in mixed traffic. 
The automated vehicles would have to be 
safeguarded against all the bizarre variations of 
human driving styles now encountered on the 
road. 

Our group at CMU is most interested in 
investigating the feasibility of mixed traffic' 
While the problems are difficult, the payoff for 
success would be large; and the kinds of 
questions that need to be addressed are important 
and interesting from a research standpoint. Even 
if the ultimate completely automated system 
does not become practical in the near term, the 
technology developed could play an important 
role in improving safety of partially-automated 
vehicles in the immediate future. 

We are investigating mixed traffic 
feasibility on several fronts: building partially- 
capable demonstration systems; building vehicle 
sensors; developing car detection and tracking 
strategies; developing capabilities for tactical 
driving; and planning future development steps. 

CMU Demo Vehicles 

Some of the functionality of driving in 
mixed traffic has already been built for other 
purposes, and will be shown in August of 1997 
at the NAHSC San Diego Demonstration. The 
97 Demo is a congressionally-mandated "Proof 
of Technical Feasibility" for automated driving. 
Various members of the NAHSC will show a 
variety of capabilities, including both mixed 
traffic and dedicated lane driving as well as 
maintenance and inspection functions. 

The part of the Demo to which CMU is 
contributing will emphasize independent sensing 
and decision making on board each vehicle, 
including the capability of driving in mixed 
traffic and also the ability to take advantage of 
communication with other intelligent vehicles in 
the vicinity. The demo scenario shows a mix of 
vehicles being driven manually, vehicles under 
full automated control, and partially-automated 
vehicles. The cars and buses will demonstrate 
lane departure warning and adaptive cruise 
control, as well as automated lane following. 

headway and speed maintenance, lane changing 
to pass slower vehicles, and obstacle detection 
and avoidance. When two automated vehicles 
are driving close to each other, they will 
communicate to share information about relative 
positions of themselves and of detected 
obstacles, so the trailing vehicle can safely drive 
with a smaller gap behind the lead vehicle. 
When automated vehicles are driving mixed with 
non-automated vehicles, they will automatically 
increase the free space buffer around themselves 
in order to have time to see and react to events. 

The technology underlying the CMU 
portion of the demo starts with RALPH, the 
vision-based road following system built by 
Pomerleau.^ RALPH resamples a video image to 
create an overhead projection of the road. In the 
overhead image, RALPH tests several 
hypothesized road curvatures to find the arc that 
most closely follows the dominant contrast 
features. This way, RALPH takes advantage of 
not only the painted stripes, but also the 
pavement joints, edge of the shoulder, and other 
features that run parallel to the road. Once 
RALPH finds the dominant curvature, it can 
look for lane boundaries and calculate the 
vehicle's lateral position in the lane. RALPH 
has accumulated over 25,000 km of road tests, 
including the "No Hands Across America" trip 
during the summer of 1995 during which it 
steered autonomously over 98% of the way from 
Washington DC to San Diego CA. 

The demo vehicles are also equipped with 
forward-looking radar. The radars on the cars 
are provided by Delco Electronics. They are 
mechanically scanned in azimuth, to cover a 12 
degree field of view. The radars provide range, 
bearing, and range rate to targets in front of the 
vehicles, and have integrated target tracking 
software to filter out spurious or inconsistent 
readings. Besides providing data to control 
separation from other vehicles, the radars are 
also capable of detecting obstacles that have 
enough radar reflectivity. The obstacles used for 
the 1997 Demo will be plastic construction 
barrels. In our initial tests, the radars can detect 
the barrels at up to 80 m, perhaps due to the 
reflective tape wrapped around the barrels. 

The demo vehicles will also be equipped 
with side and rear looking sensors. The most 
difficult sensing requirement is forward, because 
stationary obstacles on the roadway need to be 
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detected at long ranges. Sideways sensing is 
relatively straightforward, and even rear-looking 
sensors for the demo scenarios need only have a 
range of a few tens of meters. Several sensors 
are currently being investigated for side and rear 
applications, including a variety of low-cost 
radars and sonars. The vehicles are also 
equipped with GPS positioning for navigation 
and for reporting the positions of detected 
obstacles. 

The vehicles being buih for the 97 Demo 
bring the Navlab family of vehicles up to 10. 
Navlab 1 is a Chevrolet van, now retired; 
Navlabs 2 and 4 are HMMWVs, mostly used for 
off-road driving research; Navlab 3 is a 
privately-owned Honda Accord, now returned to 
service as a non-automated car. The remaining 
vehicles are now or soon will be in on-road use. 
Navlab 6 and 7 are a matched pair of Pontiac 
Bonnevilles, designed for the 1997 Demo; 
Navlab 5 and 8 are minivans used for general 
experiments and driver warning studies; and 
Navlabs 9 and 10 are a pair of city busses, also 
being built for the 1997 Demo. 

Figure 1: The Navlab Family, 6-10, front to 
back 

Vehicle Sensing 
The Demo system described above 

provides partial solutions for driving in mixed 
traffic, but are not yet adequate for full tests in 
unconstrained situations. The first requirement 
is for better sensing. 

Dirk Langer's thesis work, completed in 
January of 1997, is one part of our effort.' 
Langer built a phased array radar that can cover 
a 12 degree field of view, with a range of 200 m, 
and does not use mechanical scanning. The 
specifications of the radar are: 

•Range resolution: 0.6m 

•Bearing resolution: 3 deg 
•Range accuracy: 10 cm 
•Bearing accuracy: 0.1 deg 
•Repetition rate: 10 Hz 
His software detects up to 20 radar targets 

in each measurement, and tracks those targets 
from measurement to measurement. The radar 
processing has been integrated with RALPH. 
The lane location and direction from RALPH are 
combined with the detected targets, to determine 
which targets are in the vehicle's lane and which 
are in adjacent lanes, even on curved roads. 
Similarly, the radar has also been integrated with 
GPS positioning and accurate maps to register 
targets with the next 100 meters of the road. This 
allows the radar to reject clutter such as guard 
rails or signs, while still properly detecting and 
reacting to stopped vehicles in the vehicle's own 
lane. The integrated systems have been 
demonstrated for a basic form of intelligent 
adaptive cruise control, and for detecting slow 
vehicles and triggering RALPH to change lanes. 

Current work on the radar project includes 
redesigning the antennas for wider field of view 
and lower sidelobe intensity. The field of view 
in the current sensor was designed to 
accommodate normal freeway driving. A 16 
degree field of view would be wide enough to 
handle standard exit ramps, and would allow 
detection of vehicles in adjacent lanes at closer 
ranges than the current system. 

Obstacle Sensing 
Beyond sensing vehicles, it is also 

important to sense obstacles on the roadways. 
This may be the most difficult technical 
challenge for automated driving; it is certainly 
the most difficult sensing challenge. 

Obstacle detection is especially important 
for mixed traffic scenarios. Many of the 
obstacles found today on roadways come from 
other vehicles: the dominant source of debris is 
tire carcasses and retread, roughly followed by 
dead animals, spilled loads and dropped vehicle 
parts. (The dead animals were presumably alive 
when they wandered onto the roadway. In some 
parts of the rural US, the dominant cause of 
accidents is hitting deer). In dedicated lane 
configurations, some of these obstacles could be 
prevented by exercising more control over the 
vehicles on the roadway. It might be possible to 
inspect vehicles as they enter, and refuse entry to 
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vehicles that have unsecured loads; and it would 
be possible to continuously monitor the health of 
the vehicles, so if a tire began to overheat the 
vehicle could be slowed or stopped before the 
tire blew out. It may also be possible (although 
perhaps expensive) to build fences along the 
dedicated lanes to prevent animals from 
wandering onto the roadway. Also, when one 
vehicle detects an obstacle, it would be expected 
to notify other nearby vehicles of the location 
and classification of the obstacle. Finally, if 
there are relatively few miles of dedicated lanes, 
it might be possible to install sensors in the 
infrastructure, and communicate obstacle 
locations and suggested avoidance strategies to 
the automated vehicles. These strategies raise 
issues of feasibility, liability, and cost, but they 
are technically plausible and are all under study 
in the NAHSC. 

For driving in mixed traffic, most of the 
obstacle exclusion or infrastructure sensing 
strategies are not feasible. The first automated 
vehicles on the road would encounter today's 
driving environment, with the same issues of 
dropped loads, shed retreads, stray deer, and so 
forth. Since other vehicles would not be 
automated, no particular help could be expected 
in finding and avoiding obstacles; although 
locations with particularly dangerous roadway 
configurations may need to be equipped with 
infrastructure-based sensors that can provide 
warning of obstacles out of sight around a 
comer. 

Within the NAHSC, the first part of the 
work on obstacle detection is cataloguing the 
kinds of obstacles that are present. Some of this 
data is available from maintenance departments 
of state departments of transportation, and some 
is in the accident literature, but none of it has 
been carefiilly quantified. The second part if the 
problem is determining which of those objects 
are dangerous. Our colleagues at General 
Motors are conducting informal experiments to 
understand the effect on a vehicle caused by 
running over various objects. The vehicle may 
ride smoothly over the object, or the object may 
cause ride discomfort, or steering deflection, or 
structural damage. The next part will be to write 
careful specifications for obstacle detection 
sensing. Some parts of the specification are 
straightforward to calculate. The maximum 
range for obstacle detection is set by the 
stopping distance of typical  vehicles.  In the 

worst case the obstacle, roadway configuration, 
and adjacent traffic will conspire to prevent a 
lane change to avoid the obstacle, so the only 
possible maneuver will be to come to a complete 
halt. Other parts of the spec are much more 
troublesome. It would be convenient to define a 
radar cross-section for a typical obstacle, but 
while some objects have large radar cross- 
sections (dropped mufflers, steel-belted tire 
carcasses), others do not (wooden debris or deer. 
One of our colleagues hit a toilet that fell off a 
truck: porcelain has a very low radar cross- 
section). 

At CMU we have started investigating 
possible obstacle detection methods even before 
the specifications are ready. One of the most 
promising approaches is using the reflectance 
channel of a ladar, being investigated by John 
Hancock as part of his thesis work. At the 
ranges of interest for obstacle detection (50 to 
100 m), it is hard to generate a 3-D 
reconstruction of the roadway with enough 
accuracy to detect small objects (10 to 20 cm 
high). It may be more fruitful to look for 
changes in the reflectance of a patch of the road: 
even if the range is nearly the same as the ranges 
to the road plane, an object sticking up from the 
road will have a much lower viewing angle than 
the roadway, and will therefore reflect much 
more of the laser energy. Preliminary results are 
shown in Figure 2. A small object, in this case a 
chunk of wood approximately 10 cm high by 50 
cm long, does not show up in the range data. In 
the reflectance channel, however, it is easily 
noticeable, and simple processing to extract 
different-looking patches from the road area 
easily finds the object. 

Figure 2: Obstacle Detection with Ladar 
Reflectance Top: range image. Middle: 
reflectance image, with obstacle near top of road. 
Bottom: Detected obstacle 
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We are investigating philosophically 
similar approaches for stereo processing. We 
have a real-time stereo machine, capable of 
generating 256 * 240 pixel depth maps at 30 Hz, 
using up to 6 input cameras. This means that 
standard stereo processing to find obstacles is 
possible in real time. But roadways are typically 
bland, without enough texture to generate high- 
confidence depth maps. Todd Williamson and 
John Hancock, as part of their thesis projects, are 
studying ways of detecting obstacles against 
bland surfaces. Part of the approach is based on 
confidence measures, such as those pioneered by 
Matthies.'' If an image patch from the reference 
image matches all other images at some disparity 
with low error, then either the image patch is 
very bland or the patch is planar. If the image 
patch matches with high error, then the patch is 
probably both textured and non-planar. By 
making the windows to be matched large enough 
to cover both a road marking and a suspected 
obstacle location, it should be possible to detect 
objects by looking at the matching error. Again, 
as in the case of ladar reflectance processing, the 
presence of an obstacle would be sensed even 
without first doing a complete 3D reconstruction. 

An additional observation is that stereo 
processing is normally set up to look for surfaces 
that are parallel to the image plane. If the 
cameras are all parallel and co-planar, then a 
rectangular window from one image matched 
against a rectangular window in another image at 
a given disparity implicitly defines a surface 
parallel to the images. We use an alternative 
approach, based on the projective stereo 
geometry popularized by Faugeras.' The CMU 
Stereo Machine has a lookup table for each pixel 
for each disparity. Using projective stereo 
calibration, the lookup tables can be set up to 
interpolate between any two given planes. By 
calibrating the stereo system with a ground plane 
and a higher plane, parallel to the ground plane 
(in practice, the surface of a campus loading 
dock), the disparity of each pixel in a source 
window is automatically indexed to match 
horizontal surfaces in the target images. This 
effectively skews the matching window so that a 
horizontal surface in the source image will be 
correctly registered with a horizontal surface in 
the target images. This should provide better 
results, since most of the world in front of the 
vehicle is nearly horizontal. 

Car Tracking 
Besides detecting obstacles, the ladar and 

stereo vision sensors can also be used for fine- 
resolution car tracking. Radar is good for 
detecting vehicles and reporting their velocity, 
but does not have fine enough resolution to 
generate an vehicle image. With ladar, the 
pixels are small enough, and closely enough 
spaced, that it is possible both to localize a 
vehicle within a lane, and to measure the 
orientation of the vehicle. Since cars steer non- 
holonomically, the vehicle orientation is an 
important cue of imminent lane changes. 

The sensor we are using for these 
experiments is a scanning laser rangefinder buih 
jointly by CMU and K2T Inc. The laser points 
up through the middle of the scan mechanism. 
The mirror is spun horizontally, and nodded 
vertically, providing 360 degree horizontal 
coverage and up to 35 degrees vertical field of 
view. Various laser rangefinders have been 
installed in the device, including a Riegel sensor 
with a 120 m range and 5 cm resolution. A new 
range sensor, built by Zoeller und Froehlich 
GmbH, will be installed shortly, and will have a 
pixel rate of up to 500 kHz. 

The images in Figure 3 show range data 
from a car parked inside a building, processed by 
Liang Zhao. The data is first thresholded by 
elevation, to give just the data between 50 and 
150 cm from the ground. The region where the 
car is expected is then processed to find straight 
lines, and finally the lines are fit to a model of 
the expected car shape. We are currently testing 
how much data needs to be collected on a car in 
order to do accurate localization. We will then 
build Kalman filters to integrate data taken from 
several scans as the vehicles move. 

Tactical Driving 
Most of the discussion to this point has 

been about sensing: how to see the road, see 
vehicles, detect obstacles, and track the course of 
other cars. Once the environment of the vehicle 
has been sensed, there still remain difficult and 
interesting problems in planning and acting. 

Much of the automated vehicle literature 
has focused on the low-level problems of smooth 
control. Another set of research has worked on 
problems of route planning and guidance. There 
remains a hole in between these levels, which we 
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Figure 3: Car Tracking in ladar Images. Top: 
raw data. Bottom: data between height thresholds, 
and overlayed detected vehicle position 

call tactical reasoning. The tactical level, in this 
case, refers to decisions about when to change 
lanes, when to speed up or slow down, how to 
trade off caution with making adequate progress, 
and so forth. 

Rahul Sukthankar's recently completed 
thesis is a first step towards building safe and 
competent tactical driving.'' For obvious 
reasons, his research was conducted in the 
framework of a simulator. His system, called 
SAPIENT, evolved through two main stages. 

MonoSAPIENT is a single-threaded rule- 
based driving system. Sukthankar began his 
thesis work by reading the literature on driver's 
education and on defensive driving, looking for 
rules of safe driving. Unfortunately, this 
literature is not usually written in a form suitable 
for direct computer implementation.  It is full of 

advice such as "when passing, select a lane 
relative to your speed, maneuvers, and traffic 
flow" which is undoubtedly sound, but 
impossible to directly operationalize. Instead, 
MonoSAPIENT's rules needed to be created 
from first principles (keeping a desired headway 
based on reaction times and braking 
performance), from rules of the road, and from 
experience. The resulting collection is turned 
into a decision tree, which can be interpreted in 
real time, to show good driving behavior for 
several vehicles in real time on a graphical 
simulator. 

The difficulty with MonoSAPIENT is that 
the rules all interact with one another. This 
makes adding a new rule difficult. When a rule 
such as "pass the vehicle in front of you if it is 
going more than 5 mph under your desired 
speed" is added to the system, it competes with 
rules that say "prefer to stay in your own lane" 
and "do not pass if near the desired exit". In 
MonoSAPIENT execution, the relative priorities 
of the rules is determined by their place in the 
decision tree. Manually constructing those trees 
and ensuring correct ordering is difficult. 
Moreover, building specific rules for each 
specific situation is infeasible (e.g. "if the vehicle 
in front is going X slower than your desired 
speed and you are Y away from the exit and the 
traffic density is Z then it is OK to pass"). 

Partial solutions to these problems are 
developed in PolySAPIENT. Instead of a single 
set of rules, PolySAPIENT provides a separate 
"reasoning object" for each physical or logical 
object in the environment. Thus, each nearby 
car will have a reasoning object that keeps track 
of that vehicle, and the separation and relative 
velocity between that vehicle and the automated 
vehicle. Separate reasoning objects track lanes, 
exits, and internal parameters such as desired 
speed. Each reasoning object, at each time step, 
generates votes for desired actions and against 
bad actions, where the actions include both 
speed and turn commands. A knowledge-free 
arbiter selects the best action by a weighted 
combination of all votes. 

PolySAPIENT is much more flexible than 
MonoSAPIENT. A PolySAPIENT vehicle can 
make    intelligent    trade-offs. While     in 
MonoSAPIENT the rules are binary ("do not 
pass if ..."), in MonoSAPIENT the individual 
reasoning objects can cast graded votes for and 
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against actions. The result is that if several 
reasoning objects vote strongly for an action, and 
one or two reasoning objects vote weakly against 
it, the vehicle can choose that action. Thus 
PolySAPIENT vehicles are willing to squeeze 
into slightly tighter spaces than MonoSAPIENT 
vehicles, with a small sacrifice in desired 
headway, in order to move to a faster travel lane 
or to make a required exit. PolySAPIENT is also 
easier to program. While in MonoSAPIENT, all 
rules were implemented in the same style, in 
PolySAPIENT, the internal reasoning process of 
each reasoning object can be implemented with 
whatever internal structure is most appropriate. 
Also, new PolySAPIENT reasoning objects can 
be added at will, since each reasoning object is 
independent. 

The disadvantage of PolySAPIENT is that 
tuning all the relative weights of votes from all 
the reasoning objects and setting internal 
parameters is a difficult process. Fortunately, 
the tuning process can be automated. 
Sukthankar expressed the weights and 
parameters to be tuned as a string of bits, then 
used PBIL, an evolutionary algorithm, to tune 
the weights and parameters.' Simulated vehicles 
are generated with their weights and parameters 
set probabilistically according to the current bit 
string. The vehicles are run through a series of 
simulated scenarios, and are rated according to 
criteria such as avoiding near-misses, arriving at 
their desired exits, and making adequate 
progress. The bit string is updated to more 
closely resemble the highly-ranked vehicles, and 
the process repeats. After approximately 20 
generations, the vehicles learn to drive smoothly 
and safely. 

Next Steps 
The individual components of our research 

are all coming together. The vehicles and the 
core road following will be demonstrated in 
August 97; radars are becoming available and 
functional; obstacle detection is progressing; and 
the rules for tactical driving are running well in 
simulation. 

The next big step is integration. We have 
already put two radars on at least one vehicle, so 
we can look forwards and backwards. We can 
probably treat obstacle detection separately, and 
not integrate that for the time being. We will put 
the new ladar scanner on the test vehicle, with 

the car detection and tracking software. We will 
enhance our car tracking Kalman filter to input 
data from both the ladar and the radar. Then we 
will test the complete system by driving 
manually and comparing our observations of 
vehicle positions around us with the sensed and 
filtered estimates. 

Once we are happy with sensing, we can 
begin testing the SAPIENT driving strategies. 
At least at first, we will have SAPIENT generate 
recommendations, and watch to see if we drive 
the way it would drive. Later, we can have 
SAPIENT generate recommendations via a head- 
up display or speech synthesizer, so we can 
determine if the recommendations are safe and 
reasonable. If SAPlENT's advice does not 
follow our driving patterns, then a variant of the 
learning methods used in PolySAPIENT could 
be used to tune the weights to better match our 
own preferred driving styles. Once we are happy 
with the way the system works, we might enable 
SAPIENT control in stages, first giving it 
longitudinal control, then lateral control within a 
lane, then lane-changing abilities. Throughout, 
we have designed our systems to have easily- 
accessible kill switches and low-powered 
actuators so the safety driver can always override 
the automated control. 
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Abstract 
In this preliminary work, we've applied an edge 
detection wavelet transform to the problem of 
detecting motion/texture surface planes in a 3D 
image sequence space for the purpose of making 
fast optic flow measurements. The wavelet we've 
used is Mallet's spline based edge detection wave- 
let method [10], extended to 3D. Storage space 
considerations for the 3D wavelets and response to 
fine details are balanced to allow the method to 
detect optic flow in highly textured regions, with- 
out needing unreasonable resources. 

1. Introduction 

In the analysis of image sequences or processing of 
real-time visual input, image motion is one of the 
primary analytical measurements. In particular, 
observer motion (egomotion) and object tracking 
both require accurate optic flow calculations. Real- 
time applications of optic flow also require optic 
flow calculations at camera frame rates. 

There have been many approaches for calculating 
optic flow [2]. These range from pattern matching 
between successive images [1], to filtering images 
sequences by sets of tuned filters [6] [7]. There has 
also been some work on computing optic flow 
using wavelet filter banks [3]. The accuracy of 
these methods has improved greatly, but speed is 
still an issue. Wavelet edge detection methods hold 
promise for providing very fast optic flow calcula- 
tions while handling multiple speed optic flows 
gracefully. 

2. Wavelets and Edge Detection 

The wavelet transform is a generalization of the 
Fourier transform, in that it transforms data into a 
coordinate system where many types of analysis 

* This research was supported in part by ARPA grant 
DAAH04-94-G-0278, AFOSR grant F49620-93-1-0484 and 
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are simplified. While the Fourier transform uses 
sine and cosine functions as it's basis, the wavelet 
transform can use any basis functions. Most appli- 
cations of the wavelet transform require that these 
basis functions be carefully selected to guarantee 
orthogonahty, as this makes the wavelet transform 
invertible. For a detailed treatment of wavelet 
orthogonahty constraints, see Daubechies [5]. 
However, for applications where the wavelet trans- 
form is not an intermediary data representation, 
orthogonality is not a necessity. Edge detection, 
and optical flow from 3D edges are such applica- 
tions. 

Wavelets, which use short basis functions, are also 
differentiated from Fourier methods in that they are 
much better suited to isolating high frequency data 
such as edges. Because the Fourier basis functions 
are infinite in length, the Fourier response to a 
time/space data discontinuity is spread across all 
frequencies. In the wavelet domain, response to a 
discontinuity is spread across the multiple response 
resolutions, but the time/space localities are pre- 
served. In addition to Mallat [10], other researchers 
have also developed wavelet edge detectors [3] [8]. 
The wavelet transform for edge detection is attrac- 
tive, in that it offers a multi-resolution paradigm 
for doing multiple pass edge detection as suggested 
by Canny [4]. 

The spline based wavelet we used consist of 2 
functions, a low-pass smoothing function with 4 
coefficients [1/8,3/8,3/8,1/8], and a high pass filter 
with 2 coefficients [+2,-2]. 

Because these functions have very few coefficients, 
the edge detection wavelet transform can be com- 
puter very quickly. It's also obvious when looking 
at these functions, that the wavelet coefficients at 
any single resolution are very similar to a Sobel 
operator, having a differential operator in one 
dimension, and a smoothing function in the other 
dimension. 

Application of the standard wavelet transform is a 
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simple matter of convolving a decimated signal 
with the low pass and high pass wavelet functions, 
and then recursively processing the smoothed por- 
tion. 

2.1 3D Wavelet transforms 

Wavelet transforms in multiple dimensions can 
performed as separable ID operations. To do a 2D 
wavelet, we do ID wavelet transforms on each 
rows of the image, and then similarly transform the 
image column-wise. When processing successive 
coarser resolutions, we limit the range of the rows 
and columns to the smoothed data only, leaving the 
high pass results from the previous iterations 
intact. The 2D wavelet transform thus has 3 quad- 
rants of high pass wavelet responses, x, y, and xy at 
each resolution. 

For the analogous 3D wavelet transform, we have 7 
octants at each resolution, containing the x, y, t, xy, 
yt, xt, and xyt surface responses. For determining 
optic flow, we use only the x, y, and t (time) surface 
responses. As in the 2D figure above, the multi- 
directional outputs are not smoothed in N-1 dimen- 
sions and thus generally have poor response. 

Figure 1: A 2D wavelet transform of a spatio- 
temporal slice from an image sequence. Note 
the separate horizontal/time edge responses in 
the upper right and lower left quadrants at each 
resolution. 

3.   Optic Flov*' from edge responses 

An optic flow estimate is computed at each pixel 
on image from an image sequence. Optic flow is 
the 2D measure of how local image elements move 
between successive frames. This can be from 
objects moving through the image volume, or due 
to changes in image viewpoint. 

At each single resolution, we estimate the optic 

flow from the x, y, and t edge responses. The x,y,t 
triple form a normal vector to the 3D edge gradi- 
ent. For areas without optic flow, the edge gradient 
normal vector will be perpendicular to the time (T) 
axis, i.e. the t response will be zero. For high speed 
optic flow, the edge gradient will have a high ratio 
of t/x and t/y. Given a x,y,t response triple, we cal- 
culate the X and y portions of the optic flow vectors 
based on the following geometry: 

(-t/x,0,l)  T=l 

X 

(-t,0,x) 

Figure 2: An image surface plane with resulting 
(x,y,t) response vector. 

The optic flow is the projection of the 3D image 
surface plane onto the x,y plane at T=l. To find the 
X component of the optic flow, we first find the 
intersection of the X,T plane with the surface 
plane. (x,0,t) is the simple projection of (x,y,t) onto 
the x,z plane. 

(x,0,t) X (0,y,0) = (-ty,0,xy) = y(-t,0,x) 

Solving for T=l: 

(-t/x,0,x/x) = (-t/x,0,l) 

So our X component of optic flow is simply -t/x 
and the Y component is similarly -t/y. 

3.1 Multi-dimensional synthesis 

The 3D wavelet transform creates a 3D sample 
space of responses to the wavelet filter. Three 
octants (at each resolution) of this space contain 
the X, y, and t surface orientation responses. These 
octants have been high pass filtered in one direc- 
tion, and smoothed by the low pass filter in the 
other two dimensions. 

The 3D wavelet transform is performed on a 
sequence of images containing a focal image for 
which we calculate optic flow. The time depth for 
this series is determined by the desired depth of 
wavelet transform recursion. For a depth K trans- 
form, we need at least a 2'^K stack of images. 
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The X, y, and t single orientation octants (again, for 
each resolution) contain planes of edge responses 
for the focal image. These are combined as 
described above to determine x,y optic flow esti- 
mates at each resolution. 

To combine these multi-resolution responses into a 
single optic flow map, we select from the optic 
flow estimates by selecting for a maximum confi- 
dence measure. As these estimates are derived 
from edge responses, we use the edge strengths as 
confidence measures. However, not all multi-reso- 
lution responses are equivalent. The effect of mul- 
tiple smoothing operations on the edge data scales 
the resulting edge strengths [10]. These can be cor- 
rected, as they are constant effects at each resolu- 
tion based on the scaling function of the wavelet. 
Mallat provides a set of these correction factors for 
his wavelets, and these can also be determined 
experimentally for any desired wavelet by compar- 
ing the multi-resolution edge responses to a simple 
step edge image. 

4.   Experimental Results 

We collected real data of a patterned cup being 
moved across the image scene. The 3D stack of 
images were then transformed into the wavelet 
space, providing 3D edges at each image location. 
The 3D edge vectors were then transformed into 
2D optic flow vectors. 

Figure 3: Frames from an image sequence of 
the chess cup and resulting optic flow vectors 
calculated from the 3D edge surfaces. 

The optic flow calculations here while fast, are still 
quite coarse. As is clear from the outputs on the 
curved portion of the cup handle, these simple 
optic flow estimations from 3D gradient are subject 
to the aperture problem. That is to say, when look- 
ing at a local neighborhood (a small aperture view) 
we can detect motion across and edge, but cannot 
accurately determine motion speed components 
along that edge. 

5.   Conclusions 

It's clear that multi-resolution gradient information 
be used to can detect regions of optic flow. Using 
multiple resolutions allows us to measure and inte- 
grate multiple speeds of optic flow. The method, as 
presented, does still have the limitation of only 
detecting optic flow components normal to image 
edges. Further work is necessary to find methods 
determine an accurate optic flow map from these 
edge gradient components. 
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Abstract 

The Research and Development for Image Un- 
derstanding Systems (RADIUS) Phase II pro- 
gram is described from the prime contractor's 
perspective. Intended to improve Imagery An- 
alyst (lA) productivity through image under- 
standing (lU) technology development and in- 
tegration, the RADIUS program is centered 
upon the RADIUS Testbed System (RTS). The 
RTS enables the analyst to perform 3-D model- 
supported exploitation with lU assistance, and 
to construct 3-D site models using lU tools. De- 
veloped over the past three years, the RTS has 
led to a number of insights and new develop- 
ments in lU technology and software, such as a 
framework for enabling the lA to easily interact 
with lU systems. These accomplishments are 
discussed, as well as the capabilities of the sys- 
tem and issues encountered in creating a large 
software system that integrates research results 
from a number of diverse institutions. The RA- 
DIUS program has made substantial progress 
toward its goals, but much more remains to be 
completed; potential directions for future work 
are described. 

1     Introduction 

The RADIUS program has the fundamental 
goals of increasing lA productivity and improv- 
ing the quality and timeliness of lA products. 
Model-supported exploitation (MSE) was the 
underlying concept developed,   demonstrated, 

and evaluated in RADIUS. It includes the gen- 
eration and use of two- and three-dimensional 
features extracted from overhead imagery, fea- 
ture and site attributes, source data informa- 
tion, and associated processes, to generate dis- 
plays and perform automated analysis func- 
tions. 

The objectives for the second phase included 
showing the utility of MSE, the use of lU Tech- 
nology in support of MSE, evaluating the RTS, 
stimulating lU technology community interest 
in imagery intelligence (IMINT) problems, pro- 
viding RADIUS results to the IMINT commu- 
nity and system developers, and encouraging 
the use of MSE and lU technology in opera- 
tional systems [Gerson and Wood, 1994]. 

To achieve these goals, the focus of RADIUS 
Phase II was the development of RTS. The RTS 
is a prototype 3-D exploitation workstation that 
incorporates MSE as the central information or- 
ganizing principle. The RTS improves the time- 
liness and quality of image exploitation by mak- 
ing many forms of softcopy information read- 
ily available to the analyst at the workstation, 
including images, 3-D models of site features, 
text and attributes linked to site features, and 
numerous querying tools. In addition, lU al- 
gorithms are available to assist the lA in con- 
structing site models, and performing change 
detection and detection and counting analysis 
tasks. 
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The RTS was designed to illustrate the utility of 
lU and MSE technologies in a near-operational 
environment. Phase I of RADIUS validated 
the use of MSE and lU technology by exposing 
lAs to concept demonstrations. Phase II imple- 
mented the concepts in a hands-on workstation 
system that enables analysts to experiment with 
the technology. The RTS has been used to test 
many aspects of image exploitation, including: 

• end-to-end image exploitation 
• batch processing of automated exploitation 

algorithms 
• manual, semi-automatic and automatic site 

model feature extraction 
• characterization of lU algorithms 
• constructing complete softcopy site folders 
• automated image-to-site-model registration 

• multi-image registration 
• Human-computer interface (HCI) design for 

lU-assisted exploitation 
• database storage and representation of 3-D 

features 
• data export/import of site model features 
• image and data interfaces to image and tex- 

tual intelligence databases 
• integrating Lisp and C/C-f—|- development 

This spectrum of capabilities ranges from sup- 
port for development of specific lU capabilities 
to lA-centric exploitation functions. It reflects 
the balance between testbed and lU technology 
development; the RTS was designed to facilitate 
lU integration while supporting an HCI that 
would enable lAs to evaluate the utility of MSE 
and lU within MSE. 

Using the suite of site model construction 
and exploitation algorithms integrated into the 
RTS, formal lA evaluations of the system have 
begun. Preliminary indications are that lAs are 
willing to manually construct or edit 3-D mod- 
els of site features, and that semi- and fully- 
automated site model construction (SMC) al- 
gorithms have promise, but need more research 
to achieve their potential. 

RADIUS explored how lAs and lU algorithms 
interact to perform exploitation. As im- 
plemented   in   the   RTS,   the  resulting   First- 

Sponsor/DARPA 

Requirements 

Oversight 

Funding 

JF 

ExptDitatkm 
JU Oevetc^r 

LMCM&DS 

lU Severer 

Requirements 

Issues/Bugs 

RADIUS 
T««tb^ 

RTS Host 

Evaluations 

Data Source 

lU Evaluations 

HCI Feedback 

Figure 1: The organizations responsible for the 
RTS. 

Look Paradigm [Bailey et al., 1994] (also re- 
ferred to as the Quick-Look Paradigm) enables 
an lA to specify automated tasks to be ap- 
plied to site features in subsequent imagery 
[Bremner et al., 1996]. In this paradigm, al- 
gorithms are required to derive any image- 
specific parameter values, so that all process- 
ing happens in batch without further lA assis- 
tance [Mundy and Vrobel, 1994]. Exploitation 
results, presented in a unified, graphical user 
interface, (GUI) insulate the lA from the pro- 
cessing of lU algorithms. 

The selection of image data of intelligence 
events depicted over a range of operational con- 
ditions is critical to the evaluation and feedback 
of in algorithms. While suflRcient image data 
sets were provided to support experiments in 
site model construction, the resources available 
to support formal testing of change detection al- 
gorithms were insufficient to fully characterize 
algorithm performance. 
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The complete RADIUS Project has involved 
a variety of government, industrial and aca- 
demic institutions. The RADIUS Phase II con- 
tract was primed by Lockheed Martin Manage- 
ment and Data Systems (Valley Forge, PA), 
with subcontracts to SRI International (Menlo 
Park, CA), General Electric Corporate Re- 
search and Development (Schenectady, NY), 
Lockheed Martin Astronautics (Denver, CO) 
and BDM Federal (MacLean, VA). The gen- 
eral roles of the team members and the pri- 
mary government agencies are outlined in Fig- 
ure 1. Other institutions not shown in the fig- 
ure provided consultation, guidance and algo- 
rithms. Algorithm integration was performed 
by each contract team member, except BDM. 

The RTS is installed at the former National 
Exploitation Lab (NEL), which is now part 
of the National Imagery and Mapping Agency 
(NIMA). The program sponsor, the Defense 
Advanced Research Projects Agency (DARPA) 
and NIMA have worked closely with the LMC 
contract team to develop and evolve the RA- 
DIUS concepts during Phase II as the RTS soft- 
ware development and integration was under- 
way. 

The next section of this paper summarizes the 
current capabilities of the RTS, including inte- 
grated lU algorithms. Section 3 describes the 
evolution of the system, tracking how the tech- 
nology progressed during the program. This is 
followed by discussions of the major accomplish- 
ments and issues of the program, and future di- 
rections for RADIUS technology. 

2    RTS Capabilities 

The RTS contains many MSE capabilities that 
demonstrate how manual and automated ex- 
ploitation can be integrated with and enhanced 
by site models. For manual exploitation, the 
RTS includes image manipulation tools, mensu- 
ration tools, cables, baseline text, links between 
images and site features, exploitation tools, site 
model updating tools, report generation sup- 
port, and data input/output in several forms. 
Semi-automated and automated lU support is 
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Figure 2: The major RTS components. 

provided for detection and counting, change de- 
tection, and site model construction (feature ex- 
traction). 

This functionality is built upon the RADIUS 
Common Development Environment (RCDE), 
as illustrated in Figure 2. The figure shows the 
major components of the system and links to 
external systems. All manual MSE capabilities 
are implemented through the RCDE and the 
MSE DB Interface [Hoogs and KnifRn, 1994], 
and accessed through the lA User Inter- 
face. Exploitation lU algorithms are integrated 
through the lU Profile System, or the Ex- 
ploitation lU Framework [Bremner et al., 1996, 
Kniffin and Hoogs, 1996]. Site model construc- 
tion algorithms operate through the RCDE, 
producing RCDE representations of extracted 
3-D features. 

The rest of this section briefly describes the 
functionality of the system, including basic ca- 
pabilities, 3-D modeling, exploitation lU algo- 
rithms, and site model construction lU algo- 
rithms. 

ELT Tools The RTS supports a variety of 
Electronic Light Table (ELT) functions. It dis- 
plays 3-D site models overlaid on imagery, and 
enables the user to manipulate both for manual 
imagery exploitation. This includes standard 
image manipulation functions such as contrast 
stretch as well as roaming, zooming, and orient- 
ing the image/model display. 
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Figure 3: The Site Browser Panel. 

The RTS registers 3-D site models to imagery 
to manipulate the imagery with reference to the 
model, such as zooming to fit the pixels associ- 
ated with a 3-D region (e.g., a building) or au- 
tomatically centering and zooming images to be 
viewed around a 3-D point. The RTS can rotate 
a displayed image so that vertical edges in the 
scene are vertical on the screen. 

The 3-D wire-frame objects overlaid on the im- 
agery are organized into separate graphic lay- 
ers for convenience. Their appearance, such as 
color, texture, and line width, can be modified 
by the analyst. 2-D and 3-D annotations can be 
added to the scene to aid object identification 
and produce annotated images as output prod- 
ucts. All ELT tools are accessed through the 
Site Browser panel illustrated in Figure  3. 

Site Model Data In the MSE concept, the 
3-D site model provides access to all the data 
related to a feature of interest. The RTS can 
import imagery, text, and other collateral data, 
storing them in a Sybase relational database 
for retrieval and feature-specific queries. Other 
data interfaces to and from the RTS include the 
NIMA Prototype Data System (NPDS) for re- 
trieving site baseline text reports, cables, an- 
alysts' reports, and engineering support data; 
and the NIMA Image Handling System (IHS), 
for retrieving new imagery and creating Na- 
tional Imagery Transmission Format (NITF) 2.0 
image pyramids. 

Manual MSE One of the purposes of the 
RTS is to explore how interactive forms of MSE 
can yield improvements in analyst productivity 
without the use of lU technology. To investi- 
gate this, a number of manual MSE capabilities 
were implemented in the RTS. 

Analysts can access site model data directly 
from the user interface by point and click on the 
feature of interest including collateral text, links 
and attributes. Collateral text couples text of 
a general nature to individual objects. Links 
allow specific associations between objects and 

images, and between objects and text descrip- 
tors. Attributes are object-dependent features 

that contain information such as the history, 
normalcy and material type. 

The RTS also contains a set of tools to retrieve 
images from the database based on their collec- 
tion parameters. The Viewpoint Query Tool al- 
lows the analyst to specify a desired viewpoint 
by rotating the site model to the desired per- 
spective. The database is then queried for im- 
ages with similar viewpoints based on refined 
azimuth and elevation values. In contrast, the 
Image Query Tool can be used to query the 
database for images by collection parameters 
such as geographic area, sensor, and date range. 
This is useful for performing the task of man- 
ual negation, in which the analyst can browse 
through a set of images in reverse chronologi- 
cal order and immediately discern when scene 
changes took place at some time in the past. 

Having access to geolocated 3-D information 
greatly improves analyst tasks such as mensura- 
tion. 3-D Ruler objects have endpoints that can 
be placed accurately in multiple images or at- 
tached to site model objects (e.g., building cor- 
ners) to obtain very accurate object measure- 
ments. Other standard tools are terrain con- 
tours, terrain grids, and user-controlled terrain 
visualization tools overlaid on the imagery. 

Automated Image Exploitation A class of 
lU algorithms integrated into the RTS can be 
used for automatic imagery exploitation. RA- 
DIUS supported the integration of algorithms 
from a wide variety of university and industry 
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sources, which was made possible using a com- 
mon test bed environment (the RCDE) and an 
Exploitation lU Framework that was developed 
under RADIUS. 

Described in [Bremner et al., 1996, 
Kniffin and Hoogs, 1996], the lU Framework 
serves as an Application Programmer Interface 
(API) to the RTS for lU algorithms. It enables 
the lU developer to focus exclusively upon the 
development of special purpose lU algorithms 
that can be applied to a specific feature within 
a site. That feature can be small enough to al- 
low simplifying approximations based upon lo- 
cal image context. For example, the pixel in- 
tensity distribution of a projected feature may 
be nearly uniform under normal circumstances. 
Deviations from uniformity may be considered 
to be a significant change. 

The framework separates site-specific and 
image-specific information. Site-specific data, 
such as the feature of interest, is established 
once by the lA when an lU algorithm is chosen 
to operate on the feature, resulting in a profile. 
Algorithm-specific inputs are also gathered at 
this point. When new images are introduced 
to the RTS, they are processed by applying ap- 
propriate profiles without any lA input. Any 
image-specific information required by the al- 
gorithm must be automatically extracted. 

The lU Framework also supports the specifica- 
tion of conditions under which a given special 
purpose algorithm will not perform well, includ- 
ing occlusions, shadows, and clouds. In addi- 
tion, historical information about image condi- 
tions may be specified for dynamic reference and 
calculation of photometric corrections. 

Finally, the framework provides for the storage 
of lU results in a standardized format in the 
RTS database. That format requires each algo- 
rithm to specify the degree of change or count, 
and the degree of confidence in that result, with 
a subimage showing a graphic overlay of the re- 
sults on the feature. 

The framework includes an extensive user inter- 
face, part of which is shown in Figure 4. The 
figure shows the history results panel and two 

images. In this case, a single profile was ex- 
ecuted against sixteen images, generating six- 
teen lU results. In the larger panel, the results 
are listed in tabular form, displaying for each 
result (from left to right) the profile name, im- 
age identification, a yes/no indication of change, 
a numerical level of change between 0 and 1 
(1 = complete change), confidence measure in 
the change level, and user-assigned profile pri- 
ority. Below the table is a graph of the results, 
with images plotted in chronological order on 
the horizontal axis and the change level plot- 
ted on the vertical axis. The upper panel shows 
two of the sixteen images, with a building model 
overlaid. The profile reports no change if the 
building is present, and change if the building 
is not detected, which will occur if the build- 
ing has been sufficiently renovated or damaged. 
The left image is correctly reported as no change 
(it is the seventh image in the list), and the 
right image is correctly reported as change (the 
fourth image in the list, corresponding to the 
tall peak in the graph). In the right image, 
change in the s( ructure is simulated by misreg- 
istering tlie image to the site. 

This compcenensive display provides the lA si- 
multaneous access to textual, graphical, and 
site model views of lU results. This combination 
enables the lA to verify or refute lU computa- 
tions, while examining a summary of multiple 
results over time, to establish trends or histori- 
cal context. 

Within the lU Exploitation Framework, all lU 
algorithms fall into two categories: detection 
and counting or change detection. The ex- 
ploitation lU algorithms are generally accessed 
through the Monitoring, Negation, or Detec- 
tion and Counting menus, for use in setting up 
profiles. Table 1 summarizes the task-based 
exploitation algorithms currently available in 
the RTS, and Table 2 lists supporting algo- 
rithms that are optionally applied before the 
exploitation algorithm in a given profile. Fur- 
ther information on these algorithms is avail- 
able in [Mundy, 1996, Hoogs and Bajcsy, 1996, 
Hoogs and Bajcsy, 1995, Huttenlocher, 1993, 
Sarkar and Boyer. 1993, Chellappa et al., 1996, 
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Table 1: Exploitation lU Algorithms. Key for Task column: CD = change detection, DC = 
detection and counting. Key for Context column: H = historical reference used, R = registration 
refinement available, C = calibration through reference patches. 

Algorithm Source Application Task Context 

Edgel Change Detection GE Detects   significant   change   in   edge 
density. 

CD H, C, R 

Man   Made   Structure   Change 
Detection 

GE Detects  new  objects  with  predomi- 
nantly linear structure. 

CD H, C, R 

Line        Orientation        Change 
Detection 

GE Detects linear structures matching a 
specified orientation and position. 

CD H, C, R 

Albedo-Based Change Detection GE Detects changes in the albedo (bright- 
ness or darkness) of a region. 

CD H, C, R 

Perceptual     Grouping    Change 
Detection 

OSU, USE, 
GE 

Detects axially symmetric structures. CD C 

HausdorfF Building Validation Cornell, 
GE 

Validates the presence of modeled fea- 
tures   using   the   HausdorfF   distance 
metric. 

CD R 

Building/Structure Presence LMC VF Detects changes in or the removal of 
volumetric features using model geom- 
etry and prior imagery. 

CD H, R 

Delineated Feature Presence LMC VF Detects changes in or the removal of 
planar features using model geometry 
and prior imagery. 

CD H, R 

Building Validation use Detects changes in or the removal of 
modeled buildings using model geom- 
etry and shadow mformation. 

CD R 

Vehicle Detection and Counting UMd Detects vehicles in a delineated park- 
ing area using a generic rectangular 
model. 

DC, 
CD 

Correlation        Detection        and 
Counting 

LMC 
Denver 

Matches instances of a user-selected 
example object in a region on the same 
EO image. 

DC 

EO Correlation Counting LMC 
Denver 

Matches instances of an example ob- 
ject   in   a   region   by   identifying   a 
template derived from historical EO 
imagery. 

CD, 
DC 

R 

SAR   Region   Match   Detection 
and Counting 

LMC 
Denver 

Uses ARAGTAP algorithm to match 
instances of a user-selected, bright ex- 
ample object in a region on the same 
SAR image. 

DC 

SAR Region Match Counting LMC 
Denver 

Uses ARAGTAP algorithm to match 
instances of a bright example object 
in a region by identifying a template 
derived from historical SAR imagery. 

CD, 
DC 

R 

SAR Correlation Counting LMC 
Denver 

Matches instances of an example ob- 
ject in a region by identifying a feature 
template derived from historical SAR 
imagery. 

CD, 
DC 

R 
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Table 2: Exploitation Support Algorithms. Key for Context column: H = historical reference used. 

Algorithm Source Application Context 

Model-Based Cloud Detection LMC  VF  & 
Orlando 

Detects cloud obscuration of individual 
features using model geometry and tex- 
ture analysis. 

H 

Hierarchical Pose Refinement LMC VF Corrects for localized, translational image 
registration errors up to 50 pixels using 
modeled feature edges and prior imagery. 

H 

Hausdorff" Pose Refinement GE, Cornell Corrects for localized, translational image 
registration errors up to 10 pixels using 
the Hausdorff distance metric. 

Table 3: Site Model Construction Algorithms. Key for Context column: S 
fully automatic, M = multiple images used. 

semi-automatic, A 

Algorithm Source Application Context 

Snakes SRI Optimizes the geometry of a user-supplied 
initial model of a linear feature using mul- 
tiple iitvgea. 

S, M 

Model-Based Optimization SRI Optimizes the geometry of a user-supplied 
init lal mociol of a polyhedral feature using 
multiplf images. 

S, M 

Zip-lock Snakes ETH Creates a model of a linear feature given 
two points at opposite ends of the feature. 

S 

Road Tracker SRI Extracts   the   geometry   of  a  constant- 
width linear feature given two points on 
opposite sides of the feature. 

s 

Cookie Cutter SRI Detects  and  models identical  buildings 
given   a   model   and   position   of   one 
building. 

s 

Hub SRI Determines the applicability of SMC al- 
gorithms given a set of images and other 
context. 

Automatic Site Model Construction UMass Extracts the position and geometry of all 
flat-roofed rectilinear buildings in an area 
or site. 

A, M 

Automatic Site Model Construction use Extracts the position and geometry of all 
flat-roofed, rectilinear buildings in an area 
or site. 

A, M 

Automatic Site Model Construction CMU Extracts  the  position  and  geometry of 
flat-roofed   and   peak-roofed   rectiUnear 
buildings in a site. 

A, M 

Automatic Road Extraction Brown Extracts the geometry of all linear fea- 
tures  in an   image by  locating starting 
points and tracking from each. 

A 
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Figure 4: Trends and history display in the lU Framework. 

Huertas and Nevatia, 1996]. 

Site Model Construction The RTS has ma- 
jor subsystems for the creation of 3-D site mod- 
els containing complex volumetric and surface 
features. These tools enable manual, semiauto- 
mated, and automated techniques to configure 
a site model and populate it with features. 

Construction of a site model is accomplished by 
1) deriving a consistent, local geometry from 
imagery and 2) populating the space with mod- 
els of site features. The local geometry is de- 
rived by collecting a set of images, placing a 
number of 3-D points in the scene, and simulta- 
neously adjusting both the points and the image 
collection parameters to minimize the errors in 
projecting the 3-D points into all images. The 
site model is populated by placing models of 

features such as buildings and functional areas 
into the scene, attaching collateral text to the 
models, and adding model attributes. 

The RTS has a variety of tools to support these 
activities. In particular, the Object Creation 
Tool, depicted in Figure 5, simplifies the process 
of adding new models to a site. Procedurally, 
the lA first selects a location for the object to 
be created. The image database is then queried 
for the four images with maximum mutual dis- 
parity, i.e., the images that show the location 
from widest selection of viewpoints. Next, the 
user picks an object type and models the object 
using manual and semiautomatic manipulation 
in the four-image display panel, which continu- 
ously updates all four images. 

Unlike exploitation  lU,  there is  no integrat- 
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Figure 5: The Object Creation Tool. 

ing framework for site model construction sys- 
tems beyond the RCDE itself. SMC algorithms 
produce RCDE objects as output, and these 
models can then be displayed and edited by 
the lA. However, the Hub system can con- 
trol the execution of SMC algorithms by en- 
abling algorithm developers to encode algo- 
rithm constraints and characteristics in a rule- 
based framework. When the lA performs an 
SMC operation, the Hub suggests which algo- 
rithms are appropriate given the images being 
used and the algorithm rule base. 

The suite of automatic and semiautomatic 
algorithms for site model population in- 
tegrated into the RTS is listed in Ta- 
ble 3. The level of integration varies sig- 
nificantly, from real-time, interactive manipu- 
lation  to file-based   transfer between  systems 

that must be operated independently by the 
user. These algorithms are described in detail 
in [Lin and Nevatia, 1996, Collins et al., 1995, 
Neuenschwander et al., 1994, Fua, 1996, 
Barzohar and Cooper, 1993, 
McKeown and Roux, 1994]. 

3    RTS Development and History 

The design and implementation of the RTS is 
based on solutions to a number of significant 
challenges. The driving issues concerning the 
design included: 

• the balance between a research and devel- 
opment environment, and a prototype ex- 
ploitation workstation; 

• ease of lU integration; 
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Data Population 

External l/F 

Figure 6: The proportion of technology devel- 

opment effort spent on major RADIUS tasks. 

• ease of adding lA support, such as user in- 
terfaces and database queries. 

While the lU components of the system are crit- 
ical to its success, it is also important to provide 
a suitable user interface so that the lU capa- 
bilities can be perceived clearly. An awkward 
user interface can cause lAs to rate a system 
negatively, even when the lU has great poten- 
tial for improving lA efficiency. On the other 
hand, much lU research and development was 
necessary to develop new algorithms that fully 
exploit the available context in the MSE frame- 
work. 

The relative breakdown of technology develop- 
ment efforts by the RADIUS Phase II contract 
team is shown in Figure 6. Comprising the large 
majority of the total contract cost, these tasks 
were: 

Exploitation lU: Evaluation and selection of 
algorithms from the lU community, and 
development and integration of the algo- 
rithms described in Tables 1 and 2. 

SMC lU: Selection, development, integration, 
and evaluation of the semiautomatic and 
automatic site model construction algo- 
rithms listed in Table 3. 

Testbed: Design, development, and integra- 
tion of workstation capabilities not in- 
cluded in other categories. 

HCI: Design and development of lA-oriented 
user interface capabilities, including con- 
sultation with NIMA and lAs. 

Database: Design and development of the in- 
terface to and usage of Sybase, a commer- 
cial relational database management prod- 
uct. This work 
is described in [Hoogs and Kniffin, 1994, 
KnifRn and Hoogs, 1996]. 

External Interfaces: Design and develop- 
ment of interfaces to external systems, such 
as Slate (a reporting tool), the NIMA Im- 
age Handling System, and the NIMA Pro- 
totype Data Server. 

Data Population: The creation and process- 
ing of site models and imagery. 

The Data Population, HCI, and Testbed tasks 
developed into a larger portion of the effort than 
expected at the beginning of Phase II. Data 
Population in particular was hampered by the 
initial set of site models, which contained geo- 
metric inconsistencies. The development of sen- 
sor models and photogrammetric methods also 
consumed more resources than expected. 

A significant amount of research in exploitation 
lU was required, since existing algorithms were 
not designed to take advantage of the level and 
types of context available in the MSE frame- 
work. This changed the expected ratio of al- 
gorithm development vs. integration to favor 
algorithm development. 

The RTS has evolved as a software system over 
the past fifteen years, beginning with the SRI 
Cartographic Modeling Environment (CME), 
continuing with the RCDE, and culminating in 
the RTS. Figure 7 shows this development path 
over the past ten years (the previous five con- 
tained early CME development), and summa- 
rizes the capabilities that each stage added to 
the system. Parts of other major systems are in- 
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Figure 7: The evolution of the capabilities j\' the RADIUS Testbed. 

eluded in the RTS, such as Khoros (UKM), Tar- 
get Jr (GE) and Data Management Tool (LMC), 
but these subsystems support specific functions, 
such as particular lU algorithms, that are not 
part of the central processing core. 

Implementing the MSE concept required a sys- 
tem that combines imagery, 3-D site models, 
and sensor geometry to display site models over- 
laid on imagery. Integrating lU technology cre- 
ated additional demands, such as support for 
development in C, C-|—|-, Lisp, and CLOS. Be- 
cause the RCDE standardizes the way imagery 
and 3-D models are accessed, lU code develop- 
ment can be conducted at labs and universities, 
and the results easily integrated into the com- 
plete RTS. 

Figure 7 shows the capabilities added to the 
RTS during Phase II. RADIUS used a spiral de- 
velopment methodology, in which multiple de- 
liveries of the system were evaluated during the 
development period. The four diamonds in the 

RADIUS Testbed time-line represent incremen- 
tal deliveries of the RTS to NIMA. Earlier de- 
liveries, particularly the Initial Delivery, em- 
phasized workstation capabilities such as im- 
age manipulation, manual object modeling, and 
database support. A large fraction of the RTS 
capabilities in the initial delivery were supplied 
by the RCDE, with topical modifications. 

The major difficulty encountered in the Ini- 
tial Delivery was in the externally provided 
data. Significant inconsistencies in the initial 
site models required an early development of 
bundle adjustment functionality to be added to 
the RTS, and related software applied to cor- 
recting the geometry of those models. 

The initial delivery focused on producing a com- 
plete, prototype workstation as well as lU tech- 
nology. The evolution of the lU capabilities 
of the RTS is shown in more detail in Figure 
8. All of the algorithms in the initial delivery 
were enhanced in subsequent deliveries, as the 
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Figure 8: The evolution of RADIUS lU algorithms, as integrated into the RADIUS Testbed. 

project emphasis shifted toward lU once the ba- 
sic testbed capabilities were in place. 

Exploitation and SMC algorithms are shown 
separately in the figure. While most SMC 
work was funded by other contracts, such as 
the DARPA RADIUS Broad Agency Announce- 
ment (BAA) contracts, development of Ex- 
ploitation lU was largely funded by the RA- 
DIUS contract and its team members. Very 
little lU was available to be applied against 
exploitation tasks within the MSE framework. 
Consequently, the focus of the contract team 
members shifted toward developing Exploita- 
tion lU, while continuing to integrate site model 
construction systems. The figure shows the in- 
crease in the number of exploitation algorithms 
in later deliveries. 

Originally, the project was planned to provide 
very specific  workstation and  lU  capabilities 

at each delivery. After the first two deliver- 
ies, however, it became necessary to replace 
lower-priority requirements with unforeseen ad- 
ditions, such as data-oriented scenarios demon- 
strating the effectiveness of lU algorithms. This 
change was largely driven by a very successful 
RADIUS demonstration at the 1995 Exploita- 
tion Technology Symposium (ETS), an annual 
government-organized forum for discussing and 
demonstrating current efforts in automating im- 
agery exploitation. 

The focus of the last two deliveries was thereby 
adjusted toward task-based lU technologies 
solving real imagery exploitation problems. 
These deliveries included scenarios describing 
the use of particular algorithms to effectively 
perform important lA tasks on specific images. 
This delivery mechanism was effective, because 
it provided NIMA with demonstrations appro- 
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priate for a broad range of government person- 
nel, and it helped algorithm developers focus 
on real problems of interest. One risk of this 
approach is that algorithms may become spe- 
cialized to a narrow range of examples; to avoid 
this, scenario algorithms were tested on a num- 
ber of images with varying conditions before be- 
ing included in scenarios [Bremner et al., 1996]. 

At the end of the RADIUS Phase II contract, 
the RTS met over 90% of the contract speci- 
fications, comprised of requirements, goals and 
development guidelines. The system includes 
many capabilities not specified in the origi- 
nal plan, such as an extensive framework and 
user interface for exploitation lU, bundle ad- 
justment, and support for automated registra- 
tion through integration with the Model Sup- 
ported Positioning (MSP) program. The suite 
of integrated algorithms is extensive, includ- 
ing support and complete user interfaces for: 
automated extraction of flat-roofed buildings; 
model optimization of all building types, linear 
features and area features; counting of generic 
vehicles in parking areas; counting of closely- 
parked vehicles in garrison areas; detection of 
change in fixed structures; detection of new con- 
struction; detection of the presence/absence of 
movable objects; model-based image quality as- 
sessment; and image registration refinement. 

In addition, ATR capabilities are being in- 
tegrated into the RTS and its descendents 
through the Model-Supported Target Recog- 
nition (MOSTAR) program. Automated site 
monitoring is being pursued in the Site Mon- 
itoring System (SMS) program, which is cre- 
ating an operational prototype for tactical im- 
agery analysis. The use of MSE is the focus of 
the Spatial Image Annotation System (SIAS), 
an operational prototype for national imagery 
analysis. 

4    Major Accomplishments & Issues 

As the RTS evolved to meet the specified re- 
quirements, goals, and guidelines, [nany de- 
rived capabilities were added as the need arose. 
The software development and integration ef- 

forts were designed to allow the various capa- 
bilities to be more than stand-alone tools. By 
maintaining consistency between top-down de- 
sign and bottom-up implementation, the vari- 
ous components of the RTS operate synergisti- 
cally to accomplish the major goals of RADIUS. 
The most significant achievements are briefly 
described below. 

Adhering to the software development and in- 
tegration standards that enable the cooperative 
interaction of the various RTS capabilities also 
had its problems. A few of the most significant 
impediments along the way are also described. 

4.1    Accomplishments 

RADIUS accomplishments can be sorted into 
four general categories: 

• development of lU technology; 
• development of the RTS; 
• integration    of   lU    algorithms    into   the 

testbed; 
• laboratory  evaluation  in   a  nearly  opera- 

tional setting within NIMA. 

lU Research The research conducted under 
the RADIUS program made significant contri- 
butions to the field of lU. RADIUS lU research 
focused on using context to improve algorithm 
performance - specifically, using the context 
available in the MSE framework. This approach 
allowed the development of simple, robust al- 
gorithms that operate successfully in a narrow 
context. 

RADIUS also developed new methods of au- 
tomated parameter adjustment. Because algo- 
rithms are executed on multiple images with- 
out human intervention, it is necessary for al- 
gorithm parameters to be adjusted based on 
observable image data (or not adjusted at 
all). RADIUS contains a number of such 
algorithms that offer three different meth- 
ods of using historical imagery for calibration 
[Hoogs and Bajcsy, 1996, Mundy, 1996]. 

At a higher level, the RADIUS project demon- 
strated convincingly that lU researchers can 
work closely with lAs and NIMA personnel to 
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refine lU requirements. lU researchers were able 
to communicate effectively with lAs, other gov- 
ernment personnel, and industrial experts to de- 
rive the necessary understanding of lA tasks to 
formulate useful lU algorithms. 

Finally, the RADIUS program facilitated collab- 
oration between a diverse group of researchers. 
lU technology was developed by three sources: 

1. the RADIUS contractors; 

2. the DARPA BAA contractors (Univer- 
sity of Maryland, SRI, Carnegie Mellon, 
University of Massachusetts, University of 
Southern California, University of Wash- 

ington); 

3. other universities. 

The last category includes institutions whose 
algorithms were reviewed by the Image Un- 
derstanding Advisory Committee (lUAC). This 
committee was composed of members of the 
RADIUS Contractor team and members of the 
lU community, and was formed to conduct a 
survey of algorithms suitable for use in RA- 

DIUS. 

The interactions within this large community 
of researchers stimulated research, collaboration 
and critical analysis, resulting in significant im- 
provement in the overall quality of the lU in 

RADIUS. 

Testbed Development The RTS prototype 
workstation has been critical to achieving three 
main goals of RADIUS. The existing RTS is: 

• a near operational,  prototype MSE work- 
station providing all the tools necessary to 
facilitate softcopy exploitation and report 
generation. 

• a development and integration environment 
for lU researchers; 

• a testbed for the evaluation of lU algorithms 
and for the exercise of various combinations 
of tools and interfaces; 

lU Integration Sz Development     The RTS 
evolved with the dual purpose of automating 

both feature extraction and exploitation. For 
exploitation lU, there is a documented integra- 
tion protocol which was evolved during the con- 
tract. That protocol enables all exploitation 
lU algorithms to be easily incorporated into 
the standardized lU framework. This interface 
has enabled all of the current exploitation al- 
gorithms to be uniformly evaluated under oper- 
ational conditions where many images may be 
applied with no user intervention. 

While there is no integrating framework for 
site model construction algorithms, those algo- 
rithms that were integrated into the RCDE by 
the developers were transitioned into the RTS 
with minimal effort. The use of the RCDE as 
a common environment between lU developers 
and the RTS resulted in major savings in inte- 
gration cost. 

Automated Exploitation Processing    The 
chain of processing for operational exploitation 
is completely automated in the RTS. This pro- 
cessing pipeline was accomplished with the in- 
tegration o( automated image-to-site-model reg- 
istration from the MSP project. Images of the 
sites of interest are extracted from the available 
source imagery. That imagery is then registered 
using MSP, and added to the site. Then, im- 
age chips are analyzed using the automated lU 
Exploitation Framework and results stored for 
analysis. 

This prototypical operational flow enables the 
lA to establish profiles to monitor features of 
interest for specific events. With a set of pro- 
files created for a site, all new images of that 
site are processed automatically. The lA may 
examine the processing results, but no other ef- 
fort is required. 

Algorithm Evaluations Systematic, formal 
evaluations of lU algorithms frequently requires 
hundreds or thousands of images showing a va- 
riety of different imaging conditions. Since RA- 
DIUS did not have the resources to accomplish 
this level of evaluation, an alternate process 
evolved over the course of the project that al- 
lowed for reasonable evaluation while still pro- 
viding feedback to developers.   The careful se- 
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lection of a few images witii "typical" imaging 
conditions was sufficient to determine the fol- 
lowing: that the algorithm was performing as 
designed, that the algorithm was able to op- 
erate in its domain of applicability, and that 
the algorithm would be stable under at least a 
known range of conditions. It was not necessary 
(or possible, in some cases) for the developer to 
obtain a list of images with algorithm results. 
The benefit of this method was its ability to 
provide qualitative information to the develop- 
ers, thereby enabling them to refine their algo- 
rithms. This process was used frequently and 
worked very well. 

For site model construction, a standard set of 
buildings in specific sites were identified along 
with expected difficulties in each of several reg- 
istered images. This data was used to perform 
comparative testing of similar SMC algorithms, 
and to validate that SMC software was perform- 
ing as intended. 

4.2    Issues 

Multi-Purpose Testbed There were at 
least three separate areas of emphasis for the 
Testbed: as a research project, as a near- 
operational workstation prototype, and as a 
testbed for lU algorithm development and eval- 
uation. As a research project, RADIUS was 
used to test the utility concept of MSE and var- 
ious operational interfaces, data formats, and 
user interfaces. As an operational workstation 
prototype, RADIUS was expected to be rela- 
tively easy to use and stable under normal oper- 
ation. As a testbed, RADIUS was a software de- 
velopment and integration environment for lU 
research for which both engineering and labora- 
tory evaluations were performed. 

In many situations, these areas of emphasis were 
in conflict. For example, the need to have a sta- 
ble, robust, user-friendly workstation demanded 
that a great deal of effort be placed on HCI 
and testbed work. In addition, algorithms had 
to be routinely tested in all reasonable possible 
modes of Operation. There was a clear trade- 
off between testing, evaluation, and testbed ca- 

pabilities, and new algorithm development and 
integration. 

The compromise reached on RADIUS was to 
strictly limit algorithm evaluation and formal 
system testing. Emphasis was placed on devel- 
opment and integration, with no formal testing 
procedure to ensure robustness or lU accuracy. 
This resulted in a large suite of capabilities, but 
a system that required more effort to operate 
by NIMA personnel. 

Unanticipated Tasks There were numerous 
specific requirements which supported the sev- 
eral areas of emphasis for the RTS. It was also 
recognized that this was a spiraling develop- 
ment methodology, and, over the life of the 
project, there were regular re-plans of the di- 
rections of the contract. As might be expected, 
numerous unplanned tasks became necessary, 
requiring complex accommodations to incorpo- 
rate them. The new tasks included: 

• Development of site models without the use 
of detailed ground truth. A full bundle ad- 
justment package for multi-image registra- 
tion was developed to compensate for lack 
of ground truth in classified sites. 

• Development of site models via a simple user 
interface. The process of creating site mod- 
els was originally assigned to the contrac- 
tors, and no user interface was developed. 
However, it became apparent that it would 
be useful to enable trained operators at 
NIMA to perform multi-image registration 
for site model initialization, and the RTS 
was enhanced with a user interface to this 
capability. 

• Management of photogrammetry.    Several 
studies on the accuracy of registration in 
the RTS were performed. These studies re- 
quired the acquisition of ground truth and 
images, careful setup of experiments, as 
well as writing formal reports on the re- 
sults. 

• HCI. Originally, little emphasis was placed 
on user interfaces. As the RTS grew, how- 
ever, it became clear that significant user 
interface enhancements were needed before 
the system could be presented to lAs. This 
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was particularly true of the user interface 
to exploitation lU systems. A significant 
portion of the testbed effort was then redi- 
rected toward making the testbed easy to 
use by lAs. 

5    Future Directions 

The RTS is expected to have two alternative 
future directions: transitioning some subsets of 
its capabilities to become operational systems, 
and enhancements to the system as a testbed 
for lU research and algorithm evaluation. 

5.1    Technology Transfer 

The following two tools are examples of technol- 
ogy transfer from RADIUS in a limited context. 

SIAS The Spatial Imagery Annotation Sys- 
tem is a technology transfer of part of the RTS 
to generate annotated image products and per- 
form rudimentary model supported exploita- 
tion. It uses 3-D site models to reduce thp effort 
involved in updating annotations on new im- 
agery since previous annotations are correctly 
registered in 3-D on all new images. It also fa- 
cilitates rapid lA orientation to the site by pro- 
viding registered site model overlays on imagery. 
Making the HCI intuitive, stable and robust is a 
significant part of this effort, and a contribution 
to RADIUS technology. 

SMS The Site Monitoring System is a part of 
the Semi-Automated IMINT Processing (SAIP) 
Advanced Concept Technology Demonstration 
(ACTD). Its goal is to automate the process 
of detecting changes in fixed sites using various 
imagery sensors. This spinoff of RADIUS tech- 
nology will harden the end-to-end exploitation 
chain and test the exploitation algorithms on 
much more imagery than previously attempted. 
The expected result is a greater understanding 
of the range and depth of model-supported TU 
technology, leading to more robust algorithm 
performance. 

5.2    Recommendations for Future 
Technology Development 

The following are recommended as extensions 
to RADIUS technology and the current RTS. 

Algorithm Generalization The exploita- 
tion algorithms in RADIUS operate on a rela- 
tively small region of an image for a very special- 
ized purpose, without human interaction. At a 
minimum, each algorithm accepts a set of com- 
mon inputs, and returns a set of common out- 
puts. In this framework, questions that arise 
include the information that is available for in- 
put to these algorithms, the information that 
should be returned as the result of the process- 
ing, the intormation that should be gathered to 
feed back to the algorithm developer, and the 
information that should be gathered to allow 
combinations of various results. To some ex- 
tent, each of these aspects has been explored 
in RADIUS, but more work needs to be done 
before operational use. 

Context IIJ algorithms should take advan- 
tage o* all the contextual information available, 
inciijuiiig senior information, site feature infor- 
mation, iiig.i level functional descriptions of im- 
age areas and historical imagery. Under RA- 
DIUS, ilgorithms were developed to exploit all 
of these forms of context, but the lU community 
is still learning how algorithms may fully bene- 
fit from information beyond image pixels. One 
particularly powerful form of context, learning 
from historical imagery, was used by algorithms 
within RADIUS, but its potential is still largely 
unrealized. 

Self-Calibration A form of learning from 
historical imagery, the idea of using site model 
context to enable self-calibration of lU algo- 
rithms has proved to be a powerful, fundamen- 
tal RADIUS concept. The RADIUS system 
identified the need for self-calibration, and the 
lU coroniunity should be encouraged to pursue 
how such context can be used in other aspects 
of algorithm operation. 

Algorithm Exclusion Another key RA- 
DIUS concept is to use known algorithm lim- 
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itations to control algorithm execution. The 
RTS can prevent algorithm execution when a 
given image region is obscured by clouds, oc- 
cluded by other model objects, or shadowed. 
The Hub provides a framework for developer- 
supplied rules to be invoked, controlling algo- 
rithm execution based on measurable image and 
site conditions. Algorithm exclusion should be 
further explored to improve robustness of re- 
sults. 

Inferences Effort should be directed toward 
making higher-level decisions of intelligence in- 
terest based on multiple lU results. One possi- 
bility is to combine the results of redundant- 
but-different algorithms executed on one fea- 
ture to increase results confidence. A second 
possibility is to combine the results of many 
algorithms on many regions to infer an activ- 
ity. Another area is to combine information de- 
rived from multiple sources and sensors, includ- 
ing multi-sensor fusion and cross-sensor cuing 
within the MSE framework. 

Exploitation lU Under RADIUS, a number 
of exploitation lU algorithms were developed, 
since existing algorithms were not equipped to 
take advantage of MSE context. There are 
many more possibilities for exploitation algo- 
rithms, however, that have not even been ex- 
plored on RADIUS. The two areas where new 
research would be most efficacious are change 
detection and robustness. Existing algorithms 
should be extended, improved and evaluated. 
New algorithms should be investigated and eval- 
uated as they are identified. 

Site Model Construction Automated and 
semiautomated SMC functions must be consid- 
erably augmented before there will be a real 
time savings in their usage. The automated 
SMC algorithms should incorporate simultane- 
ous multi-image confirmation of roof-top edges, 
to improve robustness. Further research should 
be conducted to build a reliable linear fea- 
ture extraction system, since linear features are 
time-consuming to construct manually. 

Algorithm Evaluation While RADIUS de- 
veloped a significant number of algorithms, re- 

sources were not available for thorough evalua- 
tions of those algorithms by the developers or 
users. Evaluations can provide invaluable feed- 
back to developers, and can be used to establish 
exclusion rules, or domains of applicability, that 
greatly increase overall system robustness. Fu- 
ture resources should be directed toward algo- 
rithm evaluation, using scientific practices that 
guarantee the collection of appropriate data and 
accurate interpretation of that data. 

RTS Development The following are sug- 
gested for near-term RTS development: 

• lA Tasking Language A semantically orga- 
nized system for selecting lU algorithms 
for very specific purposes should be in- 
tegrated into the RTS, to help analysts 
choose the proper algorithm to perform a 
given exploitation task. Algorithms should 
be named and specialized for particular de- 
tection, recognition, and counting tasks. 

• Data Gathering The infrastructure for gath- 
ering evaluation data should be extended to 
handle all aspects of the laboratory evalu- 
ation process. Experimental data can be 
exTieuiely valuable for algorithm develop- 
ers as well as users, but all appropriate 
information must be collected simultane- 
ously. Some data gathering was performed 
under RADIUS, but more effort should be 
expended now that significant infrastruc- 
ture is already in place. 

• Multi-Tasking Operational versions of the 
RTS will likely have many processors avail- 
able for near-real time computation. Since 
the RTS exploitation framework sepa- 
rates execution of data-parallel algorithms, 
minor modifications to the RTS should 
be made to enable porting to parallel 
hardware, improving overall exploitation 
throughput. 
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ABSTRACT 

Research and Development for Image Under- 
standing Systems (RADIUS), a two-phase five- 
year project, is aimed at increasing Imagery Ana- 
lyst (lA) productivity, and improving the quality 
and timeliness of lA products. A key feature of 
RADIUS is Model-Supported Exploitation (MSE) 
in which two-dimensional and three-dimensional 
models of a site are used as the foundation for 
subsequent analysis and reporting. Image under- 
standing (lU) technology is an integral part of this 
support to analysis. The RADIUS Project is now 
complete, and action is being taken to transfer se- 
lected technology to users. This paper describes 
the challenges and opportunities encountered in 
the transfer process. The available capabilities, 
existing shortcomings, and the improvements to 
meet the real-world needs of imagery exploitation 
are described. 

Keywords: imagery analysis, imagery interpreta- 
tion, imagery exploitation, image understanding, 
model-supported exploitation, site model, auto- 
matic target recognition, assisted target recogni- 
tion. 

1. Introduction 

RADIUS was a joint project of the Central Intelli- 
gence Agency (CIA) and the Defense Advanced 
Research Projects Agency (DARPA) aimed at in- 
creasing lA productivity and improving the quality 
and timeliness of their products. The approach for 
meeting this challenge was based on the applica- 
tion of advanced technology to the imagery analy- 
sis process. The fundamental concept of RADIUS 
was to provide salient information to lAs directly, 
using lU algorithms that operate as "intelligent 
assistants" to lAs. 

1.1       The Site Model Concept 

Information to aid the imagery analysis process is 
provided through three-dimensional models of the 

site being analyzed, in several ways. The most 
obvious of these is through the use of 3-D wire 
frame depictions of the structures, roads, and other 
natural and man-made features and/or objects at a 
site. This model provides information on the 
physical characteristics of the features such as 
shape, size, position, orientation, and interrelation- 
ships of the features. Another source of informa- 
tion is provided through demarcating and labeling 
specific regions, called "functional areas," or of 
the specific buildings, roads, etc. This capability 
can provide information about these objects 
through point and click. Extensive additional in- 
formation about these site features could be made 
available. Some of these include: use, history, 
composition, and relevance; or information on the 
activhies to expect in various functional areas 
within the site, and the potential importance of 
those entities or activities. Labeling may also be 
extended to provide access to other collateral in- 
formation concerning the site that has not been 
derived from imagery. The source of this other 
information could include a variety of databases. 
This entire concept is called "Model-Supported 
Exploitation" [Gerson and Wood, 1994]. A poten- 
tially extremely powerful, but currently immature, 
concept is called the "Hub" [Strat, Fua and Con- 
nolly, 1997]. The Hub automatically selects the 
appropriate algorithms, and/or the parameters used 
by the algorithms, based upon the characteristics 
of the site, image acquisition parameters and con- 
ditions, and the design capabiUties of the algo- 
rithms. At present, Hub is used only within one 
semiautomatic site model construction algorithm, 
where it sets parameters based on the object being 
modeled and imaging conditions. This "trained" 
selection process will enable more fully automatic 
and robust computer processing. 

1.2       Operational Requirements 

RADIUS was designed to support I As dealing 
with real-world operational intelligence problems. 
We are well into an era in which sensors are pro- 
viding orders of magnitude increases in quantity, 
quality, and diversity of imagery. At the same 
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time, the Intelligence Community is experiencing 
a significant reduction in personnel, including lAs. 
Consequently, technology such as that developed 
within RADIUS which show high potential for 
increasing lA productivity, are important efforts to 
provide the Imagery Intelligence (MINT) support 
required at national, theater, and tactical levels. 
The focus of RADIUS technology transfer is to 
begin to meet the needs of operational organiza- 
tions. 

1.3 Imagery Exploitation Tasks 

The goal of imagery exploitation in RADIUS was 
to use imagery from a variety of sensors. With 
extensive input from a wide variety of lAs, a set of 
image exploitation tasks, with the potential of be- 
ing supported by lU, was defined prior to the be- 
ginning of RADIUS, some of which were elimi- 
nated or modified as the project developed and 
needs and capabilities became better understood. 

The general Detection and Counting Task is 
closely related to Automatic Target Recognition 
(ATR) and was pursued in the MOdel-Supported 
TArget Recognition (MOSTAR) Project [Allmen, 
et al., 1996], a joint National Reconnaissance Of- 
fice (NRO)/DARPA/CIA project. Detection and 
Counting was pursued in RADIUS as part of site 
monitoring, but the MOSTAR effort went further, 
and explored the use of traditional ATR technol- 
ogy. The Model to image and image to image 
Registration Task was investigated in the Model- 
Supported Positioning (MSP) Project [Mueller, 
1997] and [Ely and Di Girolamo]. This critical 
task was not pursued under RADIUS directly, but 
is absolutely necessary for accomplishment of 
most lU support within the MSE concept. 

The key exploitation technology made possible by 
the RADIUS 3-D site model is the automatic de- 
tection of change at a site, at which the desired 
changes to be monitored are pre-defined in a proc- 
ess called First Look. This approach is discussed 
briefly in Section 1.5.2, and more completely in 
[Hoogs and Hackett, 1994], [Chellappa, et al., 
1997], and [Gee and Newman, 1993]. This tech- 
nology made it possible for RADIUS to pursue the 
Site Monitoring, Negation, and Trends and His- 
tory applications. Note that the focused Change 
Detection Task differs from the broader human 
task to "detect, identify, or forecast all changes of 
intelligence significance at a given site," which is 
not possible by fully automated means within the 
present state of the art in lU and related technolo- 
gies. 

1.4 Model-Supported Exploitation 

MSE embodies the concepts that were addressed 
in Section 1.1. The most important of the many 

technologies needed to develop automated MSE 
capabilities are site model construction, image-to- 
model and image-to-image registration, database 
utilization, and Change Detection. lU, the major 
field of research in the RADIUS Project, can be 
used in each of these technology areas. While in- 
teractive applications of lU are relatively new, the 
operational use of such techniques was a major 
area of study in the project. These technologies are 
described briefly in the paragraphs that follow. 

Site Model Construction: Site models consist of 
two- and three-dimensional geometric descriptions 
of fixed features at the site, along with supporting 
collateral information about the site and source 
data. Site models provide a common geographic 
reference for any information about the sites. Site 
models can be constructed without the aid of lU, 
but the work is lengthy and tedious, and one major 
thrust of RADIUS was to sponsor research and to 
develop lU approaches that will be of benefit to 
the site model construction process. 

Registration: As stated above, registration func- 
tions were addressed separately from the RADIUS 
Project. The capability to precisely register a new 
image to a site model automatically is key to the 
entire RADIUS concept, and the results of the 
separate MSP registration contract were incorpo- 
rated into the RADIUS Testbed System (RTS). 

Database Support: Further database technology 
development is required for several MSE applica- 
tions. The primary requirement is to make collat- 
eral data available, via the site models, through the 
point and click technique. A vast amount of cur- 
rent and historical data, of greatly varying formats 
and types, must be accessible through this tech- 
nique. There is also a requirement for databases of 
the site models themselves, and of current and 
historical imagery. All of these must interface with 
other, separate intelligence and operational data- 
bases. 

Change Detection: In the RADIUS context. 
Change Detection means the detection of changes 
of intelligence importance at a particular site and 
at a particular time. In many cases, the types of 
changes are predefined, e.g., "Has the number of 
vehicles in this Motor Pool changed by more than 
20 percent since last imaged?" These predefined 
Change Detection "triggers" can typically be asso- 
ciated with specific locations, or "functional ar- 
eas" within a site, one of the benefits of MSE. 
Change Detection is a classic lU application that 
was demonstrated in RADIUS Phase II. 

1.5      The Value of Site Models 

The site model plays a key role for lA visualiza- 
tion purposes and for the use of lU algorithms as 
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the basis for automated or lA-assisted site moni- 
toring, as described below. 

1.5.1 Site Models Used for Visualization 

The availability of 3-D site models on a soft copy 
workstation will enable the production of site 
graphics in soft-copy or hard-copy form. These 
models can be provided to intelligence and opera- 
tional users for visualization from any perspective, 
distance, ahitude or aspect, or even in "fly- 
through" or "drive-through" form, including in- 
gress and egress routes. The users will then be 
able to use the graphics, in conjunction with col- 
lateral information, to extend the knowledge base 
about the site. The RADIUS site model enables 
complete visualization of the site for planning 
purposes or for conduct of operations. For exam- 
ple, one might consider the value of site models to 
support the rescue of non-combatants in a crisis 
situation, in military operations in wartime, or in 
humanitarian and peace-keeping operations. 

1.5.2 Site Models Used for lU Algorithms 

The site model is helpful for image exploitation in 
general, and specifically for the First Look proc- 
ess. It is used for two purposes: (1) to focus the 
attention of the lU algorithm on specific regions of 
the site, and (2) to store information of use to the 
algorithm related to these selected regions. For 
example, roads or parking areas can be identified 
in the site model for use in detecting and counting 
vehicles. When a new image of the site becomes 
available, the image is registered to the site model, 
and the lU algorithm can examine the indicated 
roads and parking areas and display its findings. In 
addition, the site model can provide contextual 
information that aids in the selection of the proper 
lU algorithm or for the automatic adjustments of 
selected parameters affecting its performance. 

1.5.3 Site Model Construction 

Site models can be built manually, but at a high 
cost in terms of time, money, and personnel. Be- 
cause the availability of site models was crucial to 
the success of RADIUS, a major effort of the proj- 
ect was to make the site model construction and 
updating process more efficient. Papers by 
[Chellappa, et al., 1997], [Collins, et al., 1997], 
[Fua, 1997], [Lin and Nevatia, 1997], [Hseih 
1996], and [Noronha and Nevatia, 1997] describe 
the site model building effort that was conducted 
by various research organizations using both 
semiautomated and fiilly automated lU techniques. 

2.        RADIUS Phase I 

RADIUS was a two-phase, five-year project. The 
two-year first phase included Concept Definition, 

advancement of the RADIUS Common Develop- 
ment Environment (RCDE), and initiation of six 
DARPA-sponsored RADIUS Research contracts 
related to various RADIUS requirements. During 
the three-year second phase, the RTS was devel- 
oped and incrementally improved. The RTS be- 
came the focus for integration of results produced 
throughout this expanded RADIUS Community. 

2.1 Concept Definition 

Phase I Concept Definition [Edwards 1992, Gee 
1993] centered on defining the Phase II RTS Re- 
quirements, the RTS Operations Concept 
(OPSCON), and the Preliminary RTS Evolution 
Plan. The major inputs to these documents were 
derived from four Concept Validation Experi- 
ments (CVEs) conducted over the course of Phase 
I [BDM 1993]. The CVEs resulted in a better un- 
derstanding of (1) the features, objects, and collat- 
eral information which should be included in site 
models and accompanying Site Folders, (2) how 
site models might be used to support Change De- 
tection and other exploitation tasks, (3) whether 
the payoff of MSE would be worth the investment 
of time and effort required to build and maintain 
site models, and (4) the kinds of human-machine 
collaboration that are appropriate for lU process- 
ing. A RADIUS Testbed System Architecture and 
Functional Design was also produced during this 
period. 

2.2 The RADIUS Common Develop- 
ment Environment 

A separate contract led to development and testing 
of the RCDE, an lU development environment 
tailored to the needs of the RADIUS MSE concept 
[Mundy 1992]. The RCDE facilitates the transfer 
and rapid integration and testing of technology, 
developed at various organizations, into the 
evolving RTS. During the RTS Phase, the contract 
team and the DARPA-sponsored RADIUS Re- 
search contractors used RCDE to receive and test 
the developed technologies. 

2.3 RADIUS Research Contracts 

DARPA sponsored a set of research and develop- 
ment studies in support of RADIUS. The DARPA 
contractors addressed Automated Cartographic 
Feature Extraction for Site Modeling (Carnegie 
Mellon University) [Hseih, 1996], Model-Based 
Optimization Approach to MSE (SRI Interna- 
tional) [Fua 1997], Site Model-Based Image Reg- 
istration and Change Detection (University of 
Maryland) [Chellappa 1997], Automated Site 
Model Acquisition and Extension (University of 
Massachusetts) [Collins 1997], Site Model-Based 
Change Detection (University of Southern Cali- 
fornia) [Lin 1997, Noronha 1997], and Perform- 
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ance Characterization of Computer Vision Algo- 
rithms (University of Washington) [Haralick 
1997]. 

These contracts continued well into the RTS 
Phase, with close cooperation and coordination 
between and among the Government sponsors, the 
RADIUS Research contractors, and the RTS and 
MSP contract teams. The primary fora for broader 
lU Community (lUC) participation in RADIUS 
were semiannual RADIUS Development Work- 
shops (RDWs), in which all of the aforementioned 
participated, and to which others in the academic 
and industry lUC were encouraged strongly to 
become active participants. These meetings were 
designed with two purposes in mind: to inform the 
community of RADIUS progress, problems, and 
plans; and to call upon its members to contribute, 
through presentations of proposed solutions to the 
problems identified. 

3.        RADIUS Phase II 

The three-year RADIUS Phase II, or RTS Phase, 
commenced in March 1994. The RTS Phase in- 
cluded the development of a dual RTS, a Devel- 
opment Testbed (DTB) at the prime contractor's 
facility, and an Evaluation Testbed (ETB) installed 
at the Government site. This Phase of RADIUS 
was a model building, MSE, lU software Research 
and Development (R&D) project, some of the re- 
sults of which were transferred to operational im- 
agery exploitation workstations as technology 
transfer spin-offs during the project. RADIUS 
technologies are available to development organi- 
zations for incorporating selected advanced tech- 
niques for operational systems. 

As stated in Section 1.5, site model building and 
updating and lU-supported MSE were the under- 
lying concepts developed, demonstrated, tested, 
and evaluated on the RTS. The hardware suite in 
Phase II was simply the means through which the 
government tested and evaluated the MSE lU al- 
gorithms brought to the platform by the partici- 
pants. In addition to the RTS, these included the 
MOSTAR and MSP contract teams, the DARPA 
RADIUS Research contractors, and other mem- 
bers of the academic and industry lUC who pro- 
posed and provided their algorithms as solutions 
for the various imagery exploitation tasks under- 
taken by RADIUS. 

3.1       The RADIUS Testbed System 

The RTS Phase called for the contract team to de- 
sign a system that could be modified easily, install 
a core MSE end-to-end capability as quickly as 
possible, conduct tests and evaluations of lU algo- 
rithms designed to meet the requirements of the lA 
tasks discussed previously, and introduce incre- 

mental upgrades and improvements based on the 
results of the tests and evaluations. The RTS con- 
tract team acquired, assessed, adapted, installed, 
tested, and evaluated lU technologies on the DTB, 
at the prime contractor's facility, in preparation for 
installation and further test and evaluation on the 
ETB. Emphasis was placed on the acquisition of 
available lU technology from industry and acade- 
mia. Development of new lU technology was un- 
dertaken by the RTS contract team only if deter- 
mined that the needed technology was unavailable 
elsewhere. As the role of lU in MSE became bet- 
ter understood, and promising lU technology was 
available from outside sources, it was evaluated by 
the RTS contract team for possible adaptation, 
enhancement, and integration into the RTS. 

3.2      Technology Transfer 

The contract team was charged to design, inte- 
grate, install, and test Initial Delivery versions of 
the DTB and ETB nine months into the contract. 
Initial Delivery was accomplished in October 
1994, with subsequent Upgrade Deliveries in 
March 1995 and December 1995. The Baseline 
Delivery was accomplished in July 1996. This 
process included delivery of a database of Gov- 
ernment-provided site models and Site Folders of 
real-world sites of intelligence interest. 

The RTS contract team assisted in the transfer of 
proven technology from the ETB to operational 
systems. A Final Report generated by the contract 
team provided full documentation of RADIUS 
capabilities, and addressed the feasibility of 
RADIUS technology transfer to meet user re- 
quirements. Two technology transfer projects are 
already underway. The Spatial Image Annotation 
System (SIAS), a RADIUS component, will be 
installed for operational testing at three sites in the 
spring of 1997. The RTS will serve as the basis for 
the Site Monitoring System (SMS) in theDARPA- 
sponsored Semi-Automated IMINT Processing 
(SAIP) Advanced Concept Technology Demon- 
stration (ACTD) in 1997 and 1998. 

4. RADIUS Transition Plans 

RADIUS Phase II was completed at the end of 
March 1997, with the delivery of the RTS hard- 
ware and software, with its set of lU algorithms 
and other MSE and Electronic Light Table (ELT) 
capabilities, a Final Report with conclusions and 
recommendations for future development, and a 
Users Manual. During the final year of Phase II, 
RADIUS-developed capabilities were evaluated 
by the operational community and several compo- 
nents were considered mature enough to be transi- 
tioned into operational imagery exploitation envi- 
ronments. 
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4.1 Current Status 

SIAS, a method of easily and accurately register- 
ing lA annotations from a previously exploited 
image to a new incoming image, is currently being 
installed for operational evaluation in three opera- 
tional facilities. SIAS accomplishes registration of 
annotations by the use of a three-dimensional 
"annotation model," actually a mini-site model. 
There has already been interest in expansion of the 
annotation model to include footprints of objects 
such as buildings, which are normally found in full 
site models. This interest may lead to a greater 
proliferation of more complete site models in the 
operational arena. 

SMS, based on the RTS, is currently being inte- 
grated as the Site Monitoring System for the En- 
hanced Delivery Phase of the SAIP ACTD to take 
place in November 1977. The SMS is a stream- 
lined version of the RTS, installed on a multiproc- 
essor Silicon Graphics (SGI) workstation, with a 
selected set of RTS EO and SAR lU algorithms 
suitable for the site monitoring task. The selected 
components of MOSTAR, MSP, and the Assisted 
Target Monitoring System (ATMS) will be incor- 
porated to provide additional capabilities. 

4.2 Transition to NIMA 

The National Imagery and Mapping Agency 
(NIMA) was recently established as the DoD 
Combat Support agency with overall responsibility 
for coordination and execution of imagery exploi- 
tation R&D. With the 1997 completion of 
RADIUS and its associated projects; MOSTAR, 
MSP, SIAS, and SMS; plans are now in motion to 
transition some capabilities of each of these proj- 
ects to NIMA for further research, refinement, 
evaluation, and/or selective technology transfer 
into the operational environment. The government 
management of the SMS Project, which will con- 
tinue into 1998, will also transfer to the NIMA 
Research, Development, Test, and Evaluation 
(SR) organization in October 1997. 

At the time of this writing, the NIMA long-term 
program for continuation of lU and ATR auto- 
mated and assisted image examination research 
and development is not finalized. Initial plans are 
that the existing RTS will be maintained and up- 
graded for hosting on either or both the UltraS- 
parc2 system developed for SIAS, or the SGI sys- 
tem developed for SAIP/SMS. Since neither of 
these systems contain full RTS capability, re- 
sources will be required and expended to enhance 
and integrate the missing components. Plans have 
been made for more extensive testing of algo- 
rithms and tools potentially planned for integration 
into operational systems. The RADIUS project did 
some characterization and limited evaluation of 

integrated algorithms, but no exhaustive testing of 
the kind required for operational consideration has 
yet been conducted. In addition, NIMA has inter- 
est in the research being conducted under the new 
DARPA Image Understanding for Battlefield 
Awareness (lUBA) Program. A number of the 
research projects included in that program are di- 
rect extensions and improvements of the earlier 
RADIUS Research activity. It may be useful and 
desirable to integrate some of these new research 
efforts into the expanding NIMA testbed activities. 
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Abstract 

FOCUS is an ongoing "shared vision" 
(collaborative) IR&D project, jointly 
sponsored by Lockheed Martin Missiles and 
Space (LMMS/Simnyvale) and General Electric 
Corporate Research & Development 
Laboratories (GE CR&D/Schenectady). The 
technical thrust of FOCUS is content-based 
retrieval and prioritization of data from 
massive imagety archives and data streams; 
the ultimate objective of FOCUS is to 
dramatically enhance the capability of image 
analysts (lAs) to cope with their high-voliune 
workload. The approach we are taking with 
FOCUS is to tranfer Model Siipported 
Exploitation and Image Understanding 
technology, developed under the 
DARPA/ORD RADIUS Program (and related 
Government-sponsored programs), and to 
adapt this technology for automatic off-line 
examination of archived images and image 
streams. 

1 Introduction 

In this paper we describe an ongoing R&D 
project conducted by LMMS and GE CR&D. 
We have named this project "FOCUS". 
FOCUS accomplishes automated change 
detection and cueing (ACDC) and 
prioritization of imagery as a precursor to 

interactive exploitation by lAs; FOCUS may 
also be viewed as a tool for content-based 
imagety retrieval (CBIR) from archives. 
FOCUS is intended to support: (a) the day-to- 
day monitoring and detection of significant 
changes and events in a specific geographic 
area; for example, an urban or industrial 
complex or a battlefield, and (b) lAs vAio have 
to contend with more images and data than 
they have resources to assimilate. FOCUS will 
help its users reduce and prioritize such 
workloads. FOCUS siipports queries wiiich 
specify the high-priority sub-areas and changes 
of interest at a site. This is accomplished by 
reference to high-resolution maps and/or 
models and reference images of the regions 
being monitored. As new images are collected, 
FOCUS automatically registers them to pre- 
existing or user-developed site models or site 
m^s, and runs pixel-level algorithms which 
automatically detect specified changes from 
normalcy in the selected sub-areas. The results 
are presented as a prioritized list of small 
image chips, enabling the user to select at a 
glance a manageable subset of high-payoff data 
for interactive review. These "chips" are 
assembled into an analyst "tip sheet" to 
facilitate rapid image review prior to online 
image exploitation. 

Lockheed Martin and General Electric 
initiated the FOCUS project in January 1996. 
MSE and lU technology   development   for 
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FOCUS is conducted by Dr. Joseph L. Mimdy's 
groiqj at GE CR&D, using TargetJr as the 
MSE/rU platform. Funding for this FOCUS 
technology development at GE CR&D is 
provided by the Lockheed Martin 
Corporation. A major objective of the FOCUS 
project is to transition MSE and lU research 
results into IDEX U, a fielded and proven 
image archival and dissemination system. At 
the IDEX Development Laboratories in 
Sunnyvale, Dr. Eamon B. Barrett and Mr. Paul 
M. Payton are interfacing these content-based 
image retrieval mechanisms to the IDEX 
imagery archive, under IR&D support 
provided by the Information and Computing 
Technologies Directorate of the Lockheed 
Martin Advanced Technology Center (ATC, 
formerly the Palo Alto Research 
Laboratories). Our exploratory development 
in 1996 was confined to panchromatic 
imagery, and initial results on unclassified and 
classified data were successfully demonstrated 
at the IDEX Users Forum, held in Sxmnyvale 
on October 23-24, 1996. In 1997 the range of 
FOCUS applications is expanding to include 
Space Imaging International (SII) and other 
miilti^ectral imagery, since IDEX is evolving 
in the direction of fiiU commercial remote- 
sensing data archival capabilities 

2 FOCUS Concept of Operations 

Reconnaissance and commercial remote 
sensing imagery wiU generally be accompanied 
by "metadata", such as: 

• collection system geometry 
» camera location 
» roll/pitch/yaw 
» focal length 
» principal point 

• intended target region 
» comer coordinates 
»WAC/ONCcell 
» center point 
»target Ids 

• acquisition date/time 
» GMT of image 
» flight number 
» strip/pass number 

• image size 
»line/samples/bands 
» bits/pixel 
» spectral band assignment 

• processing history 
» calibrations applied 
» radiometric enhancements 
» contrast adjustments 
»lookup and mapping tables 
»tonal transfer curves 

This metadata provides a very valuable but 
coarse-grain query mechanism for initial 
screening of the image stream and retrieval of 
images fi:om an archive. The FOCUS concept 
adds a second level of fine-grain filtering based 
on automated examination of image internals, 
such as pixel-level indications of changes from 
reference normalcy in user-specified geospatial 
locations. The two-level metadata-plus- 
content qaery mechanism is depicted 
schematically in Figure 1. 

In our Sunnyvale IDEX Development 
Laboratory, FOCUS model registration and 
change detection algorithms run on a UNIX 
platform wliich is interfaced to IDEX through 
an Output Data Server (ODS). This interface 
provides FOCUS access to a large archive of 
NTM imagery in a development environment 
for an existing fielded system. The ODS also 
provides basic image manipulation functions, 
such as image retrieval fi-om the IDEX image 
cache and format conversion firom the IDEX 
compressed imagery (TFRD) to TIFF and, 
soon, NITF 2.0 formats acceptable to the 
FOCUS processor. Our work with the FOCUS 
prototype identifies requirements for future 
operational systems, sach as extension of the 
image archive to incorporate site maps and 3D 
models in vector and raster formats as needed 
to support CBIR queries. The concept of 
incorporating content-based queries into the 
IDEX architecture is illustrated schematically 
in Figure 2, wWch shows the FOCUS tasking 
and query station as separate fi-om the lA's 
imagery exploitation workstation (lES). In 
this configuration, once the content-based 
qxiery mechanism is in place, the lA may 
commence the exploitation session by iising 
the FOCUS-derived "tip sheet" to review the 
prioritized order of the task packet of images 
vAnch     are     about     to      be     exploited. 
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Figure 1. The FOCUS concept: Content-based qxieries are powerful image analyst tools 

Figure 2. A block diagram of the FOCUS operational concept ~ how content-based queries fit into 
the existing IDEX architecture 
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3 Examples of Automated Change 
Detection, Content-Based Retrieval, and 
Prioritization of Imagery by FOCUS 

Our experimental work in the IDEX 
Development Laboratory utilizes NTM data 
to develop image und^standing capabilities 
required by the special characteristics of these 
sensor types. We are precluded from 
publishing such data in these proceedings. In 
order to illustrate the concepts for this 
audience, we have also exercised FOCUS on 
unclassified aerial images, maps, and 3D 
models of our Lockheed Martin Missiles and 
Space home facility adjacent to Moffett Field 
in Sunnyvale, California. 

This data set is described in our web site, 
http j//badger.parl.com/-payton/iu/. 

The FOCUS process begins with metadata- 
based queries to the archive. The metadata for 
our   unclassified   aerial    imagery    database 

includes the approximate date of acquisition 
and the approximate latitude and longitude 
coordinates of the comer points of each 
image. Figure 3 shows the footprints of these 
images plotted in registration to a TIGER map 
of the region. 

The metadata criterion selects the images 
vAach. wiU be considered for FOCUS 
processing; we wish to further restrict this list 
by imposing a content-based criterion. This 
criterion could support analysts v^o must 
monitor a facility constantly or might 
prioritize a set of images vMch. must be 
exploited in a limited period of time. 
Examples of a content criterion are 'retrieve 
only those images with an aircraft parked in a 
specific spot' or 'retrieve only those images 
vhsre a building wasAvas not observed in this 
geographic location'. 

'- 
ZJ Map Browser 

Criterion for user mundy 

122.2 U 122.1  U 122.0~W 121.9 W 

I Find Images j   Cancef| 

.J 

Figure 3. Footprints of aerial images of the Lockheed Martin/ Sunnyvale facility 
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Figure 4 illustrates how this CBIR formulation 
process is performed. You will note that, in 
this image, FOCUS has overlaid a 3D site 
model of the facility onto a reference image in 
proper perspective; this assists in CBIR region 
identification. We call sxich reference images 
"content criterion images", as they are used to 
provide FOCUS with normalcy baselines. An 
analyst selects a reference region (used to 
calibrate the imderlying image understanding 
algorithms) and then selects an event region. 
In this case, the analyst is interested in finding 
all images in the image archive wiiere Biulding 
158 of the LMMS complex is not visible; this 
is a typical task performed by intelligence 
analysts doing 'negation'. A parking lot near 
Building 158 acts as reference region. The 
reference and event regions are highlighted in 
the figure. 

In order to perform automated change 
detection and cueing, FOCUS projects the 3D 
site model onto each of the images vAich 
meet the metadata constraint and "carves out" 
image chips upon vMch it runs image 
understanding algorithms. These algorithms 
make statistical determinations on the 
likelihood of change or activity in the region 
under consideration by comparison with the 
normalcy baselines; the result of the lU 
algorithms is a confidence number, between 0 
and 1, reporting the estimated change 
significance of each image. (A ranking of 0 
indicates no change from the image initially 
selected to specify the content criterion; a 
ranking of 1 indicates an appreciable change 
from the lA-designated normalcy.) 

12_18_8G_2x 

File Display Props Geomelry Topology Enhance Segment Site Algorithms Misc 

Region 

 Select StmcturB   
Select Structure fL: Select Hicihlmhted M: Abort R: cvcle Possibiimesl 

Figure 4. Using the FOCUS GUI to Specify a Content-Based Criterion for Biulding Negation 
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As each image is processed, the "carved out" 
image diip is stored locally with the 
confidence number. Once the FOCUS 
processing is completed on all images meeting 
the metadata criterion, these "carved out" 
image chips are assembled and sequenced in 
order of confidence number to form an 
"analyst tip sheet". A time-constrained 
analyst would use such a sheet to assist in 
workflow prioritization. The lA focuses 
(hence the name of our effort!) attention on 
those images meeting the content criterion. 

D^tal Tip-Off for User payton 

• Striwtare Method Building 158: 

Image Moffett_l 970, significance t 

• StriKture Method Building 158: 

Image Moffett_1975_L eft, siginificaiice 1 

• Structure Method Building 158: 

Image Moffett_1975_Right, significance 1 

Figure 5. Top of the Analyst Tip Sheet ~ 
Images wliere Building 158 is not present 

Figure 5 shows the 'head' of the tip sheet. The 
objective of our query was to retrieve all 
images where Building 158 was not present; 
the first image chips in the  list are those 

images where FOCUS determined that Building 
158 was absent (these images were taken in 
1970 and 1975 before it was constructed). 
Figure 6 shows the 'tail' of the tip sheet. Since 
our query was to retrieve images where 
Building 158 was not present, those images 
containing the building appear lowest in the 
list because FOCUS assigned low 
priority/confidence numbers to them. 

• structure Method Building 158: 

Image 12_04_90_2x, significance 0.478333 

Structure Method Building 1S8 : 

Image 01_23_89_2x, significance 0.426206 

Structure Method Building 158 : 

Image95-2, significance 0.335149 

Structure Method Building 158 : 

Image 12_18_86_2x, significance 0.221138 

Figure 6. Bottom of the Analyst Tip Sheet 
Images where Building 158 is present 
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4 Conclusions/Lessons Learned 

We have tested our FOCUS laboratory 
prototype on a small set of sites. These 
experiments have confirmed the validity of 
the FOCUS approach; extensive testing in an 
operational envionment on larger, diverse sets 
of images and facilities is required to 
'productize' FOCUS. A major objective of the 
current year's effort is to install and test a 
FOCUS prototype in an operational image 
exploitation facility. 

Registration of models to images is crucial to 
FOCUS. Image analysts require that the 
registration process be automated (thereby 
reducing analyst time burdens), precise 
(resulting in accurate model-to-scene 
association), and rapid (to meet analyst 
timelines). We are investigating several 
"registration engines" for their suitability in 
this phase of the FOCUS pipeline. 

It is crucial to extend FOCUS to include a 
diverse toolkit of image understanding metrics 
(e.g., edge, texture, and morphological 
statistics) required to match to high-level 
image analyst queries. To broaden the 
^)plicability of FOCUS to commercial/remote 
sensing imagery, these algorithms should work 
in single and multiple band domains. 
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Abstract 

We describe a focused research effort whose 
ultimate goal is the design of an exploita- 
tion system capable of temporal analysis of 
vehicular activities from multisensor data. 
The purpose of this system is to detect, 
track and recognize isolated or clustered ve- 
hicles, as well as structured or unstructured 
vehicle groupings and their activities, in 
heterogeneous sites, for varying rates of ob- 
servation. Objectives, system components, 
open research issues and evaluation plans 
for this project are summarized in this pa- 
per. Potential applications are in process- 
ing TESAR data as well as in extensions of 
MSTAR efforts when revisit scenarios are 
included. 

1    Introduction 

The proposed research effort involves the design of 
an image exploitation (IE) system dedicated to ve- 
hicular activity monitoring, incorporating context 
information and temporal reasoning. The purpose 
of this system is to detect, track and recognize iso- 
lated or clustered vehicles, as well as structured or 
unstructured vehicle groupings and their activities, 
in both urban sites and open terrain areas. 

The proposed system will have two basic modes of 
operation: a revisit mode and a temporal analysis 
mode. The revisit mode allows for exploitation of 
newly acquired synthetic aperture radar (SAR) or 
electro-optical (EO) images using previously con- 
structed site models. This mode is very close to 
the types of operational methods envisioned and im- 
plemented for the RADIUS project.  It extends the 
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RADIUS work by providing additional revisit oper- 
ations for the exploitation of SAR images, includ- 
ing multi-image SAR-SAR and SAR-site registra- 
tion, multi-image wide-area site model construction 
from SAR, and multi-image/multi-resolution detec- 
tion and recognition of vehicle targets in SAR. This 
mode has potential applications in processing PM- 
TESAR data as well as in extensions of MSTAR ef- 
forts when revisits are involved. The temporal anal- 
ysis mode of operation extends the revisit mode by 
exploiting the latest state of the site along with the 
site history, site evolution, or object dynamics. This 
mode includes three basic operations: (a) focusing 
using temporal inference, (b) generation of activity 
summaries for targeted functional areas, vehicles, or 
vehicle formations, and (c) event analysis. 

The planned system addresses the necessity for any 
operational IE system to be capable of tracking mov- 
able objects across wide areas. A system with the 
ability to track single vehicles and to analyze their 
activities and evolution of vehicle formations over a 
period of time would be an important asset in both 
surveillance and tactical applications. Our system 
allows for exploitation of structured as well as un- 
structured sites. In structured areas (garrisons, ur- 
ban environments), such a system would be capable 
of tracking vehicles and vehicle groupings in park- 
ing, storage, and loading areas as well as on roads. In 
open areas, the system would allow the classification 
of vehicle groupings, identification of their states of 
operation, and monitoring of both the groups' over- 
all motions and the evolution of their internal con- 
figurations. 

The system will integrate the following features: A 
context-aided IE paradigm emphasizing the use of 
site-model and context information is used for im- 
age prioritization, detection, recognition, and moni- 
toring tasks. The system allows for multisensor IE, 
using both SAR (spotlight and stripraap) and EO 
imagery for detection and recognition. The evolv- 
ing nature of the observed vehicle formations, and 
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causality in group and site evolution, require the de- 
sign of temporal reasoning schemes. Temporal anal- 
ysis will allow prediction, negation, and trend anal- 
ysis, and will support feedback mechanisms to the 
detection, classification, and prioritization modules. 
Temporal analysis will rely on the use of inference 
systems for event modeling, and will exploit IE re- 
sults stored in spatiotemporal databases. Dynamic 
system modeling tools will be used for tracking and 
predicting cluster motion and the evolution of group 
configurations. 

We plan to include the following functional compo- 
nents in our system: 

Image prioritization: Context-based delineation and 
cueing mechanisms will be used to guide the appli- 
cation of monitoring tasks. Focusing will be par- 
tially driven by the requests of the Imagery Analyst 
(lA) according to the current order of mission and 
by predictions generated by the temporal reasoning 
modules. 

Detection and classification: We will address the de- 
tection and classification of isolated target vehicles 
and of vehicle clusters, both loose and structured, 
from SAR only and from SAR supported by EO. De- 
tected targets will be clustered into groups using ge- 
ometrical considerations. We will consider the cases 
of target groupings constrained to assume periodic 
formations, target clusters exhibiting regular con- 
figurations conforming to standard formations, and 
unstructured forces organized in loose but repeated 
cluster subgroups. Different schemes (spectral anal- 
ysis, rule-based reasoning, or template matching us- 
ing labeled graph matching) will be used; these 
schemes will be selected according to context and 
location as well as by temporal reasoning. 

Tracking cluster position and evolution: Region- 
dependent vehicle dynamics coupled with inference 
rules will encode the groups' dynamical behaviors. 
These models will be supplemented with rules de- 
scribing the allowed macroscopic evolution of a 
group's configuration (fusion, fission, or reorganiza- 
tion). The road network models, and the presence of 
possible obstacles or supply and ammunition dumps, 
will constrain the prediction of hypothesized group 
positions. These hypotheses will drive focusing and 
negation mechanisms. 

Multisensor image positioning: Algorithms for posi- 
tioning SAR and EO images to existing site models 
are necessary for context-based exploitation, delin- 
eation, fusion and cueing mechanisms. Novel algo- 
rithms incorporating multi-image triangulation, re- 
finement using DEMs, and model-to-image feature 
matching will be developed. 

Wide-area site model construction: The planned sys- 
tem will incorporate tools to construct wide-area site 

models from multiple SAR observations. 

The originality of the proposed research lies in a 
global approach to the problem of vehicle monitor- 
ing and in the use of innovative tools and strate- 
gies designed for this purpose. Several key ideas 
are proposed: (a) A major enhancement over past 
approaches to the problem lies in temporal reason- 
ing and multirate temporal exploitation. The system 
will be capable of reasoning about and interpreting 
data acquired at various frequencies. This will be 
carried out by a combination of inference rules and 
dynamical systems for describing system evolution, 
(b) The system will enable multi-site exploitation, 
and will be capable of tracking isolated and clustered 
vehicles from structured areas to unstructured open 
areas, (c) The system will use an innovative suite of 
techniques, including spectral analysis and labeled 
graph matching, for group detection and analysis. 
(d) The system will expand and integrate the set of 
tools for revisit operations on SAR imagery, includ- 
ing site construction, target detection and recogni- 
tion and registration. 

This paper is structured as follows: Section 2 out- 
lines our objectives and approach. The various sys- 
tem components and open research problems are re- 
ported in Section 3. Section 4 presents our perfor- 
mance evaluation approach. 

2    A SAR/EO IE System Guided by 
Temporal and Contextual 
Information 

The importance of an IE system that could assist the 
lA in continuous surveillance of vehicular activities 
is obvious. Such a system should be able to moni- 
tor the movement of vehicle units. It should oper- 
ate across sites of various natures, including garri- 
son areas, where materiel and personnel are stored, 
as well as on roads and in open areas. It should 
be able to support the monitoring of large num- 
bers of images collected by XJAVs. Processing such 
large datasets calls for the development of effective 
focus-of-attention mechanisms, learning and tuning 
parameter training strategies, as well as adaptive de- 
tection and recognition schemes. 

Visual imagery alone is not sufficient to effectively 
address the continuous monitoring of vehicular ac- 
tivities. SAR is the sensor of choice for UAVs; SAR 
images enable all-weather monitoring, and their ac- 
quisition is independent of illumination conditions 
and range [4]. This is a critical element if one con- 
siders that UAVs are likely to offer mostly high alti- 
tude observations of the sites under scrutiny. In any 
case, the joint use of SAR and EO imagery offers 
an effective set of sensor data for vehicle monitoring 
purposes from UAV types of platforms. To this end, 
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we envision a multisensor system where SAR is the 
primary source of sensor data, with the support of 
EO data when available. 

The system's architecture, depicted in Fig. 1, in- 
cludes the following functionalities: Images are po- 
sitioned to an existing site, focusing and delineation 
mechanisms are applied to determine Regions of In- 
terest (ROIs), followed by detection and classifica- 
tion of targets from SAR or combined SAR-EO ob- 
servations. The detection/classification results are 
used for grouping and group analysis. The tem- 
poral reasoning modules support several functions 
ranging from area prioritization to event analysis. 
Over the last several years, many Image Under- 
standing (lU) algorithms have been developed to 
support the above exploitation tasks. While they 
have demonstrated promising capabilities, the appli- 
cation of these algorithms in operational situations 
has often been limited by their lack of robustness. 
Three factors will favorably impact the effective use 
of lU algorithms in surveillance systems; these are 
the context-aided exploitation paradigm, interactiv- 
ity, and temporal reasoning. 

Systems that track site activities over time can ex- 
ploit causality in site and event evolution. Forward 
and backward prediction (backtracking) schemes can 
be used to support focusing and negation mecha- 
nisms. Temporal reasoning can also be used for in- 
ferring trends or recognizing events of significant na- 
tures. Our system will support temporal analysis 
and reasoning by using a powerful combination of 
dynamical system modeling and inference systems— 
describing the systems' evolution at both coarse and 
fine temporal scales—coupled with spatio-temporal 
databases. 

The importance of context-based exploitation was 
demonstrated in the RADIUS project [l]. Site mod- 
els and context information enable focusing mech- 
anisms. We have shown as part of the RADIUS 
project that site models, by reducing spatial and 
spectral search spaces, allow the robust use of spec- 
tral analysis methods—known otherwise for their 
fragility when applied to recognition or texture 
analysis—for attentional and detection purposes [2]. 
Exploiting site model information was also very use- 
ful in implementing effective vehicle detection and 
counting algorithms [5]. We show in a companion 
paper [3] how site models can be used to store valu- 
able training patches exploited by auto-calibration 
schemes, for automatically tuning lU algorithm pa- 
rameters. Finally, context-based exploitation em- 
phasizes the development of specialized algorithms 
whose application is controlled by inference systems 
guided though interaction with the lA [8]. 

Interactivity is another key feature of future opera- 

tional IE systems. Our system will feature several 
interactive processes (including search, focusing, and 
target/group classification) in situations where hu- 
man interaction is truly needed, so as not to impede 
the processing of large image datasets. Interactiv- 
ity will be emphasized in bootstrap modes, for the 
recognition of new vehicles/groups in regions tagged 
by the lA, and avoided in batch modes. 

3    System Components and Research 
Issues 

Overall system description Our IE system is ded- 
icated to vehicular activity monitoring using SAR, 
possibly supported by EO. This system follows two 
main operational modes: (a) the revisit mode and 
(b) the temporal analysis mode. 

In the revisit mode, newly acquired images are 
analyzed using a site-model-based exploitation 
paradigm, in a fashion reminiscent of the exploita- 
tion mode adopted by the RADIUS project. This 
makes use of up-to-date site models constructed 
from previously acquired imagery. Our work will 
extend the RADIUS work by designing revisit func- 
tions for the exploitation of SAR images, particu- 
larly PM-TESAR data. These functions include: (a) 
multi-image SAR-SAR and SAR-site registration, 
(b) multi-image wide-area site model construction 
from SAR, and (c) multi-image/multi-resolution de- 
tection and recognition of vehicle targets in SAR. 
This mode can also be used for extending MSTAR 
efforts when revisits are involved. 

In contrast with the revisit mode, the temporal anal- 
ysis operational mode exploits the latest state of the 
site along with the site history. The evolution of 
site features relevant for vehicular activities (roads, 
loading areas, parking lots), or the vehicle dynam- 
ics and positions across time, are stored in a dy- 
namic database and retrieved using spatio-temporal 
queries. Site history is then utilized in specific ex- 
ploitation scenarios for carrying out three basic func- 
tions: (a) focusing using temporal inference, (b) gen- 
eration of activity summaries for targeted functional 
areas, vehicles, or vehicle formation, and (c) event 
analysis. This operational mode will be applied to 
SAR (PM-TESAR, MSTAR) as well as EO (new Ft. 
Hood, MB2), possibly with embedded real vehicles 
staged so as to simulate interesting scenarios. 

We plan to investigate the following enabling the- 
oretical and algorithmic tools, system features and 
innovative techniques in support of the above system 
functionalities: 

Positioning of SAR and EO A system for vehicle 
monitoring should support fusion and cueing mech- 
anisms among sensors. In an operational system, 
EO and stripmap SAR images, acquired by HAE 

417 



Predictior* backtracking 

Temporai reasoning 

Force Analysis 

Figure 1: System architecture 

UAVs, can cue the acquisition of higher-resolution 
EO and spotlight SAR images acquired by aircraft 
and UAVs. The functions of cueing, fusion of het- 
erogeneous sensor observations, and delineation of 
ROIs all point to the necessary geometric interac- 
tion between SAR and EO images and existing site 
models, and thus the importance of robust and au- 
tomated positioning techniques. Note that the regis- 

tration work within this focused research effort will 
only support our own needs and will not replicate 
other efforts in this area. 

We depart from image-to-image registration [6; 
7] and consider multi-image positioning of SAR and 
EO imagery to maps (including topographic maps, 
Digital Feature Maps, or maps derived from SAR), 
wide-area sites, as well as local-area sites.    Fig. 2 
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(a) Co-positioning of three Stockbridge SAR images 

(b) Kirtland Air Force Base SAR image (c) Kirtland Air Force Base EO image 

Figure 2: SAR-SAR and SAR-EO registration 

illustrates these tasks. Fig. 2 (a) shows three reg- 
istered SAR images of the Stockbridge target array 
set, where an afhne warping can be derived from the 
SAR acquisition parameters (azimuth and slant an- 
gles along with range and cross-range resolutions) 
or image correspondences, if acquisition parameters 

are not available. Figs. 2 (b) and (c) are respec- 
tively EO and SAR images of the Kirtland dataset 
obtained using a correspondenceless method, where 
a registered building structure is highlighted on both 
images. 

Positioning with respect  to wide-area as  well as 
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local-area maps and 3D sites will be addressed in the 
context of geopositioning/georeferencing. The criti- 
cal problem of registration lies in feature correspon- 
dence. Robust positioning across photometrically 
and radiometrically diverse sensors such as SAR and 
EO needs to be mediated through a common site and 
necessitates the development of feature- and object- 
based positioning techniques relying on model-to- 
image correspondences. Features appropriate for de- 
tection are quite different for SAR and EO. We plan 
to develop sensor-specific tools for detecting cultural 
as well as man-made features visible in both SAR 
and EO (such as detectors for building corners or 
road intersections). Positioning will then be accom- 
plished using model-based matching. Multi-image 
triangulation will be used to generate additional tie 
points in unconstrained areas of the image. Sim- 
plified slant-plane orthographic projection assump- 
tions will be generalized to include terrain models 
of increasing complexity, including flat, planar, and 
full DEM. We will address SAR-specific effects of 
ground-level projections, variations in elevation, and 
layover. When coregistered digital elevation maps 
are available, errors due to layover and shadow will 
be compensated for. Also, the presence of varying 
shadows cast in different SAR views will be consid- 
ered. 

Context-aided prioritization The need for ap- 
plying lU algorithms across large numbers of im- 
ages requires effective image and region prioritiza- 
tion mechanisms. Image prioritization and locale fo- 
cusing mechanisms are based on the following mode 
of operation: ROIs corresponding to the current or- 
der of mission are tagged for exploitation by the 
lA; previously detected groups tagged for continu- 
ous monitoring by the lA must be accounted for, 
to the extent possible, in any subsequently acquired 
images. 

In light of the above considerations, focusing will be 
driven by the following modules: 

• Regions tagged by the lA are delineated for ex- 
ploitation using site model information. 

• Possible locations of vehicles tagged for continu- 
ous monitoring are hypothesized by integrating 
forward the dynamics of the group. This pre- 
diction is made on the basis of past observations 
of tracked single vehicles or formations stored in 
the spatial database. These hypothesized posi- 
tions are inferred from dynamical models of the 
vehicles or groups, encoded in inference rules 
(for low-frequency observations) or dynamical 
observer-predictor systems (for high-frequency 
observations). The hypothesized locations of 
the monitored groups of vehicles will then pro- 
vide the needed focus-of-attention mechanism 

by passing ROIs to our target detection mod- 
ules. 

Note that the group dynamics are learned from past 
observations and are indexed by the nature of the 
traversed terrain, the weather encountered, and the 
presence of hostile objects. Further note that the 
learned dynamics offer an additional very attractive 
means of inferring the group's nature or state of op- 
eration. 

Vehicle detection and classification We will im- 
prove our current SAR and EO detection algorithms. 
Non-Gaussian CFAR target detection results will be 
filtered by morphological operations. Segmentation 
will help discard returns from clutter or urban ar- 
eas (see Fig.3 showing the results of CFAR detec- 
tion on a Stockbridge target array image). For EO 
sensors and for the detection of vehicles in open 
areas, situations involving single or multiple types 
of vehicles with no dominant orientation and possi- 
bly multiple models will be considered. Discrimina- 
tion/classification of vehicles will be carried out from 
SAR or joint SAR-EO observations. Target detec- 
tion will be based on a decision-theoretic approach 
exploiting an observation space including various 
target features such as fractal dimension and the 
Topographic Primal Sketch (TPS). Given the het- 
erogeneous nature of the classification features, clas- 
sification will be implemented using decision trees. 
Class hypotheses will be formulated at this level and 
further disambiguation will occur during the config- 
urational and temporal reasoning phases, where the 
system dynamics of the observed target will also be 
used for recognition purposes. 

Group detection and recognition Clustering of 
the vehicle groups will be carried out first. This 
grouping procedure can rely on simple techniques, or 
it can include more complex analyses of the grouping 
geometry. As an example, a simple determination 
of the convex hull was applied to group the vehi- 
cles detected in EO images on roads and open areas, 
as shown in Figs.4(d)-(f). For increased robustness, 
geometrical grouping can be applied jointly to co- 
positioned SAR images; the CFAR targets individ- 
ually detected on three Stockbridge images (one of 
which is shown in Fig. 3) are jointly grouped using 
distance criteria in Figs. 4(a)-(c). 

Group recognition will rely on simple group features, 
such as the size and composition of the group, as well 
as how target-like the detected vehicles are. Vehicle 
formations can also be analyzed in terms of how the 
vehicles need to respond to terrain topography and 
trafficability. We propose to combine a set of tech- 
niques tailored to the context/situation/location in 
which the vehicle cluster analysis is carried out, and 
depending on how loose or structured  the group- 
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Figure 3: CFAR target detection 

ings are. The following cases will be considered: 
(1) Groups having very regular and periodic forma- 
tions. This case is relevant for convoy deployments 
on roads, or stationary vehicles in parking lots or 
in storage areas. (2) Targets exhibiting regular con- 
figurations conforming to standard formations, such 
as formations of maneuvering units in staging areas. 
(3) Unstructured groups organized in loose but re- 
peated patterns, such as brigade formations in open 
areas. 

For situation (1), when regular and periodic for- 
mations of vehicles are observed, techniques rely- 
ing on spectral analysis or matched filtering will be 
used, extending to open areas the mechanism de- 
veloped in [2] to detect periodic clusters of objects 
such as convoys on roads or vehicles in parking lots. 
For situations (2) and (3), a technique relying on 
spectral analysis for the detection of periodic con- 

figurations may not work. In this case, two ap- 
proaches will be investigated. The first relies on in- 
dividual target recognition and configurational anal- 
ysis using inference systems encoding knowledge of 
deployment configurations. The second uses con- 
figurational templates in conjunction with labeled 
graph matching. Graph matching and configura- 
tional analysis will help in determining the opera- 
tional state and status of the grouping. 

Temporal analysis and multiresolution dy- 
namic modeling Temporal analysis serves several 
purposes and will be addressed at various tempo- 
ral resolution levels. The first function of temporal 
analysis is to support one of the focus-of-attention 
mechanisms previously described. Additional func- 
tions of temporal analysis include helping in vehi- 
cle/group identification, detecting specific events, 
carrying out historical trend analysis, change detec- 
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(b) Stockbridge SAR image 7 (c) Stockbridge SAR image 8 

(d) New Ft. Hood (e) M2 (f) M34 

Figure 4: Geometrical grouping of detected vehicles on SAR and EO images 

tion, and negation mechanisms. 

The ability to infer trends evolving over differ- 
ent time scales is essential. We plan to consider 
both time-critical changes of a tactical nature, and 
changes of a possibly slow and progressive nature. 
This implies that lU algorithms need to be tailored 
to the selected time scale. For example, if fine 
change or trend detection is required, selective de- 
tection mechanisms for ongoing activities, unstruc- 
tured groups or unstructured features (such as earth 
scarring or entrenchment) need to be developed. 

The necessity of working at different resolutions also 
means that specialized tools used for capturing the 
situation, or more specifically the state evolution of 
the observed system, need to be employed. One pur- 
pose of temporal reasoning mentioned above is to 
help disambiguate vehicle or group classes. Tem- 
poral reasoning can be used to identify single tar- 
gets or groupings by using the dynamic behavior of 
these groupings. Temporal rules could encode the 
manner in which groups evolve at a coarse temporal 
resolution. For example, such rules would encode 
the evolution of a deployment situation from storage 

areas to roads, staging areas, open areas, refueling 
and resupply areas, etc. At an intermediate tempo- 
ral resolution, temporal analysis requires the use of 
system modeling to capture the dynamic nature of 
formations and sites. Conditions for the transitions 
between various states and events for a formation 
will also be modeled using inference rules. These 
rules should include combination rules such as fu- 
sion, fission of groups, and recombination resulting 
from incurred losses. These rules will also exploit 
information derived from context to infer the prac- 
ticability of routes and paths, and the likely pres- 
ence of obstacles to ground vehicle movement. For 
instance, inferences can be made based on the lo- 
cale position, season, region type, and past signifi- 
cant events (high mountain ranges with snow in the 
winter, spring flood areas, or locales previously oc- 
cupied and likely to contain mines, may be desig- 
nated as impassable). In garrison sites, these rules 
will encode knowledge of road networks and usual 
site traffic stored in site models. These will be used 
along with past observations to predict successive 
convoy positions for deployment situations. 
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In addition to vehicle or group identification, the 
above rules will also help in event analysis, by help- 
ing tie together the various group observations to 
infer events of particular importance. For instance, 
convoys seen in service areas, then on roads, and 
then in exercise areas are likely to be engaged in rou- 
tine exercises. Exercises lasting over periods greater 
than three days may point to more significant prepa- 
rations. Similarly, deployments carried out jointly in 
a large number of garrisons and involving resupply 
routes are likely to indicate preparations for more 
specific activities. 

Descriptions at a fine temporal resolution necessitate 
the use of discrete event system modeling as well as 
discrete time system dynamic analysis. These mod- 
els principally serve the purposes of system iden- 
tification, as well as prediction and backtracking 
(backward prediction) mechanisms. These mecha- 
nisms will support the focus-of-attention and nega- 
tion tasks. Focus-of-attention requires being able to 
hypothesize current locations of previously observed 
vehicle groupings tagged for monitoring, while nega- 
tion requires being able to backtrack from the cur- 
rent position of a group to a set of hypothesized 
points of origin. 

The group dynamics depend on the state of affairs 
of the group (possible handicaps received, availabil- 
ity of fuel, etc.). The group dynamics also very 
much depend on the nature and topology of the ter- 
rain (hills, forest, mountains, roads), which is itself 
strongly shaped by current and past weather condi- 
tions (rain or snow precipitation, ice, etc.), as well 
as obstacles encountered (river, mines, possible pres- 
ence of hostile elements). These varying conditions 
are used in integrating the group dynamics starting 
from the point where the group was last observed 
to infer all possible current positions of the group. 
Similarly, backtracking is implemented by backward 
integrating the terrain-dependent dynamics of the 
grouping and taking into account the weather con- 
ditions at the time the terrain is crossed to determine 
the hypothesized set of points of origin of a group of 
vehicles. 

Negation mechanisms are triggered as a result of 
newly found groups detected in areas tagged by the 
lA or determined by one of the lU focus-of-attention 
mechanisms. In negation mechanisms, hypothesized 
areas of origin are generated for each hour prior to 
the current detection. Each hypothesized swath is 
used for querying the spatiotemporal database for 
image coverage of that swath. If the swath was cov- 
ered, and analysis of the swath was performed, the 
database is further queried for any detected group 
observations on the swath. If no analysis was per- 
formed, lU group detection algorithms are applied 

to these images. This is carried out until candidate 
groups are produced to which the currently observed 
group may correspond. If no such groups are pro- 
duced for the week preceding the current observa- 
tion, the current group is tagged as unaccounted for. 

Another possibility not pursued here, extending this 
approach, lies in the use of simulation tools for pre- 
diction and backtracking purposes. By modeling the 
evolution of grouping movement and formation as 
stochastic systems, we will be able to predict the 
likelihood of possible events, and prepare contin- 
gency monitoring plans for the I A. 

The above mechanisms will be enabled by a spatio- 
temporal database holding historical results of past 
group analyses and supporting trend analyses. This 
database will support queries made on the basis of 
spatial proximity, through a DBMS supporting spa- 
tial queries. 

Interactivity Interactivity yields increased effec- 
tiveness in operational scenarios. Interactivity will 
be concentrated during bootstrap modes, when new 
vehicles/groups are detected and recognized in re- 
gions tagged by the lA. Additional instances where 
interactivity is critical are as follows: (a) Often lU 
algorithms rely on many tuning parameters. Most 
of these can be eliminated using learning techniques 
and a single parameter representing the detection 
sensitivity can be saved for tuning by the lA. (b) 
Control of the algorithms can be driven by a rule- 
based system interacting with the lA. (c) Focusing 
and prioritization can be initiated by the lA using 
a scripting tool according to the current order of 
mission. The lA should then be able to modify the 
current set of monitoring tasks in response to de- 
tected events, (d) Indeterminacy in vehicle or group 
classes can be removed by letting the lA choose from 
a set of most probable candidates. 

4      Evaluation and Testing 

Continuous experimental evaluation will be carried 
out so as to ascertain the limits of usability of the lU 
modules. This is essential for integrating these mod- 
ules into operational IE systems. Evaluation needs 
to be carried out at both the module level and the 
system level to identify the effect of decreased perfor- 
mance of certain modules in subsequent processing 
stages. 

The evaluation of individual module performance 
will be addressed as follows: 

• The detection performance for single targets 
and target groupings will be quantified using 
ROC curves. The performance evaluation will 
be indexed on the number and frequency of tar- 
get observations. 
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• The performance of the image positioning algo- 
rithm will be evaluated as follows. The match- 
ing accuracy can be used to characterize the ad- 
equacy of features automatically detected and 
matched between the image and the site model. 
The results of multi-image triangulation and tie 
point generation can be analyzed by using any 
available ground truth. Lastly, the mutual reg- 
istrations of image pairs can be evaluated using 
RMS error. 

• The use of temporal reasoning and its advan- 
tages can be mecisured as follows. The gain in 
performance using temporal reasoning can be 
measured by assessing (a) the detection perfor- 
mance and (b) the time necessary to detect a 
previously tracked grouping in a large image by 
brute force analysis, as compared to using ROIs 
derived from prediction mechanisms. When us- 
ing temporal reasoning for identification pur- 
poses, the discriminatory nature of observed dy- 
namics will be assessed. 

• Grouping algorithms will be evaluated in terms 
of probability of detection and correct classifi- 
cation. 

Imagery for testing our algorithms will include the 
ADTS, MSTAR, PM-TESAR, Kirtland Air Force 
Base, new Ft. Hood, and other datasets provided by 
the government. These datasets will allow us to test 
detection, classification and grouping capabilities. 
For more advanced temporal reasoning and group 
analysis capabilities, we will rely on new datasets in 
conjunction with semi-synthetic data (real or syn- 
thetic targets embedded in real SAR images). 

5    Conclusion 

We have described an IE framework guided by con- 
text information and temporal reasoning. This sys- 
tem is dedicated to the analysis of vehicle group- 
ings observed using multisensor data. The combina- 
tion of specialized lU algorithms, coupled with ro- 
bust group modeling and dynamic modeling meth- 
ods, will lead to an effective system for vehicular 
activity analysis. 
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Abstract 
Recent progress in image understanding re- 
search at GE is described. GE's program in lU 
is now centered on applications in intelligence 
image analysis with emphasis on change detec- 
tion and object recognition. A new effort is now 
underway to develop descriptions of objects in 
terms of approximate symmetry to extend the 
completeness of intelligence event processing. 

1    Model-Supported 
Exploitation(MSE) 

We have recently completed work on the Re- 
search and Development for Image Understand- 
ing Systems (RADIUS) program which is fo- 
cused on the use of context derived from 3-d 
site models to enable change detection in in- 
telligence imagery. The work at GE Corporate 
Research and Development (GE-CRD) has de- 
veloped or integrated seven change detection al- 
gorithms which are now operational in the RA- 
DIUS Testbed (RTS) at NIMA. 

These algorithms have been used to detect 
events of intelligence interest on a number of 
sites and over a limited range of image condi- 
tions. The results are sufficiently promising to 
warrant a more systematic evaluation of the al- 
gorithms on a larger image test suite. Addi- 
tional experience with the performance of these 
algorithms will be gained during the operation 
of the Site Monitoring System (SMS), which is 
a version of RTS being integrated into the Semi- 
Automatic Image Processing (SAIP) system. 

The experience gained from RADIUS has been 
transitioned to two other Model Supported Ex- 
ploitation (MSE) applications, PINPOINT and 
FOCUS. PINPOINT is a system for simulating 
image formation in weapon target IR sensors, 
based on accurate 3-d site models and thermal 
prediction code. Focus is a system for image- 
based queries on image archives stored in the 
Image Data Exploitation (IDEX) II soft-copy 
support system. The results of these queries 
are used to prioritize imagery to increase effec- 
tiveness of exploitation work flow. 

1.1    Pinpoint 

Our work on geometric and thermal invari- 
ants ^ is directed in support of the PINPOINT 
project. The overall goal of the PINPOINT 
project is shown in Figure 1. An example sim- 
ulation produced by the PINPOINT system is 
shown in Figure 2. A major effort in construct- 
ing PINPOINT site models is the assignment 
of IR material properties. Currently, material 
type is determined by trial and error using nu- 
merical thermal analysis code which solves the 
heat balance equation. Material choices are 
deemed correct if thermal analysis yields the 
observed surface temperatures. These tempera- 
ture observations are obtained from IR imagery. 

In collaboration with Wright Labs [l, 4], we 
are developing algorithms to classify materials 
using thermal invariants. Thermal invariants 
are functions which relate image temperatures 

^DARPA Contract F33615-94-C-1529 
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Figure 1: The PINPOINT system concept. 3-d site models are constructed from various image 
sources. The resulting models are used to predict the appearance of targets in IR 
weapon sensors. (Figure courtesy of George Gargano, Lockheed Martin, Valley Forge, 
manager of the PINPOINT project.) 
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Figure 2: A simulation produced by PINPOINT. A series of rendered images from the 3-d site 
model depict the views seen by an IR weapon sensor. The IR image values are predicted 
using thermal modeling, taking into account weather and other conditions that can affect 
IR appearance. (Figure courtesy of George Gargano, Lockheed Martin, Valley Forge, 
manager of the PINPOINT project.) 
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and some assumed thermal properties to ob- 
ject material properties. Materials can there- 
fore be classified by observing the value of these 
functions over time sequences of IR imagery. 
Correct material choices yield the most invari- 
ant function sequences. During 1997, we plan 
to integrate these material classification algo- 
rithms with the C-l—I- site modeling system, 
Target Jr [ll], used in PINPOINT. The classifi- 
cation results will be compared with the current 
manual selection process and validated against 
thermal modeling results. Some initial trials are 
reported in these proceedings [5]. 

1.2    FOCUS 

Starting in 1996, an internal research project 
was initiated to take advantage of the experi- 
ence gained on the RADIUS project. The goal 
of the FOCUS system is to prioritize intelligence 
imagery. The assumption is that significantly 
more intelligence imagery collection means will 
become operational by the early part of the 21st 
century. Increased means of collection include, 
UAV's commercial satellites and ground-based 
mobile sensors. Given that an image analyst 
(lA) is capable of reviewing only a small faction 
of the available image collection, it is necessary 
to provide a means for prioritizing the image 
stream. The concept is illustrated in Figure 3. 
With this goal in mind, the FOCUS project has 
developed a web-based query engine which en- 
ables the prioritization of imagery based on: im- 
age meta-data, such as site location and sensor 
type;  image content using event trigger algo- 

rithms developed under RADIUS. The IA can 
establish event triggers by interacting with a 3- 
d site model display super-imposed on a refer- 
ence image of a site. The FOCUS query in- 
terface is illustrated in Figure 4. The FOCUS 
system uses a conventional relational database 
to initially screen out images based on image 
meta-data such as site location and sensor type. 
The images are then prioritized based on the 
state of event triggers established by selecting 
site model structures using a site browser im- 
plemented in TargetJr. FOCUS acquires either 
incoming images or archival images using the 
Output Data Server(ODS) of IDEX II. Work is 
currently underway to automate image registra- 
tion and couple to operational meta-data repos- 
itories. More details on the FOCUS system are 
reported elsewhere in these proceedings [2]. 

2    Approximate Symmetry 

We have just initiated a new project ^ to investi- 
gate the use of symmetry as a basis for generic 
object description for use in intelligence event 
monitoring. It is common for an lA to wish to 
restrict a change to a class of objects, such as 
aircraft. It is also common that lA interest is 
focused on a specific object, such as a weapon 
transport vehicle. 

There is currently no way to restrict change 
in this way without using model-based recog- 
nition or other ATR algorithms which require a 
large number of image observations or a detailed 
CAD model of the object. Further, the abil- 
ity of model-based vision techniques to consider 
classes of objects rather than a specific individ- 
ual is limited. It is very desirable to acquire the 
necessary models for detection and recognition 
of broad object classes with a minimal number 
of source images and with little eff'ort on the 
part of the lA. 

We are developing an approach to the repre- 
sentation of objects, based on symmetry, which 
promises to provide such means for model- 
ing and subsequently detecting and recognizing 
classes of objects[3]. The reason that symme- 
try is so pervasive is that a symmetrical object 

^Contract #F33615-97-C-1021. 
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Figure 4: The interface for FOCUS operation 
is based on Netscape'^'^. In a) the 
pre-selection of images is based on 
image footprints, shown as polygons 
super-imposed on the site map. In 
b) a Java applet is used to con- 
struct and event-trigger for monitor- 
ing an item of intelhgence interest. 
In c) the site-browser tool is shown. 
The browser is implemented in Tar- 
getJr and communicates with Java 
applets via sockets. A site model 
for Moffett Field in Sunnyvale, CA 
is shown. 

is both statically and dynamically more stable. 
In addition, it is economical to repeat struc- 
tures, as in symmetry, in order to minimize 
the number of required component designs and 
manufactured part types. Thus, general object 
classes can be based on the types of symmetry 
of any specific object in the class. This class 
restriction is often sufficient to support event 
trigger discrimination, because the types of ob- 
jects, such as vehicles, are limited by the context 
of the event. 

We expect that new descriptions, based on sym- 
metry will enable and lA to describe objects of 
interest without detailed models and to describe 
the general characteristics of objects not yet ob- 
served. This capability is necessary in discover- 
ing new weapon types or structural configura- 
tions. An example is shown in Figure 5. 

The Image Understanding 
Environment (lUE) 

E CRD is working with Amerinex Applied 
maging to enhance and expand the user in- 
erface for the lUE based on a public domain 
UI toolkit called FRESCO. Markus Weber of 

he University of Karlsruhe, Germany, has pro- 
ided the initial version of the lUE GUI based 

m FRESCO [12].  This implementation is dis- 
ributed in the current release of the lUE. Bill 
Boffman of CRD is extending this version to 
rovide 3-d rendering and manipulation using 

the OpenGL library. 

Work is also underway to provide an integration 
of the lUE and Target Jr the C-I-+ environment 
used in FOCUS and PINPOINT. It is planned 
that eventually the two systems will be com- 
pletely merged. A major goal for 1997 is to 
provide a common user interface across the two 
environments. 

4    Photogrammetry of Pushbroom 
Cameras 

A program called Carmen has been developed 
for carrying out bundle-adjustment, camera 
modelling and scene reconstruction from a set 
of image and scene measurements of general ge- 
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Figure 5: An example of symmetry descrip- 
tion. Two feasible transformations 
corresponding to the bi-lateral sym- 
metry of the aircraft are evaluated. 
The correct transform produces the 
black symmetry axis and maps the 
black curve on the right to the grey 
curve on the left. The incorrect 
transform has a much larger error 
and maps the curve to the shorter 
grey segment on the tarmac surface. 
The symmetry axis for this transfor- 
mation is shown in grey. 

Figure 6: Linear-pushbroom      image 
spherical marker balls 

with 

ometric features. The distinguishing character- 
istic of this program is that it is able to handle 
a mixture of arbitrary types of geometric fea- 
tures and camera models. At present, point and 
line features are supported, as are perspective, 
pushbroom, panoramic and rational polynomial 
cameras. Because of the object-oriented nature 
of the program, it is easily extendible to include 
very general types of camera, image feature or 
measurement. Possible geometric features may 
include plane conies, spheres or more complex 
geometric models. A Levenberg-Marquardt pa- 
rameter estimation algorithm is used to opti- 
mize the choice of camera and feature param- 
eters to fit the measurements. A structured 
sparse technique is used to obtain speediest per- 
formance on large problems. 

An example of the type of image for which Car- 
men may be used is shown in Fig 6. This is one 
of a sequence of X-ray images of a turbine blade 
taken from many angles. The purpose is to re- 
construct features of the blade. The application 
is described in greater details in the papers [lO, 
9, 6]. The type of sensor used is of the linear- 
pushbroom type ([7]) which does a central pro- 
jection in one axial direction and orthographic 
projection in the other. The characteristics 
of these X-ray images are similar to satellite 
pushbroom cameras. We have recently im- 
plemented a rational cubic camera using Car- 
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men. The initial results are described in these 
proceedings [8]. 
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Abstract 

The objective of this project is to develop meth- 
ods to incrementally model and detect changes 
in the shape or surface material properties of 
terrain. The model will be derived from range 
data (such as interferometric synthetic aper- 
ture radar (IFSAR) elevation data) and electro- 
optical (EO) and infrared (IR) imagery. The 
imagery can be either still images or video data, 
such as that obtained from the Predator UAVs. 
The modeling and change detection algorithms 
will be based on an extension of our object- 
centered "deformable mesh" approach that in- 
corporates surface material properties and ap- 
propriate error estimates. 

1    Introduction 

The deployment of various monitoring plat- 
forms, such as the Predator UAV, will gener- 
ate large quantities of SAR/IFSAR and EO/IR 
data of great value to Battlefield Awareness if 
it can be interpreted quickly and affordably. 

We propose to develop and demonstrate a sys- 

*This work was sponsored in peirt by the De- 
fense Advanced Research Projects Agency under con- 
tract F33615-97-C-1023 monitored by Wright Labora- 
tory. The views and conclusions contained in this doc- 
ument are those of the author and should not be in- 
terpreted as representing the official policies, either ex- 
pressed or implied, of the Defense Advanced Research 
Projects Agency, the United States Government, or SRI 
International. Many thanks to Pascal Fua for the many 
years of collaboration we have had in developing the ap- 
proach described here. 

tem that will automatically generate and refine 
a 3-D model of the terrain's shape and surface 
properties from IFSAR, EO, and IR data, and 
detect changes in both elevation (due perhaps 
to bomb damage, movement of large machin- 
ery, deforestation, and so on) and surface prop- 
erties (due perhaps to change in ground cover, 
pouring asphalt over a dirt road, building an 
air strip, and so on). Such changes can then be 
noted on the model for review and action. We 
thus expect to be able to dramatically reduce 
the amount of analyst time necessary to tal<;e 
advantage of this type of data. 

2     Overview of Our Approach 

We propose to use our object-centered "de- 
formable mesh" representation to combine 
radar and EO/IR imagery taken at different 
times of day and from different points of view 
into a unified 3-D model of the shape and sur- 
face properties of the terrain [Fua and Leclerc, 
1996, Fua and Leclerc, 1995, Fua and Leclerc, 
1994a, Fua and Leclerc, 1994b, Fua and Leclerc, 
1993]. 

In this approach, the terrain is represented by a 
3-D surface model composed of interconnected 
triangles called a "mesh." Each triangle, or 
facet, of the mesh represents an estimate of the 
position, shape, orientation, and surface ma- 
terial properties (e.g., color, radar reflectance) 
of the terrain's surface over a small triangular 
area. The mesh is used not only as the repre- 
sentation of the terrain, but is also an integral 
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part of the computational framework. Figure 1 
illustrates the mesh representation and shows a 
mesh constructed from a stereo pair of EO im- 
ages. 

The method involves the following components. 

Model Creation First, maps, IFSAR eleva- 
tion data, EO/IR imagery, and other sources of 
information (e.g., terrain type, building mod- 
els) will be combined to create a complete 3-D 
model of the shape and surface properties of the 
geographical area covered by the data. The sur- 
face properties of the terrain will be estimated 
from the imagery based on the known position 
of the sun, the shape of the terrain (taking shad- 
ows and occlusions into account), camera and 
radar parameters, cloud cover, and other rele- 
vant information. Known "deficiencies" of the 
sensors (such as occluded areas in EO/IR im- 
agery or "front-porch" artifacts in IFSAR data) 
will be used to rigorously derive error tolerances 
and covariances for every element of the model. 
(In the later years of this effort, we expect that 
SAR data will be directly integrated into the 
model.) 

Change Detection Second, new imagery 
and new IFSAR elevation data will be compared 
against the terrain model to detect changes in 
the terrain. It is the integrated 3-D nature of 
our representation and processing methodology 
that will allow us to detect changes in both the 
shape and surface material properties of the ter- 
rain, as follows. 

Changes in the terrain's shape will be detected 
by comparing 3-D shape and material properties 
derived from incoming data against the model. 
This can be done directly for incoming IFSAR 
range data. For incoming EO/IR imagery, our 
mesh-based terrain modeling algorithm will be 
used to register and derive a new 3-D model 
from the imagery. This derived model will then 
be compared against the current model, using 
the error tolerances mentioned above to detect 
areas of significant change. 

Model Refinement Third, new imagery and 
elevation data will be used to continuously re- 
fine the terrain model wherever the new imagery 
is consistent with the model (i.e., when the ele- 
vation data and surface properties derived from 
the new imagery are within the automatically 
derived error tolerance of the model). This will 
allow the model to become increasingly accu- 
rate and reliable over time. As the model be- 
comes more accurate, it will support more sen- 
sitive change detection. 

Model Extension Finally, incremental ex- 
tensions of the model to new areas will be made 
wherever IFSAR range data or overlapping im- 
ages cover a portion of the terrain that has not 
yet been modeled. 

In the following sections we describe our ap- 
proach and the proposed processing steps in 
more detail. 

3    Mesh-Based Optimization 

In mesh-based optimization, information from 
elevation data and imagery is integrated using 
a unified optimization framework in which a 
global objective function is minimized. Each 
source of information is modeled using a distinct 
objective function that relates the information 
to the shape and surface material properties of 
the surface mesh. A weighted sum of the objec- 
tive functions is minimized to arrive at a model 
that incorporates all the information. 

We propose to extend our current mesh-based 
approach in two ways so that it can be used for 
long-term model building and change detection 
based on IFSAR range data and sequential im- 
agery. First, we propose to include rigorously 
derived error tolerances and covariance matri- 
ces that specify the range of positions/surface 
properties of each facet. Second, we propose to 
modify the optimization procedure so that new 
data will be processed in sequence as it arrives, 
rather than waiting for all the data to arrive 
before processing it. 
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Figure 1: Terrain modeling at the Ft. Irwin, CA, National Training Center (NTC) using de- 
formable meshes. (a,b) A stereo pair of a hilly site, (c) A coarse hexagonally triangu- 
lated mesh, shown as a wireframe, (d) A shaded view of the same mesh, (e) The mesh 
after subdivision and optimization, shown as a shaded surface, (f) The optimized mesh 
shown with one of the images overlaid on the surface. 

3.1     Measures of Uncertainty 

We propose to include a rigorously derived er- 
ror tolerance for every element of the mesh 
that specifies the range of positions and surface 
material properties that is consistent with the 
quantity and quality of data processed to date. 
For example, areas that are covered by many 
views would generally have a smaller error tol- 
erance than areas that have been viewed only a 
few times. Another example is that the eleva- 
tion in an IFSAR shadow area is not well de- 
fined: the minimum elevation is unconstrained, 
but the maximum elevation can be computed 

from the look-angle. These constraints form the 
error tolerances for the shadowed area. Error 
tolerances can also be determined from other 
information sources that can be used to aug- 
ment the model-building process, such as maps 
or annotations associated with the IFSAR range 
data. The rigorous derivation and use of error 
tolerances will be a significant component of our 
research effort. 

In addition to the error tolerance, each element 
of the mesh has an associated covariance and in- 
formation matrix. The covariance matrix repre- 
sents the degree of uncertainty in the element's 
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state. It is closely related to the error tolerance, 
and is directly related to the shape of the po- 
tential surface (defined by our objective func- 
tion) in the neighborhood of the current esti- 
mate. The information matrix is the sum of the 
inverse covariances of the data used to update 
the element. As new data arrives, its informa- 
tion matrix is added to the information matrix 
of the associated model element. 

3.2 Model Initialization 

An initial terrain model must be created be- 

fore refinement and change detection can take 

place. If a reasonable estimate of the shape of 

the terrain is provided (from IFSAR range data 
or maps, for example), then the initial model 
creation can be done automatically. Otherwise, 
manual intervention will be required. For more 
information on how manually derived informa- 
tion is used to initialize a mesh, see [Fua and 
Leclerc, 1995]. 

3.3 Data Processing 

Once an initial model is created, incoming IF- 
SAR range data and imagery will be used in 
three ways: to detect and correct for errors in 
the model, to detect changes in the area, and 
to update the terrain model to make it more 
accurate. 

Incoming imagery will be processed as follows. 
Incoming imagery (both elevation and EO) is 
used to create an updated terrain model. This 
updated model is compared against the cur- 
rent model and corresponding error tolerances. 
Areas that fall outside of the error tolerances 
are candidates for model correction or denote 
changes to the scene. Areas that are inside the 
error tolerance, on the other hand, are used to 
refine the model with the optimization process. 

For IFSAR range data, the comparison is rel- 
atively straightforward. Every point of the 
updated elevation data is directly compared 
against the current surface mesh. If it is within 
the error tolerance, then that part of the data 
can be used to refine the surface mesh by using 
a standard Kalman filtering approach. In that 

approach, the coordinates of the model element 
are replaced by a weighted average of the model 
point and the new elevation data, where the 
weights are the information matrices described 
earlier. 

Isolated points or small areas that fall outside 
of the error tolerances are likely to be sensor er- 
rors that will be ignored. Large areas that fall 
outside of the error tolerances indicate that ei- 
ther the terrain has changed, or that the mesh is 
in error. One way to distinguish between these 
two cases is to re-optimize the mesh using pre- 

vious imagery. If the mesh changes (that is, the 

previous imagery is incompatible with the new 

model, and hence is incompatible with the new 

imagery), then this indicates that the terrain 

has changed. 

Comparison of EO imagery is more complex. 
The scenario we envision for incoming imagery 
is that the images will be processed as sequences 
in which adjacent frames are taken relatively 
close together (such as would be the case for 
UAV video data of a continuous fly-over). A 
large gap (in time) between adjacent frames will 
be treated as the beginning of a new sequence, 
and the remaining frames will be processed as 
a separate sequence. 

Sequences of EO images, as defined above, can 
be used to refine or detect changes in either the 
shape or the surface material properties of the 
terrain. In all cases, the basic idea is to use the 
sequence to estimate an updated terrain model 
and then compare this updated terrain model 
against the current model. 

The updated terrain model will be computed by 
starting with the current model as the initial es- 
timate of our optimization procedure. Each new 
frame of the incoming imagery will then be used 
to refine this updated model, using a sequential 
version of our optimization procedure. Even- 
tually, the covariances of the updated model 
will become small enough to allow a meaning- 
ful comparison against the current model. Since 
the updated model will contain both the shape 
and surface reflectance properties, it will be pos- 
sible to detect changes in both of these aspects 
of the terrain. 
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When the sequence is complete, the updated 
and current terrain models will then be merged 
(and the covariances appropriately adjusted) 
wherever the differences are within the error tol- 
erances. Note that, over time, areas viewed mul- 
tiple times will tend to have lower covariances. 
Consequently, the change detection will become 
more sensitive over time. 

4    Advantages of the Mesh Approach 

Deformable meshes have a number of distinct 
advantages over traditional image-based stereo 
and change detection techniques. 

• Occlusions in arbitrary views are naturally 
accommodated because meshes are a full 3- 
D representation of a terrain. Traditional 
stereo techniques, on the other hand, re- 
quire that occlusions be detected explicitly 
in the images, which is an open research 
problem. 

• Information from many modalities can be 
naturally integrated within the unified op- 
timization framework. This approach pro- 
duces a model in which all the information 
is used together. This is significantly more 
accurate and robust than traditional pro- 
cessing where, for example, independent 
depth maps are recovered from stereo pairs 
and the maps are then "averaged" together 
in some fashion. 

• Constraints from various external sources, 
such as maps, can be incorporated by cre- 
ating an appropriate objective function or 
by constraining the optimization process in 
the relevant manner. 

• The expected accuracy and known arti- 
facts of various sensors can be incorporated 
into the modeling process by appropri- 
ately weighting components of the objec- 
tive functions. For example, "shadowed" 
areas in IFSAR data would be weighted 
very lightly, while data from flatter areas 
would be weighted more heavily. In addi- 
tion, error tolerances and covariance matri- 
ces specifying the range of positions for the 

surface elements can be derived from the 
expected accuracy of the sensors. 

• Change detection using new images can 
be accomplished even when viewpoints and 
time of day have changed because the ter- 
rain model is fully 3-D and includes surface 
properties. Change detection based on a 
simple comparison of images (such as cur- 
rent mosaicking techniques) cannot be used 
for this purpose. 

5    Evaluation Plan 

We will provide metrics to evaluate the accu- 
racy, robustness, and completeness of the ter- 
rain models we produce, as well as the robust- 
ness and accuracy of the change detection. 

• Accuracy of the model. The accuracy of 
the terrain model will be measured against 
a number of standards: points on the ter- 
rain with known positions (as obtained via 
Global Positioning System (GPS) sensors 
on the ground), selected points in images 
for which the best manual photogrammetry 
has been applied, carefully monitored auto- 
matic stereo analysis systems, and IFSAR 
elevation data in areas for which IFSAR 
data had not been supplied to the system. 

• Robustness of the model. Robustness 
will be measured in terms of the area of 
the recovered terrain in which the system 
made clear mistakes (again as compared to 
human-recovered terrain models). 

• Completeness of the model. Complete- 
ness will be measured in terms of the area 
of the recovered terrain for which the sys- 
tem had at least two views but that was 
not modeled. 

• Accuracy and robustness of the 
change detection. The accuracy and ro- 
bustness of the change detection will be 
measured by the number of missed changes 
and the number of false positives generated 
by the algorithm. 
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6    Summary 

In summary, we propose to develop methods 
to incrementally model and detect changes in 
the shape or surface material properties of ter- 
rain. This will be done by extending our cur- 
rent mesh-based optimization approach in two 
ways, so that it can be used for long-term model 
building and change detection based on IFSAR 
range data and sequential imagery. First, we 
propose to include rigorously derived error tol- 
erances and covariance matrices that specify 
the range of positions/surface properties of each 

facet. Second, we propose to modify the op- 
timization procedure so that new data will be 

processed in sequence as it arrives, rather than 
waiting for all the data to arrive before process- 

ing it. 

We have proposed a number of methods for 
robustly detecting changes in 3-D meshes us- 
ing our approach. These proposed methods are 
still in the preliminary stages of development, 
and we will certainly be considering other re- 
cent work in change detection to see if some 
of the techniques can be applied to 3-D meshes 
[Huertas and Nevatia, 1996, Bejanin et al, 1994, 
Chellappa et al., 1994]. 
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Abstract 

This paper provides an overview of recent work on 
use's RADIUS related research projects. Our ma- 
jor project is in change detection and site model up- 
dating. We have made significant progress in 
validating building models and in detecting changes 
such as changes in dimensions of a building, miss- 
ing buildmgs, and detection of new buildings. We 
also describe new resuhs in our monocular and 
multi-view building detection and description sys- 
tems. We also briefly describe methods for minimal 
user interaction with these systems to improve the 
quality of the results. 

1 Introduction 

A key goal of the RADIUS project is to provide 
tools to assist an image analyst in analysis of large 
amounts of imagery. It has been established that use 
of 3-D site models is an essential component of this 
process [Gerson and Wood 1994]. The site models 
are useful in a variety of ways: in projecting the ex- 
pected structures from the current view point, in as- 
sisting with the task of change detection and in cue- 
ing an analyst to the appropriate parts of an image. 
While utility of the 3-D site models is generally ac- 
cepted, their initial construction from images and 
subsequent updating of them is a considerable task 
in itself. 

Our major RADIUS related project is on change de- 
tection and site model updating with particular fo- 
cus on stationary structures. Some of these tech- 

* This research was supported in part by Contract No. 76-93- 
C-0014 from the Defense Advanced Research Projects Agency 
(DARPA) an monitored by the Topographic Engineering Re- 
search Center of the U.S. Army, and by DARPA Contract No. 
F49620-95-1-0457 monitored by the US Air Force Office of 
Scientific Research 

niques are also applicable to automatic site model- 
ing and some of our change detection techniques 
may also apply to detection of larger mobile objects 
such as aircraft [Marouani et. al. 1995]. We have 
also incorporated two new processing modes to the 
interactive modeling system [Heuel and Nevatia 
1995] that works in conjunction with our automatic 
system to minimize the need for tedious interaction. 
An overview of these projects is given below. Sev- 
eral other papers provide more details ([Huertas et. 
al. 1995, Lin et. al. 1994, Lin and Nevatia 1996, No- 
ronha and Nevatia 1997]). 

2 Change Detection 

The task of change detection is to find significant 
changes that have taken place at a site since the time 
of last analysis. Note that the interest is in changes 
in the site and not in the image. Images can change 
for several other reasons such as change in view- 
point, illumination and seasons which may not be 
significant for analysis. Thus, we should compare a 
new image (or images) with the information con- 
tained in what is called a site folder which may con- 
sist of a site model, resuUs of previous analysis, pre- 
vious images and any other available collateral in- 
formation. 

Our approach is illustrated schematically in 
Figure 1. It consists of the following steps: 

Site Mode! to Image Registration: In this step, the 
initial camera model is refined so that the site model 
is brought into close correspondence with the ob- 
served image. Our method consists of matching im- 
age and model line segments for this task. 
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Figure 1 Flowchart of the Change Detection 
System 

Model Validation: In this step, we verify the pres- 
ence of the model objects in the image based on the 
correspondence between image features and model 
features. Locations and objects for which good 
matches can not be found indicate possible sites for 
changes. 

Change Detection: In this step, we analyze in more 
detail the possible change sites indicated in the pre- 
vious step and determine if the missing correspon- 
dences can be explained in other ways. The possible 
detected changes can then be indicated to a human 
analyst or further analyzed by an automatic system. 

Site Model Updating: In this step, the changes are 
modeled and incorporated in the new site model. 

Detailed Analysis: More detailed analysis of the 
changes can be performed at this stage. For exam- 
ple, to determine the time when the change may 
have first occurred (negation) or to find a sequence 
of events that leads to the observed change. 

We have currently implemented the steps of regis- 
tration, model validation, a partial capability to de- 
tect and describe certain kinds of changes such as 
buildings which are missing or whose dimensions 
may have changed. An example of this system is 
shown below. •Tgure 2 Partial model oj Fur t nuud(Texas) Site 
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Figure 2 shows a portion of an image of the RADI- 
US Fort Hood, Texas, site, with a partial model 
overlaid. Figure 3, Figure 4 and Figure 5 show the 
change detection result for three portions of this im- 
age (AREAS A, B and C). The confidence level, 
high (H), Medium (M) and low (L) denotes valida- 
tion confidence, that is, a reflection on the amount 
of underlaying image support for the model build- 
ings. Buildings may however have changed in their 

dimensions (denoted by a circle on the roof), when 
evidence of change in dimensions can be explicitly 
found, or when the image support is small. Low 
confidence levels is, in general, a good indication of 
major changes, or, in some cases that the building is 
no longer present, or that the model is inaccurate. 

The results for the 79 structures in the model shown 
in Figure 2 are summarized in Table 1.    Of the 79 

Figure 3 Model validation and change detection result for AREA A 
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Figure 4 Validation and change detection result for AREA B of image of Fort Hood, Texas 

Figure 5 Validation and change detection result for AREA C of image of Fort Hood, Texas 
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buildings, 54 were mcxleled to reflect the underly- 
ing structure, 14 were modeled with changes in 
their dimensions, and 11 missing (in the model but 
not in the site were added. In this experiment, only 
one non-changed building is reported as changed 
due to a coincidental alignment not currently con- 
sidered by the system; one changed building was 
not reported as changed, and all missing buildings 
are found to be missing in the image. 

One important type of site change is the introduc- 
tion of new structures. We have capabilities to con- 
struct models automatically and therefore we can 
suggest new additions to the site model (see Sec- 
tions 3, 4 and 5 below.) These techniques are ap- 
plied to areas of interest, currently designated in the 
site model as "functional areas", using one or more 

images, if available. The site model is used to indi- 
cate already modeled areas.The camera models and 
terrain models associated with the images are used 
also by these systems to derive viewpoint and illu- 
mination parameters automatically. An example of 
this task is shown in Figure 6. In this experiment we 
removed the three buildings from the model in the 
lower right part of AREA C. The model construc- 
tion system is cued to detect new structures there 
and add these to the site model. 

Our system has been tested largely on real images 
of the Ft. Hood, TX site. Generally, the perfor- 
mance of the registration, validation and change de- 
tection system is very robust. Some changes may be 
more apparent in other views, or may need to be 
confirmed using other views. 

Table 1: Summary of Results 
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3 Automated Building Detection and 
Description 

Buildings are the dominant 3-D stationary struc- 
tures in most sites. It is important to automatically 
detect and describe them, for initial site model con- 
struction as well as for change detection and site 
model updating. We have developed two systems 
for this task: one that processes single intensity im- 
ages separately and then combines the results from 
the various views, and another that uses a number of 
images concurrently during the process. It is, of 
course, easier to detect and describe buildings using 
muhiple images, however, the ability to at least re- 
liably detect buildings from a single image (monoc- 
ular system) is needed during the change detection 
process and the system does not require a very ac- 
curate camera model. 

Automatic building detection and description is dif- 
ficult due to several reasons. Images of outdoor sites 
are quite complex. Roofs of buildings are not nec- 
essarily homogeneous nor are their boundaries al- 
ways well delineated from the background. Further- 
more, the background itself contains many features 
such as roads, vehicles, landscaping and other veg- 
etation. This makes the process of segmentation dif- 
ficult and requires use of sophisticated perceptual 
grouping methods. The images also lack direct 3-D 
information. In monocular analysis, we infer 
heights from shadows and from projected lenghts of 
walls (if they are visible). When multiple images 
are available, heights can be inferred by matching 
features in the multiple images. However, this can 
only give us sparse 3-D data and the matching of 
features themselves can be quite ambiguous as 
many similar features may be present nearby. 

We have made good progress on both the monocu- 
lar and the multiple image systems. Both are cur- 
rently restricted to analyzing rectilinear structures 
and assume that camera models and the sun posi- 
tions are known. 

3.1 Integration of Monocular Results 
The monocular system has been described in the lit- 
erature [Lin et. al. 1994, Lin and Nevatia 1996]. 
Here we give an overview of the recent progress in 
integratmg the results from multiple views. The 
system can integrate the resuhs from multiple views 
by projecting the hypotheses of one view into the 
other views and verifying them in all views. As- 

sume that a set of images are taken from several dif- 
ferent viewpoints. The evidence of a building may 
be more clear in one view than in the others, de- 
pending on several conditions, such as the viewing 
direction, the illumination direction, and the build- 
ing orientation. Once a building can be correctly de- 
tected by the system in one view, it is very likely 
that the system can find supporting evidence of this 
building in other views. On the other hand, if the 
system makes an incorrect hypothesis in one view, 
it would be very unlikely for the system to find 
much supporting evidence from other views. Based 
on this observation, the system can make a better 
decision by integrating all evidence from all avail- 
able views. Here we assume that accurate camera 
models are given to the system for registration. 

This process is different from the traditional stereo 
techniques. It is a top-down process which analyzes 
the underlying evidence of a high level hypothesis 
instead of trying to match low level features, such as 
lines and junctions, between views. The success of 
this process highly depends on the results of the 
monocular system. Especially the hypothesis gen- 
eration process must be able to create appropriate 
hypotheses, which are the basic entities of the inte- 
gration process. 

First, the system detects buildings from each image 
individually. Assume that the camera model for 
each view is given. The system can project the 3-D 
wire frame of a verified hypothesis in one view into 
another view. All evidence around the projected 
wire frame of the verified hypothesis in the second 
view is collected and then the evaluation function of 
the hypothesis verification process is applied on the 
collected evidence to compute the confidence of the 
hypothesis in this view. The confidence values of a 
hypothesis in all views are combined using princi- 
ples of certainty theory. It is possible that a verified 
hypothesis in one view has negative confidence on 
another view. A threshold value depending on the 
number of views is set to remove those unsatisfac- 
tory hypotheses. 

Another problem of combining results from multi- 
ple views is that a building could be verified indi- 
vidually in more than one view. Multiple hypothe- 
ses could be retained for a single building after the 
thresholding. Therefore, an overlap analysis is re- 
quired to compare the combined confidences of 
those hypotheses overlapped in 3-D space. The hy- 
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pothesis with the highest combined confidence is 
retained and the rest overlapping hypotheses are re- 
moved. Finally, a set of 3-D cube features is created 

for the list of retained hypotheses. The user can ex- 
amine the results by projecting these 3-D cube fea- 
tures into any of the views. 

'n* 
(fhn713-b07) (fhov625-b07) 

*^ 

Integrate      ^' mum "***" "'""""ww^ 
f^  ~„« 

Figure 7 Integration of results from multiple views. 

A more sophisticated algorithm is required when 
none of the hypotheses of a building from all views 
is correct. The algorithm must be able to fuse the 
evidence of the building from different parts of 
those hypotheses and create the correct hypothesis. 
Some part of the evidence of a building will be 
stronger in one view than the other depending on 
the situations, such viewpoint direction and illumi- 
nation direction. The algorithm can decide how to 
combine the evidence based on the situations of all 
views. 

Figure 7 shows an example of integrating the results 
from two views of a building. The building is com- 
posed of three structures. The main structure in the 
middle is detected from the image, FHN713-b07. 
The right wing of the building is detected from the 
image, FHOV625-b07. The left wing of the build- 
ing is detected on both images. One of the two hy- 
potheses, corresponding to the left wing of the 
building, therefore must be selected based on the 
combined confidence of the hypotheses. After the 
integration process, the three structures of the build- 

ing are all verified, and the projections of the 3-D 
results are shown at the bottom of Figure 7. 

3.2 Multi-View System 
Our system using multiple images uses a hierarchi- 
cal grouping and matching methodology which 
generate roof hypotheses. These are again verified 
by shadow and wall evidence, if available. Informa- 
tion from all views is used in a non-preferential 
way. The preliminary results are encouraging and 
we believe that this method will lead to robust and 
reliable building detection and description. An ex- 
ample of the results of this system on segments of 
the modelboard images is shown in Figure 8. Thir- 
teen of the sixteen buildings in this example are de- 
tected. The missing buildings are, as in the monoc- 
ular system, either small or have dark roofs. There 
are no false positives. This system also generates a 
confidence value with each result. 

Testing of this system continues and we are getting 
encouraging results on the Fort Hood images. De- 
tails of this system are given in [Noronha and Neva- 
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Figure 8 Multi-view building detection 

tia 1997]. 

4 Interaction with Automatic Model 
Construction Systems 

Even though the performance of automatic building 
detection systems is improving rapidly, the results 
are not perfect. We have been developing a system 
for user interaction with our automated systems to 
allow for easy correction or completion of the re- 
sults of the automated analysis. Our system is based 
on our observation that our automated systems fail 
under certain conditions for certain specific rea- 
sons. If these reasons are known and some guidance 
is provided to the automated system, it can then 
complete the task. 

For example, our monocular building detection fails 
to find buildings with dark roofs in some cases as 
the roof boundary can not be distinguished from the 
adjoining shadow. The system does make some hy- 
potheses for the presence of a roof but none are 
judged to be strong enough to qualify as a validated 
result. In such cases, it is sufficient for the user to in- 
dicate the cause of failure to the system and to point 

somewhere in the interior of the undetected roof. 
With this minimal interaction, the system can find 
the previously undetected building. In some cases, 
more extensive interaction may be needed and the 
user may need to correct the position or size of the 
detected roof. However, even here, the user only 
needs to make some corrections, the rest is done au- 
tomatically. For example, moving the comer of a 
roof will result in the system automatically deter- 
mining a new height for the roof. Details of the ear- 
lier capabilities of this system are given in [Heuel 
and Nevatia 1995]. 

Here, we give an overview of recent additions to the 
system and give some preliminary performance re- 
sults and comparisons of time and effort required. 
We have incorporated an "assisted" mode into the 
system. The user assists the system by indicating by 
mouse clicks the location of a building roofs in the 
image. The system collects these inputs and pro- 
ceeds with automatic detection as usual, to give roof 
hypotheses at those locations. The calculations of 
confidence levels based on underlying image sup- 
port for the roof and shadow and wall evidence are 
collected as well. Next we show an example of the 
resuhs that can be expected from this kind of inter- 
action. 

Figure 9 shows a projection of the 3-D model com- 
puted automatically with no assistance on a portion 
of an image from the Fort Hood site. As pointed out 
above, the automated resuh is quite good although 
some buildings are not described. Figure 10 shows 
the 3-D model constructed from hypotheses re- 
turned in assisted mode. The result requires addi- 
tional editing of some of the roofs. These however, 
require minimal interaction as the editing and re- 
calculation of confidence values and collection of 
shadow and wall evidence is carried out automati- 
cally by the system. The final result is shown in 
Figure 11. 

The amount of effort in time and in labor to gener- 
ate this result is summarized in Table 2. The com- 
parison is with the effort required to produce the 
same resuh by hand using traditional modeling 
tools, such as those supplied with the RCDE [Strat 
et al, 1992], and those including assistance and min- 
imal user interaction. The figures corresponding to 
the example above are in the table rows labeled 
"complex". In Table 2, t^, t,, and tg denote time in 
minutes for manual, interactive and editing process- 
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es respectively. The speed-up in time is by a factor 
of 7.2 for the "complex" example shown. As shown 
on the table, for the three types of shapes, the speed- 
up increases as the shape complexity is reduced. 
These results are preliminary and extensive testing 
is needed to quantify its utility. The ability to con- 
struct complete 3-D models of sites with buildings 
automatically is the desirable goal. With minimal 
interaction however, it becomes possible to con- 
struct these models, mostly automatically, today. 

5 Conclusion 

We have summarized our research activities in anal- 

ysis of overhead images. These consist of change 
detection, site model construction and site model 
updating. We believe that many of these techniques 
are ready to be transitioned for testing in operation- 
al environments. We are in the process of running 
more extensive tests and of porting the software to 
operational envirorunents. 
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Table 2: Time Comparison (time in minutes) 

Image 
Description 

#of 
Buildings 

#of 
Boxes 

tm ti te ti+te 
#of 

Boxes 
edited 

tm 

ti+ te 

L-shope 8 12 8 0.2 0.5 0,7 2 11,4 

l-shcpe 19 35 28 0,6 2.5 3.1 4 9,0 

Complex 14 27 75 0.4 10 10,4 7 7,2 

Figure 9 Results of automatic processing 
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Figure 10 Results of automated assisted processing 

Figure 11 Final results after minimal interaction 
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Abstract 

This report describes sarMapper, a newly-funded 
research project to develop real-time, interacdve 
software for generating high-accuracy tactical 
maps from synthetic aperture radar (SAR) 
imagery. High accuracy ground cover maps 
make it possible to automate the focus-of- 
attention mechanism that is the foundation of 
tactical image analysis. The sarMapper 
development goal is to allow a single human 
intelligence officer to monitor a tactical area on 
the order of hundreds to thousands of square 
kilometers, looking for vehicles, roads, 
construction sites, and structures — any man- 
made ground cover — of potential tactical 
interest. The sarMapper research goal is to 
create efficient, semi-autonomous algorithms that 
realize the development goal in real-time on a 
current-generation    laptop    computer.        This 

This newly-funded research is sponsored by the 
Defense Advanced Projects Research Agency under 
grant F33615-91-1-1017, monitored by the United 
States Air Force Wright Laboratory ATR 
Development Branch, Wright Patterson AFB, 
Dayton, OH. The views and conclusions contained 
in this document are the author's and should not be 
interpreted as representing the official policies, 
either expressed or implied, of the Defense 
Advanced Research Project Agency, Wright 
Laboratory, the U.S. Air Force, or the U.S. 
government. 

document outlines the sarMapper project goals 
for calendar year 1997. 

1 Introduction 

The sarMapper project seeks to generate high- 
accuracy ground cover maps from SAR imagery 
and to use those maps to target locales within a 
wide search area for further human and/or 
machine analysis. In short, sarMapper will 
provide the military with a tactical map 
generation and focus-of-attention capability that 
will run in real-time on an off-the-shelf laptop 
computer. 

The sarMapper concept is based on the following 
operational notions: 

• military image analysts are drowning in a sea 
of data for lack of a real-time ability to 
process the data into usable information. 

• military commanders need accurate tactical 
maps now, not two hours from now. 

• they need them in the field, where their troops 
can use them; the troops need to be able to 
update their maps rapidly in order to reflect 
the changing tactical situation in real-time. 

• they must be able to do this with minimal 
effort and training and little or no prior 
information regarding the area being imaged 
by the SAR reconnaissance platform. 

Likewise, the sarMapper concept is based on the 
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following technical notions: 

• a little human oversight can go a long way 
towards building a nearly autonomous 
tactical mapper. 

• objects of tactical interest are generally man- 
made; modem man-made materials generally 
have radio-frequency (RF) backscatter 
signatures that are distinctly different from 
those of natural objects. 

• searching for objects of tactical interest is 
rather like winnowing wheat from chaff — 
first we separate the wheat from the chaff and 
then we decided which kernels of wheat are 
fit to eat 

• likewise, objects of tactical interest can be 
detected efficiently over a wide area by first 
mapping that area to determine where there is 
man-made ground cover and then focussing 
attention on the man-made areas to see if 
they constitute objects of tactical interest. 

This, then, is the purpose of sarMapper: to 
generate high-accuracy tactical maps in real-time 
and focus the attention of human and/or machine 
analysts on man-made regions of the map. 

2 Objectives 

The sarMapper project seeks to provide the 
military with two fundamental capabilities: 

• Fast, automated, high-accuracy, tactical map 
generation. 

• Tactical focus of attention. 

sarMapper itself is to have the following 
characteristics: 

• Real-time learning & map generation 
• Without prior ground-truth 
• On a laptop (with a CD-ROM or large 

external disk) 
• Computational efficiency (generate a high- 

accuracy mega-pixel map in one to three 
minutes on a laptop) 

• High resolution / accuracy ground cover 
assessment 

• Mega-pixel map in a minute 
• Interactive graphical user interface (GUI): 

human aids computer in initial learning 
phase; after learning, computer maps 
autonomously 

• Human oversight 

• Assess focus-of-attention warnings 
• During sarMapper's learning phases 

• Multiple 
• Wavelength (P-, L-, C-, X-Band, etc.) 
• Polarization (single and fully 

polarimetric) 
• Spatial resolution 
• Data Sources (e.g.,...) 
- MSTAR public data (airborne, X-band) 
- LL ADTS SAR (airborne, X-band) 
- JPL AirSAR (airborne, P, L, and 

C-band) 
- NASA SIR-C/X-SAR (spacebome L, 

C, and X-band) 
• Focus-of-Attention (FOA) 

• Detect & locate man-made ground cover 
• Warn human according to prior tasking 

• Usable with ~1 hour training 

Computational efficiency forms the core of 
sarMapper, allowing it to generate mega-pixel 
maps on a current-generation laptop in one to 
three minutes. Ground cover types are learned 
using low-complexity parametric models of RF 
backscatter: learning takes the form of efficient 
model parameter estimation, which allows 
ground cover types to be characterized in terms 
of their backscatter signature — the learning and 
subsequent mapping take place in real-time, 
owing to the efficient, low-complexity algorithms 
employed. In comparison, standard maximum- 
likelihood map generation algorithms generate 
maps on a time scale of hours. 

sarMapper uses semi-supervised learning, which 
obviates the need for prior ground truth. The 
principle behind this supervised learning 
procedure is straightforward: humans can discern 
different ground cover types in a SAR image by 
the differences in their appearance in the image. 
Different ground cover types in a single- 
polarization image will appear to have different 
shades and/or textures of gray; in a false-color 
composite of multiple polarizations, different 
ground cover types will appear in different 
colors. Consequently, a human can identify 
regions of different ground cover in an image and 
label these regions without knowing what the 
different ground cover types are — using 
pseudonyms for the unknown ground cover 
classes. These pseudo-classes of ground cover 
can be learned, and their backscatter signatures 
can then be used to generate a high-resolution 
pseudo-map over a wide-area in the vicinity of 
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Figure 1: The sarMapper graphical user interface (GUI). The main controls allow the human 
operator to specify the polarization(s) of the SAR image, the number and type of ground cover 
classes, image labeling modes, etc. Multiple images can be loaded and displayed simultaneously 
(HH-HV-VV composites are shown for C- and P-band images of NASA's Raco, Michigan super site 
imaged by the JPL AirSAR platform). Histograms of the backscattered SAR radio frequency (RF) 
envelope are used to derive parametric models for each ground cover class. These ground cover 
"signatures" are in turn used to produce a ground cover map for the site and surrounding areas. 
Because the signatures are derived from 8-bit representations of the SAR backscatter, automatic 
ground cover learning and subsequent mapping can be done in near-real time. sarMapper's speed 
and interactive GUI make it well suited to automatic wide-area tactical monitoring and focus-of- 
attention tasks. 

the image used for learning. Many of the 
unknown ground cover types can be inferred by 
an image analyst from context, site-invariant 
backscatter signatures, historical imagery, or 
focussed follow-on surveys conducted using the 
pseudo-map to target specific survey sites. The 
critical characteristic of semi-supervised learning 
is that it can generate a useful map in real-time 
without prior knowledge of the area; missing 
details can be filled in as they are obtained, 
without having to re-learn or re-map the area. 

Since man-made ground cover tends to 
backscatter little RF energy (as in the case of 
obliquely illuminated metal or concrete surfaces) 
or substantial RF energy (as in the case of 
trihedral reflectors common to military vehicles), 
semi-supervised learning is compatible with 
sarMapper's focus-of-attention (FOA) mission. 
Very large areas (hundreds to thousands of 
square kilometers) can be mapped and surveyed 
for small areas of potential tactical interest by a 
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Figure 2: A coarse(300 m) resolution focus- 
of-attention map of the Raco, Michigan site, 
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Figure 3: A fine(36 m) resolution map of the 
Raco, Michigan site, generate from the same 
C-band HH-polarized image used to generate 
the focus-of-attention map in figure 2. 
sarMapper generated this map in 20 seconds. 
The darkest regions on the map indicate areas 
likely to be tarmac. The physical structure of 
the airfield, combined with its tarmac ground 
cover identify it as the primary target of 
interest in this 67 square-kilometer area. 

single human and sarMapper team. Survey time 
for a thousand square kilometer area (10-meter 
map resolution) requires between ten minutes and 
one-hour on a single laptop computer, depending 
on the number of ground cover classes 
enumerated; survey time for a fifty square 
kilometer area requires between 15 seconds and 
three minutes under the same conditions. 

3 Preliminary Results 

Figure 1 illustrates the sarMapper graphical user 
interface (GUI) . The interface allows a human 
operator to view multiple SAR images 
simultaneously. Fully-polarimetric SAR images 
can be displayed in HH-HV-VV false color 
composites: two such images (one C-band and 
one P-band) are shown for NASA's Raco, 
Michigan   site   (JPL  AirSAR  imagery).     The 

human operator uses the GUI to identify areas of 
distinct backscatter signature; these areas 
correspond to different looking regions in the 
image, which , in turn, correspond to different 
types of ground cover. By identifying different 
ground cover types using a simple GUI, the 
human operator provides sarMapper with the 
information it needs to learn quantitative radio- 
frequency (RF) backscatter "signatures" for 
each ground cover class. A detailed description 
of this semi-supervised learning procedure is 
described in [Hampshire-97]. 

Once sarMapper has learned the RF backscatter 
signatures that characterize the different ground 
cover classes, it can generate a ground cover map 
of the imaged area —- and all the surrounding 
areas in which the ground cover is similar. 
Because sarMapper's mapping speed is 
approximately four orders of magnitude faster 
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than conventional maximum-likelihood SAR 
mapping algorithms [Hampshire-97] it can 
generate a high-resolution mega-pixel map in one 
to three minutes on a current technology laptop, 
depending on the level of map detail required. 
sarMapper generated the low-resolution map of 
figure 2 in five seconds on a SPARC 20 
workstation; it generated the medium resolution 
map of figure 3 in 20 seconds. Mapping speeds 
for current-technology laptop computers are 
approximately equal. 

Figures 2 and 3 illustrate how sarMapper can be 
used to generate ground cover maps that focus 
the attention of a human SAR analyst monitoring 
(potentially) thousands of square kilometers of 
territory. Figure 2 shows the result of a low- 
resolution first-pass analysis of the Raco, 
Michigan area. This map shows seven areas of 
potential man-made material, displayed as dark 
pixels on a lighter background (dark pixels 
belong to the same larger area of interest if they 
are separated by no more than one light pixel). 
Using figure 2 as an overlay mask on the map in 
figure 3, sarMapper identifies three areas that 
might contain large amounts of tarmac: of these 
three areas, two lack man-made geometry 
(indicating water, which can exhibit a backscatter 
signature similar to tarmac). The third area is an 
airfield with obvious man-made geometry. 

4 Research Questions 

The initial prototype of sarMapper described in 
the preceding section instantiates the semi- 
supervised learning and efficient map generation 
algorithms described above and is described in 
detail in [Hampshire-97]. This prototype has 
been subjectively evaluated using long- 
wavelength (P, L, and C-band) SAR imagery 
from the JPL AirSAR platform. 

Four research questions will be addressed this 
year. These questions — all of them technical in 
nature — touch on the speed, accuracy, and 
robustness of sarMapper's mapping and focus-of- 
attention capabilities: 

• Can high-accuracy maps be generated from 8- 
bit X-band backscatter envelope data? 

• Is  semi-supervised  learning  a statistically 
consistent paradigm? 

• Can man-made ground cover be identified 
consistently  in SAR imagery and pseudo- 

maps without ground truth? 
• How can a robust focus-of-attention algorithm 

be      derived      for      real-time      laptop 
implementation? 

5 Evaluation 

Pursuant to research efforts to address them, the 
research questions listed in the previous section 
will be answered by objective evaluation of 
sarMapper using SAR data from a wide variety of 
sensors. Pre-processing will be added to 
sarMapper so that it can map imagery from these 
three sensors (in addition to the JPL AirSAR 
platform): 

• Lincoln Lab ADTS SAR (X-band) 
• MSTAR SAR (X-band) 
• NASA SIR-C/X-SAR (L, C, X-band) 

Speed: Average semi-supervised learning time 
will be assessed with human-computer timing 
trials. Map generation times will be tabulated for 
a corpus of evaluation images. 
Accuracy: Map accuracy will be assessed using 
imagery for which ground truth is known or can 
be infered. Accuracy will be quoted according to 
general methods of statistical inference/pattern 
recognition, with 95% confidence bounds and 
ground cover confusion matrices derived from 
test images (or test areas within an image) not 
used during semi-supervised learning. 
FOA: sarMapper's focus-of-attention algorithm 
will be assessed according to general methods for 
evaluating detection algorithms; namely, receiver 
operator characteristic (ROC) curves will be 
generated and evaluated for FOA performed on 
test imagery/maps not used for semi-supervised 
learning. 
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Abstract 
The image understanding group at Lockheed 
Martin Management and Data Systems is en- 
gaged in a range of lU-related projects. The 
recently-completed RADIUS program success- 
fully demonstrated a number of lU technolo- 
gies that can be applied to imagery analy- 
sis in the near future. As the prime con- 
tractor for RADIUS, we were responsible for 
the RADIUS Testbed, including the integra- 
tion of lU algorithms from a number of in- 
stitutions. The technologies pioneered in RA- 
DIUS are being transitioned to operational pro- 
totypes in the Site Monitoring System and 
the Spatial Image Annotation System, both of 
which use model-supported exploitation as a 
central framework. In addition, we have pur- 
sued corporate-sponsored, basic lU research in 
object representations and change detection, de- 
veloping new techniques to exploit site model 
context in automated imagery analysis. 

1    Introduction 

The Image Understanding group at Lockheed 
Martin Management and Data Systems is in- 
volved with a number of projects ranging 
from basic research to the production of near- 
operational software. 

While Management and Data Systems focuses 
on producing very large, operational software 
systems, our group concentrates on state-of- 
the-art technology development through tech- 

nology contracts and independent research and 
development (IR&D). We are heavily involved 
with the transfer of lU technology into near- 
operational and operational domains, but we 
also keep current in lU technology through basic 
lU research. 

Our recent government-sponsored projects in- 
clude Research and Development for Image Un- 
derstanding Systems (RADIUS), the Site Mon- 
itoring System (SMS), and the Spatial Image 
Annotation System. RADIUS focused on lU 
technology development and integration, with a 
significant effort toward development of a pro- 
totype workstation. Currently in progress, the 
SMS will transfer selected parts of RADIUS to 
an operational prototype workstation for per- 
forming semi-automated, tactical site monitor- 
ing under the larger Semi-Automated IMINT 
Processing (SAIP) Advanced Concept Technol- 
ogy Demonstration sponsored by DARPA. SIAS 
is a smaller, short-term effort intended to pack- 
age a compact subset of RADIUS workstation 
capabilities in a model-supported exploitation 
workstation. 

Our corporate-sponsored research is aimed at 
developing algorithms that fully exploit site 
model context to increase robustness. As a 
foundation for this goal, we have pursued re- 
search in object representations that combine 
geometry and photometry to provide more ac- 
curate appearance modeling of visually com- 
plex features. We have applied these techniques 
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to change detection and pose refinement algo- 
rithms within the site model framework. 

These efforts are described in the following sec- 
tions, although the RADIUS project and our 
research results are detailed elsewhere in these 

proceedings. 

In addition to the authors, the lU group at LMC 
M&DS includes Bill Bremner, Mark Horwedel, 
Mike Puscar, Tony Canike, Norris Heintzelman, 
Mark Thompson, David Dadd, Mike Lentowski, 

Bill Brooks, and Jim Kennedy. 

2    RADIUS 

The Research and Development for Image Un- 

derstanding Systems (RADIUS) program has 
been an ongoing effort for the last six years. 
RADIUS Phase II, which focused on the devel- 
opment of the RADIUS Testbed System (RTS), 
will be completed in early 1997. 

RADIUS Phase II culminated in the Baseline 
Delivery in July 1996. At that point the RTS 
became a fully developed, prototype model- 
supported exploitation workstation. Using the 
RTS, an analyst can construct site models using 
manual, semiautomated, and automated tools. 
Model-supported exploitation (MSE) can be ac- 
complished with a large suite of tools supporting 
feature-specific data access, historical queries, 
image/site model queries, and, most signifi- 
cantly, automated exploitation. A detailed 
summary of the Phase II program is given else- 
where in these proceedings [Hoogs et al., 1997]. 

In November 1996, the RTS was first integrated 
with the Model-Supported Positioning system, 
which provides automatic image-to-site model 
registration. This combination resulted in a 
successful demonstration of automated, end-to- 
end imagery exploitation processing; without 
human intervention, a previously unseen im- 
age was registered to a site, lU exploitation 
algorithms were executed on the image, and 
feature-specific determinations of change were 
presented to the lA in a graphic overlay for ver- 
ification. 

The   RTS   is  currently   installed   at  the   Na- 

tional Imagery and Mapping Agency (NIMA) 
in the former National Exploitation Laboratory 
(NEL). Through the first quarter of 1997, the 
integrated lU algorithms for site model con- 
struction and automated exploitation are be- 
ing evaluated by imagery analysts (lAs) from 
NIMA and other government agencies. Al- 
though RADIUS did not have sufficient re- 
sources for in-depth evaluations of lU algo- 
rithms, NIMA is emphasizing algorithm eval- 
uation as a near-term concern. It is hoped that 
the RTS, with its lU integration framework, will 
serve as an effective platform for easily present- 
ing new and existing lU algorithms to lAs for 

evaluation. 

Demonstrations, support and moderate exten- 
sions of the RTS will continue throughout 1997, 
and possibly beyond. The RTS contains a large 
amount of functionality that has yet to be eval- 
uated or assessed by lAs, but this may occur in 
the coming months. Frequent demonstrations 
of the system at NIMA are given to government 
personnel from a variety of organizations. 

The RADIUS program has spawned several ap- 
plications of MSE technology that use the RA- 
DIUS software in a more rigorous setting. The 
SMS adapts lU exploitation to the tactical in- 
telligence problem, while SIAS streamlines the 
process of generating annotated image prod- 
ucts. Both of these technologies are described 
in the following sections. 

3    SMS 

The SAIP Advanced Concept Technology 
Demonstration (ACTD) is a major effort to 
combine a number of the current DARPA auto- 
matic target recognition (ATR) programs into 
a single architecture. The SAIP imagery ex- 
ploitation tools are designed to be integrated 
eventually into or be interoperable with tacti- 
cal, theater, and national imagery exploitation 
systems. It includes three imagery exploitation 
functions: wide area search for specific targets 
and formations of ground forces, identification 
and characterization of target vehicles such as 
tactical ballistic missile launchers, and monitor- 
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ing of activity at fixed sites. An operational 
evaluation of the SAIP system is planned for 
November 1997. 

The Site Monitoring System (SMS) is being de- 
veloped as the site monitoring component of 
SAIP. It is derived from the RTS, updated to 
perform exploitation in the tactical environ- 
ment. Adaptations include improved processing 
and I/O performance, integration of Synthetic 
Aperture Radar (SAR)-based ATR algorithms, 
a user interface for the tactical imagery analyst 
(lA), integration of automatic image position- 
ing/registration capabilities, and implementa- 
tion of data and control interfaces to other SAIP 
elements. 

Site monitoring is defined as the activity of re- 
peatedly observing, analyzing, and reporting on 
significant activity in fixed areas. MSE is well- 
suited to this task, since it identifies specific ge- 
ographic regions in an image and executes algo- 
rithms on the pixel data based on pre-assigned 
algorithm profiles [Bremner et al, 1996]. 

The SAIP program is intended to exploit tac- 
tical imagery from Unmanned Aerial Vehicles 
(UAVs) such as the Global Hawk and Dark Star 
systems. Due to delays in fielding these UAVs, 
however, SAIP evaluations are currently using 
data from the U2 platform, namely ASARS-2 
(SAR) and SYERS (EO) imagery. The major- 
ity of the SAIP systems will exploit SAR exclu- 
sively, but SMS will be monitoring targets first 
in EO, and later in SAR. 

Operations The MSE paradigm presupposes 
that site models are prepared for the areas of in- 
terest before a mission is begun. The analyst is 
responsible for defining the monitoring profiles 
and assigning mission priorities, which are used 
to determine the order of lU execution. Once a 
mission starts, SMS automates the end-to-end 
exploitation pipeline that begins after images 
have been formed by the sensor processing sys- 
tem. Before an lA sees an image, it has been 

• geolocated by the sensor 

• associated to a site by its geolocation 

• registered to a site using photoidentifiable 
control features 

• processed by lU algorithms. For each fea- 
ture of interest appearing in the image, the 
feature is: 

- Checked   for   unacceptable   imaging 
conditions 

- Processed  by one or more lU  algo- 
rithms 

• given a priority for viewing based on lU 
results. 

Images are processed according to their pre- 
assigned (mission) priority, and the the analyst 
is presented with images for review based upon 
a combination of priority and lU processing re- 
sults. This image prioritization results in op- 
timal use of the analyst's time, since the most 
important images are placed at the top of the 
exploitation queue. 

Architecture The SMS architecture is shown 
in Figure 1. The majority of the system is de- 
rived from the RADIUS Testbed System (RTS) 
[Hoogs et al., 1997], ported to a multiprocess- 
ing Silicon Graphics Inc. (SGI) Unix platform. 
SMS performance is improved over the RTS pri- 
marily by taking advantage of the SGI's speed 
and multiprocessing capabilities. SMS is parti- 
tioned into two run-time processes, one for exe- 
cuting the lU algorithms and one for supporting 
the user interface. This division of labor allows 
the analyst to manually exploit the imagery and 
report results without affecting the lU process- 
ing pipeline. 

SMS inherits the main part of its architec- 
ture from the RTS. Modifications are being 
made to harden the code as it moves from 
a testbed to a demonstration system. As 
in the RTS, images, site models, lU profiles, 
and related exploitation data are stored in the 
site model database [Hoogs and KnifFin, 1994, 
Kniffin and Hoogs, 1996]. 

ATR capabilities will be added to SMS by 
integrating   software   derived   from   the   the 
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Model-Supported Automatic Target Recogni- 
tion (MOSTAR) and Bosnian Cantonment Area 
Monitoring System (BCAMS) programs. The 
ATR system within BCAMS is derived from the 
Automated Target Monitoring System (ATMS) 
program. Together, these ATRs should enable 
SMS to find and identify vehicle targets in SAR 
imagery. 

For SMS to work effectively, each incoming 
image must be registered to the previously- 
constructed site model. SMS will use two com- 
ponents in series to perform registration, the 
SAIP Image Registration component (Harris) 
and the Model-Supported Positioning system 
(GDE/TI). 

SMS is primarily a stand-alone system with a 
few critical interfaces to SAIP. Components to 
the right of the shaded line in Figure 1, such 
as imagery inputs and reporting outputs, are 
external to SMS. For example, the region-of- 

interest (ROI) database supplies geolocations 
of targets found by the main SAIP system, to 
allow analyst to correlate site monitoring and 
wide-area search results. 

User Interface The SAIP user interface al- 
locates two displays to each analyst, so SMS 
has chosen to allocate one screen to an overview 
function and one screen for detailed image ex- 
ploitation. The overview screen, illustrated in 
Figure 2, is dominated by an overview pane for 
displaying an image of the site of interest with 
graphic overlays of the geographic regions being 
monitored. The panel notifies the analyst when 
a new image has been received and processed by 
the lU subsystem, and enables the new image to 
be examined. Each monitored region is colored 
according to the results found by the lU pro- 
cessing. For example, results of large change, 
high confidence, and high priority are outlined 
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in red. At the same time, textual descriptions of 
the lU results on that image are displayed at the 
bottom of the panel. By showing an overview 
of the entire site with color-coded overlays, the 
analyst is immediately alerted to the pattern of 
activity at the site. 

As each processed region is selected with the 
cursor, the image to be exploited is zoomed to fit 
the region of interest on the exploitation screen 
as illustrated in Figure 3. The analyst can then 
visually exploit the image to confirm (or deny) 
the accuracy of the lU results, using standard 
electronic light table tools to manipulate the im- 
age display. Further information regarding the 
profile results for that particular region is dis- 
played at the bottom of the panel. This screen 
allows the analyst to display graphic results of 
the lU processing overlaid on the feature, such 
as crosshairs outlining detected vehicles. It is 
also the jump-off point for more complex analy- 
ses of lU results such the display of trends over 
time. 

After reviewing the imagery, the analyst is re- 
quired to report on the observed activity. SMS 
will use the results of lU processing and the 
user-defined profile to automate part of the pro- 
cess of text reporting. Graphic overlays, includ- 
ing both the site models and the lU results, can 
also be combined with the image data for gen- 
erating annotated imagery products. The goal 
of SMS is to make the task of exploiting im- 
agery and reporting on the results as efficient 
as possible. 

lU Community Benefits By participating 
in the SAIP ACTD, SMS will move the technol- 
ogy integrated under the RADIUS program one 
step down the path to operational use. Similar 
to RADIUS, SMS is not supplied by one con- 
tractor. Rather, it is a combination of lU tech- 
nologies from the wide range of institutions par- 
ticipating in RADIUS, from which algorithms 
are being selected according to their tactical 
utility. 

The RADIUS software can automatically exe- 
cute a large number of lU profiles on imagery 

that is already part of a site model, but the 
front-end image ingest and registration pro- 
cess was not fully completed. Combined with 
SAIP, SMS will complete the end-to-end auto- 
mated exploitation process by interfacing to im- 
age sources and automatic registration, form- 
ing an excellent conduit for evaluating lU algo- 
rithms on a large volume of imagery. A one-day 
operational mission will collect tens of gigabytes 
of data to be registered, filtered, and have lU al- 
gorithms executed on it. 

Because the SMS code is derived from RADIUS, 
most components will be integrated back into 
the RTS so that the research testbed evolves 
and improves. By maintaining the RADIUS ex- 
ploitation framework applications programmer 
interface (API), software can be easily transi- 
tioned from the research testbed to the SMS 
demonstration system. SMS therefore repre- 
sents an ongoing opportunity for lU community 
involvement; as on RADIUS, lU technologies 
are solicited for their inclusion in SMS for eval- 
uation on operational data. Continued support 
from the organizations responsible for the suc- 
cess of RADIUS will help ensure the success of 
SMS. 

SMS development is funded by DARPA, and 
includes team members SRI International and 
General Electric Corporate Research and De- 
velopment. 

4    SIAS 

An example of technology transfer from the 
RADIUS program, the Spatial Image Annota- 
tion System (SIAS) is a short-term effort to 
deploy an operational-prototype, MSE work- 
station based on RADIUS technologies. SIAS 
introduces MSE to real-world exploitation en- 
vironments, and will be the first time that 
RADIUS-developed technology is used opera- 
tionally. SIAS incorporates the fundamental 
spatial framework of RADIUS to provide three- 
dimensional modeling capabilities and the ca- 
pability to project 3D models onto images. Al- 
though SIAS does not include any lU algorithms 
from RADIUS, it does provide an operational 
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Figure 2: Prototype SMS Overview Screen 

Figure 3: Prototype SMS Exploitation Screen 
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Figure 4: The SIAS SmartTool. 

introduction to fundamental lU concepts re- 
lated to the RADIUS concept of site models. 

SIAS was selected for development by an intelli- 
gence community effort to transition promising 
technology from R&D to usable tools for ana- 
lysts. In both 1995 and 1996, analysts partici- 
pating in these evaluations quickly grasped the 
importance of MSE, and SIAS was rated very 
highly. Analysts continued to play a key role in 
the development of SIAS, particularly the user 
interface components. This was critical to the 
successful transition from R&D testbed to op- 
erational system. 

One of the key areas which needed to be ad- 
dressed was the process of creating a three- 
dimensional world, which is the basis for MSE. 
In RADIUS, this process involved a large 
amount of effort on the part of lU scientists 
to achieve the desired accuracy. SIAS uses a 
two-part approach to address this issue:  first, 

by not including lU algorithms, we can relax 
somewhat the requirements for precise registra- 
tion. The idea is to use SIAS to outline general 
areas of intelligence interest in an image, and 
not individual structures. To reflect this dif- 
ference, in SIAS we use the term Annotation 
Model; this is intended to distinguish it from 
the more rigorous, detailed, and extensible RA- 
DIUS site model. The second part of the SIAS 
approach to building an annotation model (AM) 
was to provide a sequenced, step-by-step ap- 
proach to AM construction, and to incorporate 
this framework into a tool which can be used by 
the analyst. 

Figure 4 shows the result of this process. Based 
on help facilities used in PC applications, this is 
called the "SmartTool." The SmartTool guides 
the user through the various steps of creating 
the AM, keeps track of the analyst's progress 
through  the  procedure,   and  also offers  help 
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Figure 5: The SIAS Style Manager. 

through pop-up messages and an on-line hyper- 

text user's manual. 

Another emphasis of SIAS which differed 
slightly from RADIUS is the need to create an- 
notated images for briefings, reference, or col- 
laborative analysis. RADIUS provides a wide 
range of capabilities for systematically annotat- 
ing the elements of a site model; for SIAS, the 
most commonly used of these were incorporated 
into a Style Manager (Figure 5), which provides 
a single interface to manipulating the appear- 
ance of objects. Also note that, while RADIUS 
provides many dozens of different object types, 
SIAS provides only a few basic entities. 

As noted above, potential users of SIAS have 
been involved in the design process though de- 
sign reviews and hands-on evaluations. Al- 
though SIAS does not include automated site- 
model construction tools, analysts did see the 
value of these and indicated they would like to 
see them in future versions. Similarly, analysts 
also saw the value of time-based profiles, since 
they also requested the snippet sequence tool 
developed for RADIUS. What is exciting about 
these comments is that the analysts generated 
these ideas without any knowledge of the full 
RADIUS capabilities: they were able to under- 
stand the goals of lU related to MSB, and to 
develop new concepts based on the introduc- 
tion they saw in SIAS. This is promising for the 
expansion of lU technologies in future applica- 
tions. 

SIAS does point out some areas which need fur- 

ther development. Automated site-model con- 
struction tools need to be made more robust and 
general before they can be used operationally. 
The image registration problem also needs to 

be refined, although the Model-Supported Po- 
sitioning project being incorporated into RA- 
DIUS holds promise in this area. Analysts make 
extensive use of database systems; these can be 
linked to the MSE system, and even integrated 
into the lU framework. Finally, in order to make 
3D model-derived information more widely use- 
ful, an interoperable standard needs to be de- 
veloped which will allow users to build an An- 
notation Model or Site Model, and then export 
the data to other applications. 

SIAS will be delivered to three government sites 
in Spring 1997. It will be evaluated and used for 
at least 3 months, and may be enhanced with 
a second stage of development based on analyst 
feedback. SRI International is our subcontrac- 
tor, providing support and development on the 
RADIUS Common Development Environment. 

5    IR&D 

In addition to contract activities, we are en- 
gaged in independent research and development 
(IR&D) that complements contract technology 
growth by developing new capabilities applica- 
ble to a range of programs. Our IR&D efforts 
have focused on lU research, including frame- 
works for the management of lU subsystems, 
and prototype development of persistent stor- 
age for model-supported systems. 
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5.1    lU Research 

Our lU research is focused on developing new al- 
gorithms that fully exploit site model context, 
particularly historical imagery. We have devel- 
oped change detection algorithms that identify 
changes in man-made structures, such as build- 
ings, roads, and construction areas. The al- 
gorithms also detect the disappearance or ab- 
sence of modeled features, and hence can be 
used to monitor vehicles parked in specific lo- 
cations, such as aircraft on a tarmac. The sys- 
tem is described elsewhere in these proceedings 
[Hoogs, 1997], and is summarized here. 

The main contribution of our approach is that 
low false alarm rates are attained by learn- 
ing appearance characteristics from historical 
imagery [Hoogs and Bajcsy, 1995]. In outdoor 
scenes, the appearance of structures varies con- 
siderably based on weather, season, and imag- 
ing parameters such as viewpoint and illumi- 
nation. Structures can be detailed with sur- 
face features such as windows, doors, vents, and 
albedo changes. Typically, geometric models 
of structures do not capture these smaller fea- 
tures or photometric features. Hence a change 
detection system that relies on geometry alone 
may be prone to systematic error. For exam- 
ple, a building that has similar albedoes on its 
walls and roof (and even the background) may 
consistently give rise to change indications, be- 
cause its roof-lines are not detected in the im- 
age. Or, a building with lots of unmodeled su- 
perstructure may result in disjointed segmenta- 
tions, leading to false alarms. 

The goal of our system is to identify true 
changes in structures while ruling out appar- 
ent differences due to non-geometric effects. We 
have observed that photometric features are 
often consistent enough, within certain con- 
straints, to be locally predicted and accounted 
for. Training imagery is used to establish prob- 
abilistic models of the appearance of geometri- 
cally modeled features. Within each aspect of 
a model edge, appearance characteristics along 
the edge are characterized, providing an implicit 
modeling of the appearance of complex surface 

Figure 6: Change detection process flow. 

features. In new imagery, these models are used 
to account for missing edges, albedo changes, 
and other segmentation-level phenomena. 

In many cases, few training images are required. 
By using both model geometry and training im- 
ages, we allow incremental improvement in ac- 
curacy as more images are examined (and ver- 
ified). The system works with no training im- 
agery, using only the geometric model, or any 
number of training images with any imaging 
conditions. 

The change detection system is shown in Fig- 
ure 6. Initially, segmentation models are cre- 
ated using the model geometry of structures in 
a scene and registered training images of the 
scene. When a new image is presented to the 
system, it is registered to the geometric models 
or other scene features using manual or auto- 
matic techniques. 

Many existing image registration algorithms, 
manual or otherwise, typically result in at least 
2 pixels of error because of unmodeled sensor 
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distortions and noise. To compensate for this, 
the system performs a local 2D translational 
pose refinement step that adjusts the position 
of a single object model with respect to the im- 
age [Hoogs and Bajcsy, 1996, Hoogs, 1996]. 

The next stage of the algorithm, match compu- 
tation, is a virtual operation; the pose refine- 
ment stage actually computes the match score 
that is the output change measure. The same 
matching algorithm or metric between image 
and object model is used in pose refinement 
and change detection, so that the optimal value 
found in pose refinement is considered to be 
the best estimate for the change measure. The 
match metric is computed using the geometric 
model and the learned appearance characteris- 
tics. 

The system has been tested on many images of 
multiple sites. The results indicate that the sys- 
tem performs well at mitigating false alarms in 
change detection without reducing the probabil- 
ity of detecting change, in comparison to purely 
geometric methods. The contribution of train- 
ing imagery is particularly evident when the sys- 
tem is applied to visually complex features, such 
as buildings obscured by adjacent trees. 

5.2    Persistent Support for MSE 

Over the past three years we have invested 
considerable effort in providing persistent sup- 
port for model-supported exploitation and asso- 
ciated lU algorithms [Kniffin and Hoogs, 1996, 
Hoogs and KnifRn, 1994]. More recently, our 
work has focused on performance issues, his- 
torical queries and advanced support for 
lU systems. For further discussion, see 
[Cardenas, 1996]. 
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Abstract 

This paper presents an overview of the research in 
image understanding (lU) at the University of Illi- 
nois (UI) conducted during 1996-97. During this 
period, our work has been in five areeis: integra- 
tion, segmentation, image compression and resolu- 
tion enhancement, motion analysis, and represen- 
tation and recognition. Work in each of these areas 
is reviewed. 

1    Introduction 
A major part of our research since [6] is in five ar- 
eas (Sees. 2-6). The first area (Sec. 2) is concerned 
with integration of multiple image cues in performing 
image interpretation. These cues capture different as- 
pects of the three-dimensional (3D) scene structure, and 
their integrated analysis leads to a more robust infer- 
ence about the scene characteristics than possible from 
individual cues. The second area (Sec. 3) addresses the 
problem of low level image segmentation. The emphasis 
here is on obtaining automatic, hierarchical descriptions 
of the low level structure. We have used the detected, 
multiscale image structure for image compression, and 
enhancement of image resolution; this constitutes our 
work in the third area (Sec. 4). The fourth area (Sec. 
5) is about our continuing work on interpretation of 
image sequences showing dynamic scenes. Here we con- 
sider the problems of detecting feature correspondences 
and estimating the 3D motion parameters and surface 
structure from correspondences in a sequence of images 
showing rigid as well as nonrigid motion. The fifth area 
(Sec.6) describes our recent work in image representa- 
tion and recognition. Representative projects in each 
of these areas are summarized in the following sections. 

This research was supported in part by the Advanced 
Research Projects Agency under grant N00014-93-1-1167 ad- 
ministered by the Office of Naval Research and the National 
Science Foundation under grant IRI-93-19038. 

To keep the paper brief, we have not included discus- 
sions of, and references to, relevant work done by others. 
Such discussion and references are available in the listed 
publications. 

2    Integration 
Our goal in this area is to perform image interpreta- 
tion such that the interpretation simultaneously satis- 
fies a range of constraints imposed by the image struc- 
ture and the model of the scene. To do this, we use 
different computational processes each of which carries 
complementary or redundant information derived from 
different image cues. Image interpretation is the result 
of a cooperative computation that resolves conflicts and 
ambiguities arising from the individual processes. We 
have presented several examples of the integration ap- 
proach in previous lU workshops [1, 2, 3, 4, 5, 6]. Here 
we summarize some recent work on integration. 

2.1     Integrated Active Stereo 

Our previous work has been concerned with fixation of 
diff'erent objects in the scene, and surface estimation 
for each object from multiple stereo cues such as focus, 
vergence and disparity [16]. Recently, we have investi- 
gated the problem of efficient fixation. Given a target, 
fixation of an active camera pair requires that the pan 
and tilt angles must be set to bring the target to image 
centers. However, calibration of real cameras involves 
tedious estimation of a number of imaging parameters. 
Fortunately, calibration is not essential for fixation if 
images are acquired and used as feedback during the 
fixation process to continuosly direct the cameras to 
the target. We have used a direct mapping from the 
changes in camera (or joint) angle space to the direc- 
tion of the resulting target motion in the image plane, 
to determine changes in camera angles necessary to re- 
duce the image plane disparity between image center 
and the target location. In addition to the calibration 
parameters, the use of the mapping also incorporates 
other unmodelled effects such as deviations from the 
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assumed imaging model. The mapping is formulated 
as a task in nonlinear function approximation, and, for 
computational efHciency, learnt from real data at mul- 
tiple resolutions; the coarse levels are concerned with 
large changes and the fine levels with small changes. 
Fixation is accomplished by first executing large angle 
changes and slowly reducing their magnitudes to con- 
verge on the final camera orientations. The sensing and 
use of the feedback are made in two modes: continuous 
and intermittent. Learning is performed using a neural 
network. Details can be found in [32]. 

2.2 Nonfrontal Imaging Camera 
We have continued our work on nonfrontal imaging. An 
omnifocusing nonfrontal imaging camera (NICAM) can 
provide an in-focus image of an arbitrarily wide scene 
with all objects appearing in focus regardless of their 
locations in the scene (Fig. 1). Further, a range (from 
focus) estimate of each visible scene point is also derived 
[13]. The camera's sensor plane is not perpendicular 
to the optical axis as is standard. This special imag- 
ing geometry eliminates sensor plane movement usu- 
ally necessary for focusing. Camera panning, required 
for panoramic viewing anyway, in addition enables fo- 
cusing and range estimation. Thus panning integrates 
both standard mechanical actions of focusing and pan- 
ning, implying range estimation at the speed of panning. 
An advanced prototype of NICAM has been developed 
(Fig. 2). In [25], we describe strategies for optimal se- 
lection of panning angle increments and sensor plane tilt 
for NICAM. We have also investigated the use of stan- 
dard cameras for acquiring panoramic images. We have 
developed methods to optimize the image acquisition 
strategy in order to reduce redundancy. We show that 
panning a camera about a point / (focal length) in front 
of the camera eliminates redundancy. [25] shows some 
panoramic images acquired using the standard camera. 

2.3 Integrated Stereo and Shading 
We have continued our work on joint surface estimation 
from the complementary cues of stereo and shading. We 
have developed a method in which an empirically deter- 
mined associative model relating appearance to surface 
shape is used [24]. The parameters are estimated using 
examples provided by a stereo algorithm. Through a 
scale change, the statistically estimated model is made 
to be more accurate than the algorithm that generates 
the examples. The method is a generalization of shape 
from shading methods that does not rely upon ideal- 
ized models of the image formation process. It more 
accurately recovers small surface detail than is possible 
with methods such as stereo and motion. The function 
estimation is done by methods that are similar to the 
methods of pattern recognition. Indeed, this approach 

is the continuous analogue of pattern recognition and is 
closely related to methods of joint space learning used 

in robotics. 

2.4    Integrated Region and Border 
Detection 

We have developed the transform for multiscale detec- 
tion of image structure, which we introduced in earlier 
work [6]. The transform extracts image regions at all 
geometric and photometric scales. Linear approaches 
such as convolution and matching have the fundamental 
shortcoming that they require a priori models of edge 
geometry. The transform we have proposed avoids this 
limitation by letting the structure emerge, bottom-up, 
from interactions among pixels, in analogy with statis- 
tical mechanics and particle physics. The transform in- 
volves global computations on pairs of pixels followed 
by vector integration of the results, rather than scalar 
and local linear processing. An attraction force field is 
computed over the image in which pixels belonging to 
the same region are mutually attracted and the region is 
characterized by a convergent flow. The transform pos- 
sesses properties that allow multiscale segmentation, or 
extraction of original, unblurred structure at all differ- 
ent geometric and photometric scales present in the im- 
age. This is in contrast with much of the previous work, 
wherein multiscale structure is viewed as the smoothed 
structure in a multiscale decimation of image signal. 
Scale is an integral parameter of the force computation, 
and the number and values of scale parameters asso- 
ciated with the image can be estimated automatically. 
Regions are detected at all, a priori unknown, scales 
resulting in automatic construction of a segmentation 
tree, in which each pixel is annotated with descriptions 
of all the regions it belongs to. The transform provides 
a general approach to multiscale, integrated edge and 
region detection, or low-level image segmentation. 

The basic operation of the transform is to convert the 
image I into a vector field F. The vector Fp at an image 
location p is defined as 

Fp= /     d,(rpq,<T,(p))d5(A/,o-g(p))rpqdq      (1) 

where 
fpq = unit vector in the direction from p to another 
image location q; 
o'.(p)  = spatial scale parameter at p; related to the 
shortest distance to region boundary; all valid cr,{p) 
values are computed automatically; 
ag{p) = photometric scale parameter at p; denotes con- 
trast of region with surround; all valid 

a-j(p) values are computed automatically; 
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Non-frontal Imaging Camera (NICAM), 40° Panoramic View 

Standard Camera, 
20° View, 
focused at 4ft. 

Figure 1. Comparison of the perfomiance of NICAM with a regular camera. The upper row shows a 
40-degree image acquired by NICAM and the lower row shows a 20-degree view of the same scene 
acquired using a regular camera having a visual field of 20 degrees and focused at 4'. While all the 
objects in the upper row appear focused, the objects at distances other than 4' in the lower row are 
defocused to different degrees, depending on their distances relative to the focus distance of 4'. 

Figure 2. The current prototype NICAM. 
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A/ = absolute gray level difference between image 
points under consideration; 
d,{a, b) = A nonnegative, nonincreasing function of ||a||, 
not identically 0 for ||a|| < b, and 0 for 

||a|| > 6, and 
dgla, b) = A nonnegative, nonincrecising and symmetric 
function of o, not identically 0 for o < b, 

and 0 for a > b. 
Since dg{a, b) as defined above cannot be a linear func- 
tion of a for unrestricted values of o, the transform does 
not obey the principle of superposition and hence is non- 
linear. Details can be found in [19, 14]. 

3    Segmentation 
We have used the transform summarized above for 
segmentation of multidimensional, multivariate images. 
[18] describes an algorithm for 2D image segmentation 
at multiple scales. The detected regions are homoge- 
neous and surrounded by closed edge contours. Other 
approaches to multiscale segmentation have represented 
an image at different scales using a scale-space. How- 
ever, structure is only represented implicitly in these 
approaches, structures at coarser scales are inherently 
smoothed, and the problem of structure extraction is 
unaddressed. We argue that the issues of scale selection 
and structure detection cannot be treated separately. 
A new concept of scale is presented which represents 
image structures at different scales, and not the im- 
age itself. This scale is integrated into the transform 
which makes structure explicit in the transformed do- 
main. Structures which are stable (locally invariant) to 
changes in scale are identified as being perceptually rel- 
evant. The transform can be viewed as collecting spa- 
tially distributed evidence for edges and regions, and 
making it available at contour locations, thereby facili- 
tating integrated detection of edges and regions without 
restrictive models of geometry or homogeneity. In this 
sense, it performs Gestalt analysis. All scale param- 
eters to the transform are automatically determined, 
and structure of any arbitrary geometry can be identi- 
fied without any smoothing, even at coarse scales. 

We have used the transform to segment 3D volume 
data obtained by magnetic resonance imaging [28]. This 
preliminary work presents a new method for multi- 
scale segmentation of volume images. The segmenta- 
tion leads to well-characterized 3D regions at different 
spatial and intensity scales. The detected regions are 
closed and are homogeneous relative to their surround. 
A tree is generated containing the region information 
extracted across a range of homogeneity scales and rep- 
resents the multiscale volumetric structure. 

To compare the transform performance with alternate 
algorithms which group points/pixels, we have investi- 

gated a new framework for hierarchical segmentation 
of multivariate multidimensional functions into homo- 
geneous regions [31]. Homogeneity is defined as con- 
stancy of n-th order derivatives (called features) of the 
function. A regular multidimensional grid of sample 
points in the domain of the function is partitioned based 
on similarities of region features at the sample points. 
Three other segmentation techniques and applications 
to one-, three- and six-variate data in two- and three- 
dimensions are described for the zeroth and first order 
region features. Details can be found in [39]. [26] ad- 
dress the special case of irregularly sampled data and 
develop a clustering algorithm for dot patterns in n- 
dimensional space. The n-dimensional space is viewed 
as representing a multivariate (n^-dimensional) func- 
tion in a n,-dimensional space (n, -f ny = n). The 
algorithm decomposes the clustering problem into the 
two lower dimensional problems. Clustering in n/- 
dimensional space is performed to detect the sets of dots 
in n-dimensional space having similar n/-variate func- 
tion values (location based clustering using a homogene- 
ity model). Clustering in n,-dimensional space is per- 
formed to detect the sets of dots in n-dimensional space 
having similar interneighbor distances (density based 
clustering with a uniformity model). Clusters in the 
n-dimensional space are obtained by combining the re- 
sults in the two subspaces. Extensions of the approach 
to the case of texture is presented in [35] which de- 
scribes a new hierarchical texture segmentation method 
bcised on (1) finite sets of first-order statistics (texture 
attribute dictionaries) and (2) second-order statistics 
(spatial co-occurences) calculated from global, spatially 
irregular regions found in an anisotropic fashion. A tex- 
tured region is viewed as a set of uniformly distributed 
primitives, whose attribute homogeneity model provides 
a framework for the multiscale analysis. Robustness 
against (1) noise in primitives, (2) attribute dictionary 
overlaps, (3) nonuniform distribution of primitives and 
(4) variable size of attribute dictionaries, and computa- 
tional efficiency of the method are presented. Finally, 
[33] describe a general method for hierarchical segmen- 
tation of multivariate multidimensional functions. The 
method partitions a regular multidimensional grid of 
sample points in the domain of a multivariate function 
based on similarities of multivariate function values (at- 
tributes) at the sample points. Similarity of two at- 
tributes is modeled by their Euclidean distance and is 
called as the homogeneity of the attributes. A con- 
nected set of sample points from the grid is said to 
define a region in the final partition (segmentation) if 
(1) attributes of all interior samples are no more than 
a given value S apart, and (2) attributes of all sam- 
ples outside the region are no closer than a given value 
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a. The problem of segmenting in n-dimensional can be 
decomposed into lower-dimensional segmentation prob- 
lems which makes the method computationally efficient. 
Segmentation results are represented in the form of a 
tree formed by regions detected for various values 5. Ex- 
periments have been conducted that demonstrate the 
noise robustness and computational efficiency of the 
segmentation, and compare its performance with three 
other segmentation techniques. The method has been 
applied to 2D and 3D medical data, botanical data and 
satellite data. 

In another approach to segmentation, we have ex- 
tracted regions as a union of a priori chosen primitive 
shapes. We use ellipses of relatively uniform gray level 
as shape primitives. We use scale-space concepts to fit 
ellipses over a range of sizes, eccentricities, and orien- 
tations. A region extractor is presented in [27] which 
uses filters based on the elliptical Gaussian to find ho- 
mogeneous elliptically-shaped regions in real images. A 
filter which is similar to the Laplacian of the elliptical 
Gaussian is applied to the image to locate possible el- 
lipse centers. A scale-space technique is used to verify 
that these detected sites are true ellipse centers. Two 
other filters, related to the first by diff'erentiation with 
respect to the scale parameter, are applied to these po- 
tential ellipse sites to eliminate regions which are not 
sufficiently elliptical. With these three filter responses, 
the size and contrast of the region are computed. 

[41] presents anew 2D edge detection algorithm. The 
algorithm detects edges in 2D images by a curve seg- 
ment based edge detection functional that uses the zero 
crossing contours of the Laplacian of Gaussian (LOG) 
as initial conditions to approach the true edge locations. 
We prove that the proposed edge detection functional 
is optimal in terms of signal-to-noise ratio and edge lo- 
calization accuracy for detecting general 2D edges. In 
addition, the detected edge candidates preserve the nice 
scaling behavior that is held uniquely by the LOG zero 
crossing contours in scale space. [46] presents a new 
color image edge detection algorithm. By exploiting the 
statistical properties of a given image, global informa- 
tion of the image is extracted to guide the local gradient 
computation. Cluster analysis is first performed in the 
3D color space to find the major chromatic components 
of the image. According to these clusters, groups of lin- 
ear chromatic transforms are generated. The edges are 
treated as the transitions from one cluster to another. 
To maximize the gradient magnitude, an appropriate 
chromatic transform is chosen for each pixel. 

4    Image Compression and Resolution 
Enhancement 

We have used the detected image structure for two 
image-space applications described below. 

4.1 Compression 
Different methods have been proposed to achieve loss- 
less compression, the more successful of which exploit 
the local two dimensional redundancies in the images. 
Most methods however do not produce significantly and 
consistently better results than the simple JPEG imple- 
mentation. This can be attributed to the overhead gen- 
erated by such methods negating any advantage accrued 
from obtaining a better residual. We have used the high 
fidelity of our transform-based segmentation for lossless 
compression. [37] uses segmentation information in or- 
der to form a smoothly varying residual image, which is 
devoid of edges, and then uses an autocorrelation model 
to further decorrelate the residual. Each region gener- 
ated by segmentation is further subdivided into the inte- 
rior sub-region and the edge sub-region; the distribution 
of grey level values in the sub-regions being distinctly 
different. The pels in the edge sub-regions, which have 
a higher standard deviation (with respect to the inte- 
rior sub-regions), can be modeled explicitly using edge 
models. This is feasible because the 2-D variation of 
the grey level values within the edge sub-regions follows 
a specific distribution. The interior sub-region for each 
region are, a^ a first approximation, modeled by a con- 
stant. Specifying the models for the interior and edge 
sub-regions of each region models the entire image. Sub- 
tracting this model from the original image we obtain 
a smoothly varying residual, which is then modeled by 
autocorrelation based minimum variance prediction. 

4.2 Resolution Enhancement 

We have used the extracted structural description of an 
image to enhance its resolution, e.g., to magnify a small 
image to several times its original size while avoiding 
blurring, ringing or other artifacts. Classical methods 
include bilinear, bi-cubic or FIR interpolation schemes 
followed by sharpening using methods such as unsharp 
masking. Interpolation schemes tend to blur the im- 
ages when applied indiscriminately. [37, 40] describe a 
method we have developed based on the projection on 
convex sets (POCS) formalism. POCS is used to find a 
solution which lies at the intersection of various convex 
constraint sets that restrict the locations of edge and 
nonedge pixels. In a related other eff'ort, we have ad- 
dressed the problem of applying a multi-dimensional lin- 
ear transform over an arbitrarily shaped support. The 
usual practice is to fill out the support to a hypercube 
by zero padding.  This does not however yield a satis- 
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factory definition for transforms in two or more dimen- 
sions. The problem that we have considered is: how do 
we redefine the transform over an arbitrary shaped re- 
gion suited to a given application? We present a novel 
iterative approach to define any multi-dimensional lin- 
ear transform over an arbitrary shape given that we 
know its definition over a hyper-cube. Our proposed so- 
lution is (1) extensible to all possible shapes of support 
(whether connected or unconnected) and (2) adaptable 
to the needs of a particular application. We also present 
results for the Fourier Transform, for a specific adapta- 
tion of the general definition of the transform which is 
suitable for compression or segmentation algorithms. 

[30] considers another aspect of resolution enhance- 
ment: removing image blur. Images are assumed to be 
obtained from a planar, stationary object in a frontal 
plane with respect to the camera. The cases of coher- 
ent, non-coherent and partially coherent imaging with 
quasi-monochromatic and polychromatic illumination 
are considered. We show that blurring is not a linear 
process for imaging an extended non-coherent object 
with a camera within the thin lens approximation us- 
ing polychromatic illumination (all previous implemen- 
tations of deblurring/depth from deblurring algorithms 
have considered blurring as a linear process). This fol- 
lows from the fact that a blurred image cannot be con- 
sidered as formed from a non-coherent wavefront; the 
wavefront is partially coherent. It is specifically shown 
that image blurring is a non-linear process in 1) the gen- 
eral case of Huygen-Fresnel point spread function and 2) 
the practically applicable case of the geometrical optics 
approximation. As conclusion, it is found that deblur- 
ring in its most general form is not amenable to current 
theoretical or practical methods. 

In [47], we present a new multi-scale image warp- 
ing method based on the weighted Voronoi diagram. 
Weights are assigned to the control points according to 
their influence scales. At each scale level, a triangu- 
lation based on the weighted Voronoi diagram is con- 
structed. Then the interpolation of displacements is 
performed on this triangulation. The advantage of this 
approach is that the underlying triangulation changes 
between scales to fit the warping scale. Both global 
warping and local warpings can be modeled appropri- 
ately using this approach. 

5     Motion Analysis 

5.1     Detecting Feature Correspondences 
and Matching 

The problem of feature correspondences and trajectory 
finding for a long image sequence has received limited 
attention in the past. Most attempts involve small num- 
bers of features and make restrictive assumptions such 

as the visibility of features in all the frames. In our 
earlier work, a coarse-to-fine algorithm was described 
to obtain pixel trajectories through the sequence [10]. 
The algorithm uses a coarse scale point feature detec- 
tor to form a 3-D dot pattern in the spatio-temporal 
space. Increasingly dense correspondences are obtained 
iteratively from the sparse feature trajectories. At the 
finest level, matching of all pixels is done using inten- 
sity correlation and the finest boundaries of the moving 
objects are obtained. The trajectories are extracted as 
3D curves formed by the points using perceptual group- 
ing. The trajectories obtained are then segmented into 
subsets corresponding to distinctly moving objects [10]. 
Our previous work on trajectory detection using Hop- 
field networks is reported in [15]. 

We have done preliminary investigation of the use 
of image segmentation derived using the transform re- 
viewed earlier to structure detection in video. We have 
addressed the simpler case of matching pairs of video 
frames instead of treating the video as 3D data. There 
are two stages to this work. First, regions are matched 
across a pair of frames using a graph matching formula- 
tion [36]. Three preselected values of homogeneity scale 
are used as indexes into the segmentation tree of each 
image to produce three different image partitions. Each 
pair of partitions at the same scale are matched from 
coarse to fine, with coarser scale matches guiding the 
finer scale matching. Each partition is represented as 
a region adjacency graph, within which each region is 
represented as a node and region adjacencies are rep- 
resented as edges. Region matching at each scale then 
consists of finding the set of graph transformation op- 
erations (edge detection, edge and node matching, and 
node merging) of least cost that create an isomorphism 
between the current graph pair. Second, an affine trans- 
formation is computed for each set of matched regions, 
at all scales. The change in shape of the regions is es- 
timated and used in computing a motion field at each 
scale. This yields a rough estimate of the motion field. 
As a test of the detected field, we have attempted to 
recover 3D motion and dense structure of the objects in 
the image sequence [34]. The algorithm first estimates 
motion and partial structure of the scene from the affine 
parameters. This first-order flow-based information is 
then used to obtain a dense estimate of 3D structure. 
Finally, shading information is used to reflne the esti- 
mated dense structure. 

5.2     Motion and 3D Structure from Image 
Sequences 

Our previous work on registration and estimation from 
long image sequences is described in [21, 22]. [7] ad- 
dresses the problem of estimating the structure and mo- 
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tion of a smooth curved object from its silhouettes ob- 
served over time by a trinocular stereo rig under per- 
spective projection. We first construct a model for the 
local structure along the silhouette for each frame in the 
temporal sequence. Successive local models are then in- 
tegrated into a global surface description by estimating 
the motion between successive time instants. The algo- 
rithm tracks certain surface features (parabolic points) 
and image features (silhouette inflections and frontier 
points) which are used to bootstrap the motion esti- 
mation process. The entire silhouette along with the 
reconstructed local structure is then used to refine the 
initial motion estimate. We have implemented this ap- 
proach and applied it to real images. 

We have investigated the use of our earlier work on 
analysis-guided-synthesis for augmented reality environ- 
ments. This involves integrated estimation of 3D mo- 
tion and the orientation of a planar surface, and the 
use of the estimates to select and display a subset of 
image features that depict the estimated motion and 
structure. Additional, synthetic features can also be in- 
cluded to augment the set of selected original features 
[12]. 

We have reviewed the use of 2D and 3D motion for 
video compression and coding. The introduction of the 
MPEG-4 proposal has motivated a wide variety of ap- 
proaches aimed at achieving a new level of video com- 
pression for very low-bit rate coding. We have divided 
the progress in very low-bit rate coding into three main 
areas: (1) waveform coding, (2) 2D content-based cod- 
ing, and (3) model-based coding [52]. We have reviewed 
some common questions in image and video coding in 
[53], with focus on the estimation of 2D and 3D motion 
for use in efficient compression of video sequences using 
3D models. 

5.3     Nonrigid Motion 

Our work on nonrigid motion has focused on the case 
of human motion analysis. Modeling spatial-temporal 
articulation patterns is very important for realistic ren- 
dering of face images in applications such as talking face 
and intelligent computer agents. We have developed a 
new approach to analyze, encode and learn human facial 
movement patterns [43, 44]. The approach consists of 
three major parts: spatial demension reduction through 
principal component analysis; so called thread method 
which approximates the temporal variation using simple 
basis functions; and learning to improve recognition and 
compresison capability. This scheme is also used for the 
compression of parameter sequences corresponding to 
facial articulation. Though developed based on MPEG4 
facial animation parameter set, the algorithm can be 
easily applied to other parameter representations. A bit 

rate of O.SKb/sec is obtained for sequences of medium 
facial activities [45]. A facial expression recognition al- 
gorithm using recurrent neural network is investigated. 
The inputs to the network are the most significant com- 
ponents of this new data representation. Experimental 
results show that computational complexity is reduced 
and expressions can be correctly recognized even with 
diff'erent sampling rates. 

[48, 49] present an algorithm for automatic head 
tracking using a model-based approach. The input is 
a 2D video sequence of a head-and-shoulders scene and 
the output is the trajectories of salient facial features, 
as well as an estimate of the 3D motion of the head. 
We consider feature tracking in two main steps: (1) 
Estimation of rigid head motion and (2) Non-rigid fa- 
cial feature tracking. Localization inaccuracy and er- 
ror accumulation are overcome by using an underlying 
3D model to compute optimal templates for each video 
frame for use in the feature tracking module. Feature 
tracking is performed using a Bayesian-net assisted SSD 
framework and compensation of non-frontal views using 
the estimated 3D motion. For local tracking algorithm, 
a probabilistic framework is used and related 2D dis- 
tribution parameters are derived through training data. 
The network contains high level structural information 
about the face feature locations. A 3D head model, 
head pose estimation, and texture mapping are used 
to produce accurate templates for matching in the fea- 
ture tracking module [50, 51]. In this way, the template 
database is constantly updated and can accommodate 
a large range of head motions without loss of precision. 
The initial feature identification is performed automat- 
ically and the tracking is successful over a large num- 
ber of video frames. Computational complexity is also 
considered with the aim towards creating a real-time 
end-to-end model based video coding system. 

6    Representation and Recognition 

We have made progress in the representation of both 
2D and 3D data. In the 2D case, we have derived the 
medial axis transform of image regions [20]. Instead of 
using the shortest distance to the region border, a po- 
tential field model is used for computational efficiency. 
The region border is assumed to be charged and the val- 
leys of the resulting potential field are used to estimate 
the axes for the medial axis transform. The potential 
valleys are found by following force field, thus, avoid- 
ing two-dimensional search. The potential field is com- 
puted in closed form using the equations of the border 
segments. The simple Newtonian potential is shown to 
be inadequate for this purpose. A higher order poten- 
tial is defined which decays faster with distance than 
as inverse of distance.   It is shown that as the poten- 
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tial order becomes arbitrarily large, the axes approach 
those computed using the shortest distance to the bor- 
der. Algorithms are given for the computation of axes, 
which can run in linear parallel time for part of the axes 

having initial guesses. 
For the 3D case, [42] presents an algorithm for reduc- 

ing a set of high-density scanned range data to a sim- 
plified polygonal mesh. Of major interest is the appli- 
cation of this algorithm to Cyberware 3D range data of 
human heads which produces simple yet accurate wire- 
frame approximations. The objective is to decimate the 
range data while maintaining acceptable levels of res- 
olution over critical sections of the face such as areas 
of high curvature (nose, mouth) and sections with fine 
detail (eyes). Areas such as forehead and cheeks which 
are relatively smooth are represented with lower detail. 
In an application of 3D models, we have used the octree 
representation for collision detection among moving 3D 

objects [17]. 
For recognition, we have developed an approach to 

learn the low-level image structure of a class of objects 
from observations of many samples of the class [38]. 
Canonical, multiscale intensity patterns are learned 
from sample gray-level images. The gray-scale regions 
are obtained from the multi-scale segmentation algo- 
rithm described earlier [19]. However, there are inherent 
difficulties in obtaining an optimal set of segmented re- 
gions for pattern recognition purposes, which motivates 
blending of segmentation and image interpretation. The 
canonical representation is extracted at different scales 
using a neural network learning algorithm. Regions at a 
range of scales are extracted and examined for merger to 
obtain largest homogeneous components. These merged 
regions at each scale are then matched across the tree 
descriptions of sample images. Learning is based on re- 
gions properties, such as shape, area, gray-level inten- 
sity as well as their spatial relationships. This enables 
the network to extract region based descriptions at sev- 
eral scales which constitute a cononical representation 
of the object and can be used to recognize the object. 
In our experiments, we have used images from a face 
database. This results in a facial description in terms 
of prominent gray-scale facial features such as eyes and 
mouth. Our earlier work on learning of 2D object mod- 
els appears in [23]. 
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Abstract 

In this paper we present an overview of plans for 
research under the image exploitation (MEX) area 
of DARPA's image understanding program^. The 
primary goal of the plaimed research is the de- 
velopment of image restoration and feature extrac- 
tion techniques, in combination with a performance 
model, for an adaptive model based matching sys- 
tem. This will enable improved and ideally opti- 
mal adjustment of the feature operators in terms of 
detectability of signal versus noise and feature spa- 
tial resolution, with optimality expressed in terms 
of overall system level probability of detection and 
probability of identification versus false alarm rate. 
The automatic target detection system is based on 
an adaptation of the HausdorflF metric to model 
based matching [Huttenlocher et. al. 1993]. The 
investigation will cover a variety of edge and fea- 
ture operators, and analyze performance of the sys- 
tem using both linear restoration and superresolu- 
tion methods, with the goal of achieving large im- 
provements in the measured performance of the sys- 
tem. 

1    Introduction 

This program will develop methods of adaptive con- 
trol of the automatic taiget detection and recogni- 
tion (ATD/R) systems by means of a mathematical 

performance model that predicts the performance 
of the system in terms of the probability of detec- 
tion (PcO, probability of identification (Pid), and 
false alarm rate (FAR). Both component level and 
end-to-end performance will be modeled. 

We believe that it is unrealistic to expect image 
analysts or users of ATD/R's to be extremely expert 
in the tuning of such systems; nor is it desireable 
that re-tuning be needed on a scenario by scenario 
basis. Thereby is the motivation for an adaptive 
system that adjusts its parameters and/or thresholds 
to achieve useable performance specifications. 

The goal of the adaptive system is to be able to 
relate the internal fi^ee parameters of an automatic 
target detection and recognition system (ATD/R) to 
the expected performance of the system in terms of 
the Pd, Pid, and FAR. One of our key research 
goals is to relate early feature extraction operators 
and thresholds, in addition to later stage model 
based search parameters, matching thresholds and 
geometric tolerances, to the expected system per- 
formance. The extraction of image features used 
by the model based system will be optimized by 
combining image restoration and feature extraction 
processes. We will also apply the same methods to 
the identification problem to optimize system pa- 
rameters in terms of discriminability of a limited 
set of hypothesized target types and states. 

'This work is supported by DARPA under Air Force pro- 
gram F33615-97-C-1022. 
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1.1    Performance Modeling 

Tliis effort will leverage off progress in the area of 
performance modeling for automatic target recog- 
nizer systems under a previous image understand- 
ing effort by Hughes Aircraft Company and Cornell 
University [Doria and Huttenlocher 1996, Doria 
1996, Doria 1997], and builds on work by Grimson 
and Huttenlocher [1994]. Our goal in the analysis 
to date has been to arrive at a first order end-to-end 
model of the Pd and FAR, and to be able to re- 
late these to predict expected ROC's as a function 
of local image complexity (among other parame- 
ters). TTie ATD performance model developed by 
Hughes and Comell models the expected probabil- 
ity of detection Pd and the expected false alarm 
rate FAR for a given local part of a scene. The 
detection model predicts the Pd as a function of the 
atmoshperic attenuation, target versus background 
temperature difference, range to target, taiget size, 
sensor noise, sampling, and blur, edge operator, 
and matching algorithm tolerances and thresholds. 
The system models the match quality of a fixed- 
distance and measured fraction Hausdorff match- 
ing approach, as a fimction of the observed target 
features (in this case edges). The match statistic 
is the fraction of the model matched to the data, 
and the probability of this fraction being observed 
is the outcome of the model. TTie FAR model 
also includes terms that describe the the effects of 
search area, background clutter density and corre- 
lation, and correlation between taiget models. An 
estimate of the local probability of a false alarm 
Pp^in a region surrounding each pixel is obtain- 
able. An example of an initial implementation of 
the PFA estimate at regions surroimding each pixel 
is shown in Figure 1. Because the Pd and FAR 
are both functions of the scene, sensor, and algo- 
rithm parameters ^, these can be related to each 
other and a predicted ROC curve generated. 

2   Objectives 

The overall objective of this research is the devel- 
opment of a model driven ATD/R module that is 
able to adapt itself to different scenarios such that 
the overall performance of the system is optimized 

^Note, however, that some parameters are unique to both 
models; e.g. the FAR is not a function of actual target contrast 

in terms of some specified criterion. One of the 
key benefits of this type of model is that it allows 
trade-offs with parameters describing each of the 
modeled elements of the system, and contributes 
to a general understanding of the relationship be- 
tween these parameters in terms of performance. 
The performance model accepts a set of high level 
specifications such as Pd and FAR from the user, 
and translates these, by means of a criterion fimc- 
tion, into ATD/R algorithm parameters. The initial 
performance model describes the trade-off between 
the probability of detection and false alarm rate for 
a class of algorithms that use the Hausdorff met- 
ric for matching geometric edges to model contour 
and/or internal detail thermal edges [Grimson and 
Huttenlocher 1994, Doria 1996]. An initial version 
of an adaptive ATD has been coded and tested on 
real FLIR imagery [Doria and Huttenlocher 1996, 
Doria 97]. 

One of the central goals of the present program is 
modeling the geometric and statistical behavior of 
low level feature operators, and developing an opti- 
mization strategy that incorporates the expected per- 
formance of the feature operators on portions of the 
scene. By applying a spatial restoration operation in 
combination with the feature operator, the expected 
feature signal response versus noise response can 
be predicted. The response of the feature opera- 
tors on clutter and on taiget edges will be modeled. 
We plan to select and analyze some well known fea- 
ture operators such as the Marr-Hildreth zero cross- 
ings of Laplacian of Gaussians [Marr and Hildreth 
1980], directional derivatives of Gaussians, and the 
Canny operator [Canny 1986]. Both the spatial res- 
olution and statistical performance of these opera- 
tors will be modeled, and related to the performance 
of the ATD/R system. 

Image restoration methods are well known, and in 
general are applied to measured imagery to recover 
the information in an image prior to the effects of 
sensor noise, blur, and other distortions such as mo- 
tion, rotation, space-varying distortions, etc. It is a 
relatively common observation that the performance 
of automatic image exploitation and ATD/R sys- 
tems is a strong function of image resolution and 
noise, which in turn are fiinctions of the range to 
target, atmospheric blur, target contrast, and sen- 
sor blur and sampling effects. Torre and Poggio 
noted that detection and localization of a step edge 
are optimized by edge operators of different ex- 
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tent [Torre and Poggio 1986], which corresponds 
to a trade-oflF between resolution and noise sensi- 
tivity. By combining a performance model of the 
behavior of a given ATD/R algorithm(s) with a geo- 
metric/statistical model of the feature operators, the 
amount of resolution recovery versus allowed noise 
amplification that optimizes overall system perfor- 
mance can, in principle, be achieved. This can be 
done as a fionction of local image complexity, so 
that the algorithm operates both at the feature ex- 
traction level and the matching level with a "best" 
set of parameters, which are arrived at by an on-line 
optimization. 

For linear convolution-type feature operators, it is 
possible to combine an image restoration opera- 
tion with the feature operator by multiplying their 
transfer functions in frequency space. We plan to 
initially study the use of a parametric Weiner fil- 
ter (PWF) or parametric goemetric Weiner filter 
(PGWF) [Castleman 1979] for estimation of tar- 
get edges versus system noise and background clut- 
ter. The optimization can be carried out by vary- 
ing the free parameter(s) of the PWF/PGWF, the 
edge/feature thresholds and parameters, and ATD/R 
search and matching parameters. Note than because 
the optimization is over both geometric tolerance 
and target versus clutter and noise responses, and 
also includes non-linear effects resulting from the 
edge/feature thresholds and the subsequent search 
and model matching terms, the minimum Bayes er- 
ror at the feature extraction level is not necessarily 
optimal for the ATD/R problem. TTie system level 
optimization will attempt to find the globally best 
set of parameters, within bounding constraints, with 
optimality defined for all parameters in terms of the 
user level Pd, Pid, and FAR specifications. 

Hie existing performance model makes use of esti- 
mates of the probability of detection of both target 
and background edges. TTie backgroimd edge es- 
timation will be studied in combination with vari- 
ous models of local clutter spatial statistics. Prior 
knowledge or local estimates of the image and tar- 
get power spectra will be used. Based on this in- 
formation, an optimization, initially using a conju- 
gate gradient based approach, will be performed. 
Note that this optimization occurs prior to any ac- 
tual edge or feature extraction or model matching 
taking place. Table 1 gives a list of the parameters 
that will be involved in the search/optimization pro- 
cess. A combined restoration and feature extraction 

Table 1: Table of parameters subject to optimiza- 
tion.  

Edge operator spatial frequency response. 
Edge operator threshold. 
Edge operator spatial tolerance. 
Other feature parameters. 
Model pose search volume. 
Feature model-to-data match error tolerance. 
Match quality threshold at a fixed distance, or 
match error at a quantile of feature matches. 
Possible target  fractional  occlusion  or non- 
observability. 
Parametric Weiner filter parameters. 

operation is applied only once to the measured im- 
age, based on the results of the optimization. Thus 
the adaptive system need not iterate over actual 
ATD/R results, but only over expected results as 
predicted by the model. As a result, the ultimate 
realizable throughput of the adaptive performance- 
model-driven system is not expected to be signifi- 
cantly limited by the optimization stage. 

As an element of the modeling effort, we will in- 
vestigate statistical models of both the target and 
background. Targets will be modeled in terms of 
their overall thermal contrast and the statistical vari- 
ability of contrast. Background complexity models 
will be used to capture the local structure and sta- 
tistical properties of the scene, and to relate these 
properties to the expected performance of the algo- 
rithms. This has already been done to a first order 
in the existing performance model, where targets 
have been modeled as rectangles of constant AT 
relative to the background. A fractional partial ob- 
servability term has also been used to model those 
cases where targets are either partially occluded or 
have very low contrast over a portion of their con- 
tour. A first order Markov model has been used to 
model the correlation between background edges. 

2.1    Optimization 

One primary mode of optimization will be to op- 
erate in a Neyman-Pearson mode, where a FAR 
specification is given and the system optimizes Pd 
with respect to the free parameters in the restoration 
filter, feature extraction operators, and the perfor- 
mance model of the ATD/R. Over a limited range 
of system parameters, we envision that FAR iso- 
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Figure 1: Example of PFA images. Left to right: Original FLIR image, edge image, PFA at match 
threshold of .80, FFA at match threshold of .95. White in the PFA images indicates high probability of 
false alarm in the local area. 

contour lines of the set of parameters will be be gen- 
erated, where each point on the iso-contour line is 
associated with a set of parameters that give equiv- 
alent expected FAR. The Pd that is maximized 
over these iso-contour liaes in parameter space is 
found, and the parameters associated with the max- 
imal Pd are then used by the system in actual pro- 
cessing, 

2.2   Evaluation 

We will perform evaluations of selected real FLIR 
data, measure the performance of the ATD/R sys- 
tem, and estimate the relative benefits of the adap- 
tive versus non-adaptive systems. We will study the 
relative benefits of optimizing at the several levels 
of the ATD/R algorithms. Full ROC curves will 
be obtained experimentally. Estimates of the confi- 
dence intervals of the results will also be reported. 
When scene conditions change, for this (and all) 
ATD/R's there is a consequent change in the actual 
ROC curve of the system. Thus, we are interested 
in estimating sj^em performance as a fimction of 
scene conditions. For a known sensor and database, 
results of the algorithms will be obtained as a fimc- 
tion of range-to-target, image complexity, target set, 
target contrast, and sensor resolution and noise pa- 
rameters. Results of the Pd corresponding to low, 
medium, and high values of the specified FAR will 
also be obtained. 

2.3   Use of Prior Knowledge 

Initially, we will make use of a limited amount of 
prior knowledge, and determine the performance 
of the system. Among the initial categories of 
knowledge will be the sensor modulation transfer 
fimction (MTF), noise characteristics and NEAT, 
and sampling properties. We will also apply local 
clutter models if these are available from a focus 
of attention module. The system will estimate the 
background clutter density and correlation proper- 
ties. Clutter models will be studied in terms of 
their utility for performance characterization with 
the algorithms being used, and their tractability for 
analysis. E^qjected target types and frequencies of 
targets will be used to constrain the target hypothe- 
ses, and to act as Bayesian priors on the system 
processing. 

We will then proceed to add other information, such 
as that available with the use of site models. Where 
a site model allows estimation of the location of a 
sharp intensity transition, the total system blur will 
be estimated from the observed edge spread fimc- 
tion. In addition, background models may provide 
improved estimates of local scene clutter charac- 
teristics. Prior estimates of target types and poses 
may also allow estimates of the target power spec- 
tra, thereby improving an image restoration process. 
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Ancillary Knowledge Prior Target Knowledge Measured Image 

•Sensor IVTTF 
•Sensor Sampling 
•Atmospherics 
•Site Model 
•Background Models 
•Feature Operator 
Analysis 
•Clutter Model(s) 

•Target types 
•Target priors 
•Target models 
•Target spectral 
densities 

• Adaptive background 
complexity estimation 

^     Adaptive Optimization I 
Optimality Criteria 

ATD/R Perfomiance 
I   Prediction Model 

Restoration^ | 
Superresoiution Model 

•Predict Pd and FAR 
•Predict Pid 

•Optimize T and B 
feature responses 

Perfomiance Specs 
•Pd, Far Specs 
•Pid Specs 

t i 
Optimize wrt free feature, restoration, 
and ATR algorithm parameters 

Figure 2: Overview of high level optimization and use of prior knowledge (T=target, B=background). 

2.4   Extension to Probability of Identifica- 
tion Optimization 

Thus far, the perfomiance analysis of the Hausdorff- 
type, geometric model-based algorithms has not been 
extended to the modeling of Ihe performance of the 
system at the recognition or identification levels; 
that is, discrimination between a hmited number 
of competing target hypotheses. If a hypothesis 
includes target type, configuration, and pose, the 
problem becomes one of discriminating between 
objects based on their quality of match to the data. 
As part of the performance modeling effort in this 
program, we will extend the existing performance 
analysis to handle the target discrimination prob- 
lem. As a general trend, we expect that the spa- 
tial resolution versus noise trade will result in a 
different "best" set of feature parameters for the 
identfication problem than those required for the 
corresponding detection problem. The model set is 
assumed constant for the detection stage, but is a 
function of the earlier indexing and search/match 
stages at the identification stage. In this analysis, 
a Neyman-Pearson criteria no longer is ^plicable, 
therefore we will initially apply a Bayes risk crite- 

ria. Given a defined set of target hypotheses, the 
goal of the extended performance model is to pre- 
dict the performance of the model based system as 
a fimction of the operating parameters of the entire 
sensor-ATR chain of measurement and processing. 
As with the detection-level performance model, the 
system will predict performance as a fiinction of 
the edge/feature operator parameters and thresholds, 
and the quality-of-match criteria of the models to 
the data. 

2.5    Extended Features 

We propose to augment the initial edge based match- 
ing methods based with additional local features. 
To this point we have discussed the ATD/R system 
and performance model in terms of performance 
on geometric information contained in image and 
model edges. The edge extraction process is in- 
cluded in the performance model, and hence actual 
grey level statistics are in fact related to expected 
Pd and FAR. It has been shown that the use of 
orientation information has the potential to improve 
the discriminability of target from clutter [Olson et. 
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al. 1996], We expect that this will also hold when 
apphed to the target hypothesis discrimination case. 

Wavelets are particularly attractive for this investi- 
gation due to their natural ejqsression in terms of 
varying scales and associated spatial frequencies. 
The results of the scale and frequency versus noise 
analysis of selected wavelet types will be used in 
a completely analogous manner within the ATD/R 
as the analysis of the edge operators. The ATD/R 
match quality metric may need to be modified to 
include additional parameters; however, this will 
be true even for the addition of oriented edges to 
the match quality statistic. This effort will, we be- 
lieve, extend the utility of the present analysis based 
adaptive system to a more general and e)q)anded 
set of model based matching approaches and al- 
gorithms, and also suggest vdiich, of a set of low 
level features, are best for the respective detection 
and identification problems. 

2.6    Superresolution 

Given the introduction of additional knowledge about 
the scene or object that is being observed, it may 
be possible to recover spatial frequencies above the 
diffraction limit [Hunt 1995]. Potential types of 
knowledge about targets include spatial extent, non- 
negativity, target smoothness, and prior estimates of 
target power spectra. We will investigate promising 
approaches for superresolution such as the Poisson 
maximimum a-posteriori method of Sementilli et. 
al. [Sementilli et. al. 1993a], who have also de- 
rived an upper bound on superresolved resolution 
enhancement based on error tolerances within the 
recovered spectral range, the size of the observed 
object, the variance of the image noise, and the es- 
timated error sidelobes [Sementilli et. al. 1993b]. 
Key issues that need to be resolved are the extent 
of resolution that is recoverable within a specified 
error, the noise model for the extended frequen- 
cies, which additional image and target constraints 
are most usefiil, and the convergence properties of 
the system. If the superresolution results on actual 
FLIR data appear to be usefiil based on an initial 
investigation, we will integrate the superresolution 
algorithm with the performance model and adaptive 
ATD/R system. 

3    Summary 

The key scientific and technical issues to be ad- 
dressed in this effort are (a) the development and 
validation of usefiil mathematical models of ATD/R 
performance, (b) validation of the models both at 
the component and end-to-end levels, (c) estimation 
of the accuracy and extensibility of the performance 
models over new scenes, (d) development of com- 
bined restoration and feature extraction for optimal 
ATD/R performance, (e) development of optimal- 
ity criteria at the feature level that are related to 
overall end-to-end system performance as defined 
by user specifications, (f) the Pd versus FAR per- 
formance improvement that is obtainable with the 
proposed adaptive ATD system, (g) the Pid per- 
formance obtainable with the extension of the per- 
formance model and adaptive ATR to the modeling 
of competing target hypotheses, and (h) the results 
of the utility of superresolution methods to FLIR 
ATD/R. 

This modeling of the sub-components of the ATD/R 
system includes the sensor measurement process, 
feature extraction, search, and matching. Target 
and background models are also necessary and will 
be applied. The key trade-oflP in the modeling ef- 
fort is that of mathematical tractibility versus per- 
formance prediction accuracy A tightly integrated 
modeling and evaluation process is therefore nec- 
essary. 

We envision the use of this system as a module level 
component within a larger image exploitation, force 
monitoring, or ATD/R system. Our goal is to very 
significantly improve the capability and robustness 
to new conditions of these systems, especially at 
extended ranges or less than perfect imaging con- 
ditions. The use of the adaptive model based de- 
velopment philosophy has, we believe, significant 
long term advantages over other general ATD/R 
and image exploitation approaches, as described 
in Table 2. While requiring additional validation 
of the performance model versus non-adaptive or 
non-analytic adaptive methods, the final result is a 
system that is capable of good performance over a 
wide range of operating conditions. 

Further extension of the adaptive type of approach 
to include additional types of signatures is certainly 
feasible. The application in this program is primar- 
ily to FLIR and EO imagery, but the general mod- 
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Table 2: Characteristics of three classes of automatic target recognizer systems in terms of training (readi- 
ness) requirements, performance, and performance related to parameters. (SPR = statistical pattem recog- 
nition, MB = model based ATD/R, ADMB = adaptive model based ATD/R.)  

ATR Class Readiness Requirements Performance Performance related to 
parameters and scene 
content 

SPR Training with real data. Excellent performance 
when test and training data 
are similar Odierwise 
unpredictable (often poor). 

No explicit relationships. 

MB Tuning with real data and 
models. 

Good when test and training 
data are similar. Otherwise 
unpredictable. 

May be explicit relation- 
ship. Point design of 
parameters. 

ADMB Tuning with real data and 
models. Validation of per- 
formance models required. 

Good, robust to varying 
scene conditions. Per- 
formance model enables 
adaptivity. 

Explicit relationships. 

eling approach and adaptive system design can, in 
principle, be apphed to other modalities, given the 
development of the proper target, sensor, feature, 
and algorithm models. The notion of a theory of 
ATR includes, we believe, this type of modeling ef- 
fort, where progress can be defined in terms of in- 
sight gained into the problem, and predictions serve 
in a practical way to improve system capabilities. 
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Abstract 

This report summarizes the image understanding 
(lU) research being conducted at the University of 
California at Riverside (UCR) under the DARPA 
sponsored programs in learning, target recognition 
and image databases. The goal of our research is 
to develop robust, reliable and efficient algorithms 
and systems that can work effectively in real-world 
applications. The principal areas of investigation in- 
clude physically-based approaches utilizing multiple 
representations for target detection and recognition 
using multisensor data, multistrategy learning-based 
approaches for lU, and image databases. Automatic 
target recognition, image exploitation, surveillance, 
dynamic multisensor databases are the principal ap- 
plications areas of our research. 

1 Introduction 

The University of California at Riverside is conduct- 
ing research in several different aspects of image 
understanding. We summarize the technical objec- 
tives and scientific issues of the new University Re- 
search Initiative eifort just starting, and the impor- 
tant progress made in the areas of learning for image 
understanding and automatic target recognition us- 
ing multisensor (SAR and FLIR) imagery during the 
period from November 1995 to March 1997. 

2 Learning Integrated Visual 
Database for Image Exploitation 

The DOD has critical needs for robust high perfor- 
mance automated systems that can recognize ob- 
jects in reconnaissance imagery acquired under dy- 
namically changing conditions and for systems that 
can efficiently extract information from enormous 
image databases.   Our new research addresses two 

'This work is supported by grants F49620- 
97-1-0184, F49620-95-1-0424 MDA972-93-1-0010 and 
DAAH049510049. The contents and information do not 
necessarily reflect the position or the policy of the U.S. 
Government. 

interrelated problems with the effectiveness and effi- 
ciency of automated/semi-automated techniques for 
image understanding. First, the lack of robustness 
in algorithms and systems for object recognition 
with changing environments. Second, the lack of 
scalable intelligent strategies for quickly extracting 
meaningful information from enormous, dynamically 
changing image databases. This project is distin- 
guished from other image databases in the following 
areeis: (a) The content-based image retrieval image 
database technology is used for designing reliable lU 
algorithms, (b) The system has learning capability, 
improving its performance with use, both in terms of 
processing speed and matching with the user's per- 
ception; (c) users can query the images as well as 
the processing algorithms; (d) an extensive amount 
of image-related information is stored for character- 
ization of various features and algorithms. 

We focus on the task of image exploitation. The 
operational goal is to monitor military forces (vehi- 
cles and equipment) in a small geographic area (10 
Sq. miles) that move, sit and then move. This re- 
quires robust high performance lU systems for rec- 
ognizing objects/events in multisensor imagery ac- 
quired under dynamically changing conditions, and 
efficiently extracting "information" from enormous 
dynamic databases and exploiting it to develop re- 
liable lU systems that will adapt to changing envi- 
ronments. The results of this program will provide a 
significant tool for military and intelligence informa- 
tion systems that will directly contribute to meeting 
the DoD goal of dominant battlefield awareness. 

Objectives: The overall scientific goal of this 
project is to demonstrate that the conjunction of 
learning, recognition, and content and context-based 
retrieval (CCBR) are necessary and sufficient for re- 
liable lU. We believe that for the development of 
robust and reliable lU systems we need a new gen- 
eration of lU research that integrates target recogni- 
tion, learning and CCBR technologies. Each alone 
or any combination of two is not sufficient to de- 
velop reliable lU systems operating in dynamic real- 
world environments. We must combine them in an 
integrated system to develop the science for image 
recognition. The specific subgoals are: 
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(a) Techniques for adapting recognition algorithms 
and models to different theater of operations and 
target types. 

(b) Algorithms for handling target configuration dif- 
ferences, articulations and occlusions without com- 
binatorial explosion. 

(c) Methods for database queries by example with 
multiple objects and relationships (semantic queries) 
for recognition of events or scenarios. 

2.1    Adaptive Recognition Models for 
Different Environments 

State-of-the-art image understanding (lU) algo- 
rithms and systems for image exploitation from SAR 
images generally use static algorithms. They possess 
no learning ability and cannot improve their perfor- 
mance with experience achieved over time. Since 
they possess no adaptive capability to adjust to vary- 
ing sensor operational conditions (such as sensor dif- 
ferences, depression angles, and multiple polariza- 
tions) and deployment environments (such as desert, 
forest, agricultural, urban areas and their seasonal 
variations) they cannot migrate from one theater of 
operations to another. The objective of our research 
is an approach that applies adaptive learning algo- 
rithms to exploit context information and feedback 
on performance results to improve the performance 
of lU based force monitoring systems. We allow the 
image exploitation system to adapt itself to a variety 
of SAR clutter types and perform optimally under 
different operating conditions. The learning takes 
place to (a) adapt clutter models with changes in 
sensor operating conditions, (b) adapt classifiers for 
different clutter types, and (c) adapt parameters em- 
ployed within feature groups based on target recog- 
nition results. The changes for different deployment 
environments such as forest, desert, jungle, arctic, 
etc.) are primarily reflected in the characteristics of 
the image background clutter. Thus, adapting lU 
system to varying clutters is of fundamental impor- 
tance. The research contains the following innova- 
tive ideas: 

Variety of Feature Groups to Build SAR Clutter 
Models: No single feature may capture all possible 
statistical/structural variations for different clutters 
involved in a SAR deployment environment. We use 
several groups of features based on (a) multiscale 
Gabor wavelet (b) self-similarity in natural scenes, 
(c) statistics of geometrical/structural elements, and 
(d) statistical features. 

Learning Background Clutter Models Through a Su- 
pervised Self-Organizing Process: Instead of artifi- 
cially assigning a distribution to clutter models, we 
build clutter models from examples through a super- 
vised learning process. These clutter models are rep- 
resented by compact self-organizing maps (SOMs) 

which capture the distribution of the training data 
without the need to store a large number of exam- 
ples. The SOM technique is extended in our ap- 
proach to an incremental supervised learning pro- 
cess for clutter characterization. We also use the 
self-organizing map to classify a given region of an 
image into a clutter or a target area. The classifica- 
tion algorithm is adapted for different clutter types. 

Stochastic Reinforcement Learning Technique to 
Adapt Clutter Models to SAR Sensor Operating Con- 
ditions: Different Sensor operating conditions corre- 
spond to varying weights of different feature groups 
which together constitute a model for a particular 
clutter type. The relationship between operating 
conditions and the weight of feature groups is op- 
timized through a stochastic reinforcement learning 
process. This learning paradigm is used here since 
the human supervisor (man-in-the-loop) will only be 
tell the system that it is doing a "good job" rather 
than helping the computer in finding the associa- 
tion between operating conditions and the weights 
of different features. 

Delayed Reinforcement Learning for Learning Clut- 
ter Model Parameters Based on Target Recognition 
Results: The image exploitation process requires a 
sequence of algorithms for CFAR (Constant False 
Alarm Rate) detection, feature extraction, clutter 
characterization and target recognition. It is in- 
herently a multi-stage process that has delay from 
stage-to-stage. Since we cannot determine the good- 
ness of different stages until we have seen the final 
recognition result, it is natural to evaluate the qual- 
ity of earlier stages based on the final recognition 
results and a delayed reinforcement learning tech- 
nique fits this situation exactly. 

2.2     Algorithms for Handling Articulations 
and Occlusions 

Current methods for target recognition in SAR im- 
agery cannot handle target articulation, configura- 
tion differences or moderate occlusion. The objec- 
tive of the research is to focus on the challenging 
problems caused by target variations due to articu- 
lation or configuration differences. Our approach to 
the problem of automatic model construction and 
recognition of articulated, non-standard targets in 
SAR imagery is based on local features and local 
reference coordinate systems. We have a systematic 
method for constructing recognition models of ob- 
jects that are not articulated and then we employ 
local image features to match these models and rec- 
ognize the same objects in articulated positions or 
non-standard configurations. The key features of the 
approach are: 

Sensor Specific Design Approach for SAR Target 
Recognition: The unique characteristics and physics 
of SAR sensors are recognized and accommodated 
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by our design approach. The natural range/cross- 
range coordinates and tessellation are directly incor- 
porated. The translation invariance is captured by 
using relative positions of SAR specific features and 
the large rotational variances are accommodated by 
modeling an appropriate number of azimuths. 

Models Based on Articulation Invariants: Our ap- 
proach for SAR target recognition makes use of the 
existence of articulation invariants. The models are 
stored for standard non-articulated objects. Thus, 
it avoids the combinatorial explosion of model con- 
figurations and is inherently directly applicable to 
matching the un-occluded regions (of occluded ob- 
jects) . 

Physically Based Local SAR Image Features Accom- 
modate Articulation: The relative distances between 
scattering centers (and other features such as topo- 
graphic primal sketch features, reflector geometry, 
feature sequences based on location and relative am- 
plitude, and polarization based features) are related 
to the shape and physical dimensions of the detailed 
target geometry. The local coordinate approach to 
local features (vs. global approaches or even a lo- 
cal neighborhood approach) accommodates articula- 
tion/occlusion without precluding use of widely sep- 
arated features (which are good discriminators). 

Efficient Search for Positive Evidence is Designed 
to Accommodate Spurious Data: A powerful com- 
bination of a true look-up table and a voting tech- 
nique that searches for positive evidence reduces the 
work on all non-matching cases to the random coin- 
cidences and makes the method scale gracefully. 

Super-Resolution Target Chips: Super-resolution 
(e.g. six inch) provides rich feature sets that allow 
matching the non-articulated or un-occluded regions 
of the target. Since it is not clear that the problem 
is solvable at one foot resolution, we have taken the 
unique approach of demonstrating feasibility at six 
inch resolution, and then investigating the perfor- 
mance degradation at one foot resolution real data. 

Hierarchical Approach to Indexing and Matching for 
Handling the Exceptional Cases: The basic approach 
for indexing and matching based on the relative lo- 
cations of HH-polarization signal strength maxima 
will be extended to other features (such as other po- 
larizations and using the complex components) to 
handle the exceptional cases and additional match- 
ing modules, based on other features, will be ap- 
plied to discriminate among ambiguous results. In 
addition, we explore a promising stochastic hidden 
Markov modeling (HMM) based approach for index- 
ing/matching. 

2.3    Database Semantic Queries for 
Recognition of Objects and Events 

There are basically two approaches for searching im- 
age databases to identify objects. The first approach 
uses the traditional object recognition that requires 
the understanding of images. The second approach 
uses features for content-based retrieval to select im- 
ages based on the chosen measure of similarity. It 
does not require the full understanding of images. 
We want to combine these two approaches for im- 
age exploitation application and investigate ways of 
using contextual data and domain knowledge for im- 
age interpretation. The key features of the approach 

Flexible Similarity Measures and Indexing Func- 
tions: Current techniques for feature-based retrieval 
use a fixed set of features, similarity measures and 
indexing strategies that are determined in advance. 
We develop learning algorithms for feature selection, 
similarity metrics and associated indexing struc- 
tures. We allow generation of run-time features and 
handle data and index management on the fly. We 
investigate techniques that permit efficient search of 
high dimensional space. This will allow improved 
performance in terms of retrieval speed and a qual- 
ity of results approaching human perception of sim- 
ilarity. 

In practice the relevance of each feature in classify- 
ing a new object may be diff'erent. In addition, the 
relevance of a feature may depend on the user and 
the object being classified. Inclusion of features with 
low relevance leads to high dimensionality of the fea- 
ture vector and can degrade performance. What is 
required is to find the local relevance of each feature 
and use that information to define a flexible similar- 
ity measure that closely resembles human percep- 
tion. Our approach for content-based retrieval is to 
learn the most salient features and develop flexible 
similarity measures that best resemble human per- 
ception of similarity for image exploitation. 

Another important problem in large visual databases 
is the indexing structure to reduce the search space, 
allowing quick browsing. Since multiple features are 
normally necessary to represent an image, a multidi- 
mensional indexing structure is required. The per- 
formance of existing techniques for query by exam- 
ple critically depends on the selection of the features, 
the similarity measures, the user and the application 
context. In our approach the database is indexed by 
the order of the most significant factor/eigenfeature, 
the second most significant factor/eigenfeature, and 
so on. The query search in our approach consists of 
two stages: the pre-query stage and on-line stage. 
The learning is at two-levels: first to determine the 
local relevance of each feature, the ranking and se- 
lection of the features, and the indexing structure 
for the current user, query and application, and sec- 
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ond to select from the knowledge base the ranking 
of features and the indexing structure using the con- 
textual information related with the application. 

Data Models and Queries: We define a complete set 
of data models that the image database system is 
designed to handle. This includes data models for 
contextual information and the design of data struc- 
tures for indexing and retrieval. There exist fairly 
complete data models for image formats and inter- 
mediate data types, which can be used as a basis of 
our development. The key issue is to devise an inte- 
grated model of images, image-related information, 
and processing algorithms. 

We develop database access methods based upon 
content and context with common-sense and tem- 
poral reasoning capability, develop suitable query 
constructs and the semantics of linguistic constraints 
that allow one to express image-oriented queries, and 
designing an image data model that is sufficiently 
powerful, flexible, and extensible. Query methods 
can learn the selection of features and similarity 
measures that match with the user's perception, and 
the associated indexing structure. The learning ap- 
proach will lead to improvement of performance with 
the use, both in terms of retrieval speed and user's 
perception of similarity. 

Query language will perform associative search on 
images, features and algorithms. It will be suffi- 
ciently expressive and be capable of handling impre- 
cise and incomplete data. What image resolution 
to use for query processing is an important opti- 
mization problem. We will investigate whether low- 
resolution intermediate results can be used to re- 
duce the processing cost of image queries. Incom- 
plete information often results in imperfect database 
schema, which need to evolve though learning, moni- 
toring, or user overwriting. The schema may change 
at the data representation level (e.g. the attributes 
of an object, the class an object belongs to, etc.). 
It may also change at the conceptual level (e.g., the 
change of the class hierarchy). Both types of evolu- 
tion will be studied. 

Bayesian-Based Factor Analysis: Principal compo- 
nent analysis is a commonly used technique in im- 
age processing and has been recently used in visual 
databases. However, there are several limitations 
of this technique and the factor analysis model [28] 
has several important advantages: first, the factor 
analysis model permits a noise term, second, the fac- 
tor analysis model postulates a linear model for the 
basic data vectors, and, finally, the factor analysis 
model is much more general, and is driven by a need 
to find and retain a meaningful correlation structure 
for the data that can be explained by a few linear 
combinations of some latent factors. 

The method we develop and apply in this context in- 
volves scoring the image according to the Bayesian 

factor analysis model, which is ideally suited for im- 
age databases. It provides us a compact representa- 
tion, contextual information for image exploitation 
can be explicitly accounted for in the model, and it 
is suitable for indexing, image recognition and clas- 
sification. 

Image Characterization: A variety of features are 
used in content-based retrieval for visible images. 
Many of these features are not useful for S AR, FLIR 
and multispectral images which are important for 
image exploitation. We develop image content based 
on wavelet (e.g. Gabor wavelet based representation 
has energy patterns that are localized both in the 
spatial domain and in the frequency domain) and 
information complexity measures (such as minimum 
description length) to characterize multisensor im- 
ages. 

2.4 Prototype System 

Our new research will be build upon the Visual Intel- 
ligence Datablade system being developed by Virage 
Inc. This system [23] is based on a basic model called 
Visual Information Management System (VIMSYS) 
developed by Virage Inc. This model has four lay- 
ers of information abstraction: the raw image, the 
processed image, the user features of interest and 
the user events of interest. The top three layers 
form the content of the image. There are mecha- 
nisms for defining and installing new similarity mea- 
sures, called primitives. In addition, Virage has tools 
for graphical user interface, query canvas (query-by- 
sketch) , light table (for displaying query result), and 
command line interface. 

As part of the project we will develop algorithms and 
tools for image exploitation in the context of large 
databases. In addition, we will develop a research 
testbed to integrate image and context databases 
with both human customers and the target detec- 
tion and recognition system algorithm customers. 

2.5 Evaluation Plan 

Our evaluation plan provides a significant empha- 
sis on algorithm evaluation and will allow the sub- 
system technology developed to be evaluated in the 
context of overall system effectiveness. 

The overall system performance metrics are a proba- 
bility of detection (Pd) and a false alarm rate (FAR). 
Demonstration results for the clutter modeling will 
be expressed in terms of Pd and FAR, later results 
for recognition will be in terms of Pec (probabil- 
ity of correct classification) and Pci (probability of 
correct identification). In addition, the performance 
of the learning system will be reported as a learn- 
ing rate expressed in terms of performance versus 
the number of exemplars experienced.   We plan to 
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use available SAR, visible and multispectral imagery 
and the imagery that may become available during 
the program and simulated SAR scenes produced by 
XPATCH at various depression angles and for dif- 
ferent environments (e.g. forest, agriculture, desert 
shrub and desert) to populate the database. 

The critical experiments are (a) demonstration of 
the capabilities of various feature groups and self 
organizing clutter models to distinguish man-made 
objects from natural clutter in actual SAR images 
and to show test results for scenes in simulated im- 
agery, (b) the use of reinforcement learning to adapt 
the natural clutter models to sensor operating con- 
ditions, (c) learning rate (performance vs. experi- 
ence) for retraining a clutter model with data from 
a different depression angle, (d) demonstrate the 
performance of clutter models that are adapted to 
new deployment environments (for example agricul- 
ture, and desert shrub) and report the learning rate 
results, (e) demonstrate the system level perfor- 
mance of the recognition elements integrated with 
the clutter models, (f) demonstrate the system level 
performance with the clutter models adapted to the 
matching results and also report both the learning 
rate and the point where learning transitions from 
supervised to unsupervised. 

3    Multistrategy Learning for Image 
Understanding 

The multistrategy learning-based lU approach selec- 
tively applies machine learning techniques at multi- 
ple levels of the lU process to achieve robust recog- 
nition performance. At each level, appropriate eval- 
uation criteria are employed to monitor the perfor- 
mance and self-improvement of the system [5, 18]. 

With the goal of achieving robustness, our research 
at UCR is directed towards learning parameters, 
feedback, contexts, features, concepts, and strategies 
of lU algorithms for model-based object recognition. 
The progress made during the last year includes the 
following: (a) development of approaches based on 
reinforcement learning for controlling feedback be- 
tween segmentation and recognition components in 
an object recognition system, and using it to learn 
segmentation and feature extraction parameters, (b) 
development of an approach based on reinforcement 
learning for integrating context with clutter models 
to reduce false alarms and improve target detection 
performance in FLIR images (c) development of a 
methodology to improve performance of an lU algo- 
rithm by adapting the input data into the desired 
form for a given algorithm, (d) development of a 
case-based reasoning approach for learning recogni- 
tion strategies for image exploitation by categoriza- 
tion of images. 

Earlier we have demonstrated the scalability of the 

genetic learning-based approach for adaptive image 
segmentation [12, 17]. We also developed basic ideas 
applicable to integrating information from multisen- 
sors or integrating recognition and motion analysis, 
using multiobjective optimization [2, 9]. 

3.1    Learning Recognition Strategies 

We have developed several techniques for learning 
recognition strategies. These techniques are based 
on reinforcement learning and case-based reasoning. 

3.1.1    Reinforcement Learning for Adaptive 
Algorithms, Parameters and 
Feedback in an lU System 

Problem: To automate acquisition of recognition 
strategies in dynamic environments to develop theo- 
retically sound approaches to control feedback which 
are based on the results of recognition and to learn 
segmentation and feature extraction parameters for 
robust model-based recognition. 

Approach: We have developed two approaches 
based on reinforcement learning for closed-loop ob- 
ject recognition in a multi-level vision system. These 
approaches use the team of learning automata algo- 
rithm [26] and the delayed reinforcement learning 
algorithm [27]. 

The closed-loop object recognition system evaluates 
the performance of segmentation and feature extrac- 
tion by using the recognition algorithm as part of the 
evaluation function. Recognition confidence is used 
as a reinforcement signal to the image segmentation 
or feature extraction processes. By using the recog- 
nition algorithm as part of the evaluation function, 
the system is able to develop recognition strategies 
automatically, and to recognize objects accurately 
in newly acquired images. As compared to the ge- 
netic algorithm [9, 10] which simply searches a set 
of parameters that optimize a prespecified evalua- 
tion function, here we have a recognition algorithm 
as part of the evaluation function [26]. 

In order to speed up the above algorithms we have 
developed a general approach [3] to image segmenta- 
tion and object recognition that can adapt the image 
segmentation algorithm parameters to the changing 
environmental conditions. The edge-border coinci- 
dence is used for both local and global segmentation 
evaluation. However, since this measure is not re- 
liable (see Figures 1 and 2) for object recognition, 
it is used in conjunction with model matching in 
a closed-loop object recognition system. Segmenta- 
tion parameters are learned using a reinforcement 
learning algorithm that is based on a team of learn- 
ing automata and uses edge-border coincidence or 
the results of model matching as reinforcement sig- 
nals. The edge-border coincidence is used initially to 
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Figure 1: Global edge-border coincidence vs. match- 
ing confidence. 
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Figure 2: Local edge-border coincidence vs. match- 
ing confidence. 

select image segmentation parameters using the re- 
inforcement learning algorithm. Subsequently, fea- 
ture extraction and model matching are carried out 
for each connected component which passes through 
the size filter based on the expected size of objects 
of interest in the image. The control switches be- 
tween learning integrated global and local segmenta- 
tion based on the quality of segmentation and model 
matching. 

Accomplishinents: Using the Phoenix algorithm 
for the segmentation of color images, a clustering- 
based algorithm for the recognition of occluded 2-D 
objects [11] and a team of learning automata [26] 
algorithm, or a delayed reinforcement learning algo- 
rithm [27], we show that in real images with varying 
environmental conditions and camera motion, effec- 
tive low-level image analysis and feature extraction 
can be performed. We have shown performance im- 
provement of an lU system combined with learning 
over an lU system with no learning [26, 27]. Fig- 
ure 3 gives an example for performance improve- 
ment for both image segmentation and object recog- 
nition with experience. In this figure the traffic sign 
shown in the first column of images (taken at differ- 
ent times) is to be recognized. The second column 
shows the segmented results when the learning pro- 
cess is stopped and the traffic sign has been recog- 
nized. Figure 4 demonstrates the learning behavior 
- a reduction in CPU time to recognize the traffic 
sign in one run of 12 images. Figure 5 shows the 
improvement in speed between the two schemes - 
schemel [26] and scheme2 [3]. Scheme 2 makes use 
of edge-border coincidence and global/local image 
segmentation to speed up the recognition process. 
Both schemes use the same learning algorithm. 

Future Work: (a) Develop a complete reinforce- 
ment learning-based system for 3-D model-based ob- 

Figure 3: Integrated segmentation and matching re- 
ilts. 
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Figure 4: CPU time for one run of 12 outdoor im- 
ages. 

ject recognition with feedback among various lev- 
els, (b) Evaluate the performance of the technique 
for ATR application, (c) Learn algorithm parame- 
ters, develop algorithms and evaluation criteria for 
multisensor image segmentation and recognition, (d) 
Learn the optimal sensor combinations and cross- 
sensor validation of segmentation results. 

3.1.2     Case-based reasoning for adaptive lU 
System 

Problem: To automate acquisition of lU strategies, 
to integrate context with image properties, recogni- 
tion algorithms and their parameters. 

Approach: Most current model-based approaches 
to object recognition utilize geometric descriptions 
of object models, i.e., they emphasize the recogni- 
tion problem as a characteristic of individual object 
models only. Various other factors, however, may 
infiuence the outcome of recognition in a real ap- 
plication such as photointerpretation. These factors 
include contextual information, sensor type, target 
type, scene models, and other non-image informa- 
tion. Using Case-Based Reasoning (CBR), success- 
ful recognition strategies (contextual information, 
algorithms, features, parameters, etc.) are stored 
in memory as cases and are used to solve new prob- 
lems. 

Since there are no algorithms that show acceptable 
performance over all different image sets that can be 
input to a system, we categorize images into classes 
and find the best algorithm for each class. When a 
new image is provided to recognize an object such 
as a particular aircraft type, the new image is first 

488 



CPU Time Comparison of Two Schemes 

10    11     12    13 

Figure 5: Comparison of accumulated CPU time for 
5 different runs on 12 images. 

categorized into the most similar class and then pro- 
cessed using the best algorithm known beforehand. 

Categorization of images is, however, a very difficult 
problem. Instead of categorizing an image, a region 
of interest (ROI) is classified. For training images, 
ROIs are acquired and divided into classes by a hu- 
man operator. The best algorithm is also selected by 
a human operator during training. Once images are 
categorized, characteristics of image sets are com- 
piled statistically. These compiled probability distri- 
butions of values for each characteristic feature are 
utilized to find the most similar class. Characteristic 
features fall into two categories: contextual informa- 
tion and pure image metric information. Weather, 
time of image acquisition, and viewing angles are 
used as contextual information. Homogeneity fac- 
tor, convexity factor, and agglomeration factor are 
suggested as pure image metrics information. 

Accomplishments: We have developed the basic 
elements of the CBR paradigm. We have experi- 
mented extensively with a C-based algorithms for 
aircraft recognition in aerial photographs [19, 20, 
21]. We have written code for characterizing image 
data sets. 

Future Work: (a) Develop a prototype system 
which will have all the basic elements of CBR. (b) 
Select the best image metrics based on the discrim- 
inating power for categorizing images, (c) Develop 
reasoning, adaptation and indexing approaches that 
will make CBR an effective approach for lU appli- 
cations [25]. 

3.2     Learning to Integrate Context with 
Clutter Models 

Problem: To integrate contextual information with 
clutter models for target detection and recognition. 
Current image metrics commonly used to character- 
ize images do not correlate well with the performance 
of target recognition systems. 

Approach: The contextual parameters, which de- 
scribe the environmental conditions for each train- 
ing example, are used in a reinforcement learning 
paradigm to improve the clutter models and enhance 
target detection performance under multi-scenario 

situations [29]. New Gabor transform-based features 
and other statistical image features are used to cap- 
ture the statistical properties of natural backgrounds 
in visible and FLIR images. The non-incremental 
self-organizing map approach commonly used in an 
unsupervised mode is extended, by the addition of a 
near-miss injection algorithm, and used as an incre- 
mental supervised learning process for clutter char- 
acterization [30]. 

Accomplishments: A fast algorithm to compute 
the Gabor transform of a given image has been im- 
plemented. We have implemented two new Gabor 
transform-based feature groups and tested their clas- 
sification performance on natural backgrounds. Ex- 
perimental results show that the two feature groups 
could capture certain characteristics of the back- 
grounds, which are consistent with our theoretical 
expectations based on the physical meaning of each 
attribute within the feature group. 

Using 40 second generation FLIR images and four 
contextual parameters (time of the day, depression 
angle, range to the target and air temperature) and 
5 feature groups, we find 100% detection rate, 10% 
false alarm rate and significant improvement in the 
confidence for classifying a feature cell (rectangular 
regions in an image) as a clutter or a target. The 
results have been compared, with and without con- 
textual information [30]. 

Future Work: (a) Prove the convergence of 
the stochastic reinforcement learning algorithm for 
multi-feature cases, (b) Test the approach on a 
larger data set with a variety of contextual param- 
eters, (c) Find the most influential environmental 
parameters for a given sensor, find how a feature 
group is affected by a given environmental parame- 
ter and find if we can make a feature invariant with 
respect to a given environmental parameter through 
normalization of the sensor data. 

3.3     Learning for Input Adaptation and 
Feature Extraction 

Problem: To improve the performance of an lU 
algorithm by adapting its input data to the desired 
form so that it is optimal for the given algorithm. 

Approach: Two general methodologies for the per- 
formance improvement of an lU system are based 
on optimization of algorithm parameters and adap- 
tation of the input. Unlike the genetic learning case 
for adaptive image segmentation, here we focus on 
the second methodology and use modified Hebbian 
learning rules to build adaptive feature extractors 
which transform the input data into the desired form 
for a given algorithm [35, 34]. Learning rules are 
based on different loss functions and are suitable for 
extracting expressive or discriminating features from 
the input. 
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Accomplishments: The feasibility of the approach 
is shown by designing an input adaptor for a thresh- 
olding algorithm for target detection in SAR, FLIR 
and color images. The results are excellent with 
input adaptor compared to the case with no input 
adaptor. 

Future Work: (a) Develop transformations from 
input data to salient features needed for various 
classes of algorithms, (b) Compare performance 
with/without input adaptor for algorithms used in 
applications such as automatic target recognition. 

4    Automatic Target Detection and 
Recognition 

The goals of our ATR research are to use sen- 
sor and geometric models and multiple representa- 
tions (called physically-based modeling) for develop- 
ing techniques for the recognition targets in multi- 
sensor imagery [6] and generic object recognition in 
complex aerial images. Our initial approach for in- 
dexing/matching in SAR images was based on using 
scattering centers and the Hausdorff distance mea- 
sure [7, 32]. Since then we have focused on recogni- 
tion of articulated and occluded objects and this ap- 
proach is not suitable for it. We have made progress 
in the areas of recognition of articulated and oc- 
cluded targets in SAR images using invariants and 
stochastic models [1, 16, 24]. We have also devel- 
oped a Bayesian approach for the segmentation of 
SAR images and an approach for automatic model 
construction from inverse synthetic aperture radar 
images. Earlier we have developed and tested ap- 
proaches based on Gabor wavelet representation [8] 
for (a) distortion-tolerant flexible matching for the 
recognition of occluded and nonoccluded targets in 
FLIR images, (b) computing salient structures in 
cluttered images, and (c) approaches for target de- 
tection in complex multimodal FLIR images. 

4.1     Recognition of Targets in SAR Images 

Problem: Develop techniques for indexing and 
matching to recognize articulated/occluded targets 
in SAR images. 

Approach: Our invariants based approach is based 
on relative distances among the scattering centers 
to access a look-up table that generates the votes 
for the appropriate target and the azimuth. Using 
these results we can identify features which are on 
the turret and which are on the hull and can identify 
target, its body pose and the turret pose [1]. The 
power of the techniques is derived form the fact that 
it makes use of "azimuthal variance", both local and 
global constraints, high resolution data, "articula- 
tion invariants" and a voting mechanism as positive 
evidence for an efficient search [24]. 

-^ 

(a) T72 turret 60° 

^^^ 

(c)   Mlal   turret 
90° 

(b) T80 turret 60° 

(d) SCUD mis- 
sile launcher 

Figure 6: Articulated objects (not to scale). 

Accomplishments: Figure 6 shows four sample 
targets which are used in our experiments. Using 
XPATCH generated data at 6in. resolution (10.0 
GHz center frequency, 1.0 GHz bandwidth, 5.6° an- 
gular span), we have found that significant number 
of features do not typically persist over a few de- 
grees of rotation. Averaging the results for 360 az- 
imuths of the T72 tank, only about one-third of the 
50 strongest scattering center locations remain un- 
changed for 1° azimuth (see Figure 7) and less than 
5% persist for 10°. Figure 8 shows the articulation 
invariants. It shows the percentage of the strongest 
50 scattering centers for the T72 tank that are in ex- 
actly the same location with the turret rotated 60° 
as they are with the turret straight forward. Figure 
9 shows how the probability of correct identification 
varies with the percent invariance. Note that the 
recognition performance is excellent for invariance 
values greater than 40% (i.e., down to 60% spuri- 
ous data). Recognition rate for varying amounts of 
occlusion (288,00 test cases) is shown in Figure 10. 
Note that it is consistent with the previous figure. 
Figure 11 compares (51,840 tests) the performance 
results of the articulated and occluded articulated 
targets for cases with the same number of valid scat- 
terers. It shows the importance of relatively long dis- 
tances and shows that object recognition approaches 
that combine both local and global constraints will 
be better than those which rely on local constraints 
only. 

Future Work: (a) Test the approaches using real 
SAR data and quantify the performance, (b) De- 
velop techniques for feature selection, (c) Develop 
matching techniques that account for complex fea- 
ture types and 3D geometry [7], (d) optimize recog- 
nition performance with respect to feature extrac- 
tion and feature types, (e) Develop a model for per- 
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Top 50 scattering centers for T72 tank (360 a2lmuths) 

Figure 7: T72 azimuthal invariance. 
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Figure 8: An example of Articulation invariants. 
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Figure 9:  Recognition rate and articulation invari- 
ance (50 scatterers, average of 4 objects). 
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Figure 10: Recognition rate and occlusion percent. 
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Figure 11: Articulated object and occluded articu- 
lated object performance results. 
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Figure 12: Example of an observation sequence su- 
perimposed on an image of T72 tank. 

formance prediction. 

4.2     Hidden Markov Modeling 
(HMM)-Based Approach for 
Indexing/ Mat ching 

Problem: Develop stochastic model-based tech- 
niques for indexing and matching to recognize ar- 
ticulated targets in SAR images. 

Approach: The targets with pattern distortion 
caused by articulation and occlusion cannot be rec- 
ognized by template matching. An alternative is to 
use a statistical method that can handle the possible 
configuration variations of the same object. Because 
of its stochastic nature HMM is suitable for describ- 
ing patterns of variation. The key elements of HMM 
include: finding the probability of the observations 
given the model, finding the most likely state trajec- 
tory given the model and observation, and adjusting 
the parameters of HMM to model the observation 
sequence better. The basic idea is imagining the 
features as emitting patterns of some hidden statis- 
tical model. We can sort available features to get 
appropriate sequences as the observation sequences 
of HMM. These sequences w^ill represent the partic- 
ular pattern of point features. It is reasonable to 
use the relative locations and relative magnitudes of 
these point features to obtain observation sequences 
(see Figure 12). Sequence based on relative ampli- 
tudes of SAR image is 01 = Mag 1, Mag 2, Mag 3, 
..., Mag n. Selected sequences based on geometri- 
cal relationship are: 02 = d(l,2), d(2,3), d(3,4), ..., 
d(n-l,n), d(n,l), 03 = d(l,2), d(l,3), ..., d(l,n), 04 
= d(2,l), d(2,3), ..., d(2,n), 05 = d(3,l), d(3,2), ..., 
d(3,n). 

Accomplishments: We have used HMM for recog- 
nition of occluded objects in XPATCH generated 
data as described above. Examples of occlusion in 
training and test cases are shown in Figure 13. Dur- 
ing training we find the optimal number of symbols 
(4) and states (5) for HMM. Using 325,000 training 
samples (5-10% occlusion) and 81,000 testing sam- 
ples (5-50%occlusion) for 5 classes we find the results 
as shown in Figure 14. The results obtained from 
individual models are combined by an algorithm to 
achieve the results shown in this figure. The dotted 
lines show the worst and the best performance that 
was achieved with 5 HMM models (01 to 05). 

Future Work:  (a) Test the approach for articula- 

Figure 13: Scattering centers of T72 tank at azimuth 
0°, part of scattering centers are occluded from a 
particular direction (0-8). 
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Figure 14: Performance of integrated models: using 
integrated models 01 to 05. The results for recog- 
nition (Top 1) and indexing (Top 5) candidates are 
superimposed on the figure shown in (a). 

tion, and occlusion with articulation, (b) Test the 
approach on real SAR data, (c) Develop techniques 
to find the optimal number of HMM models for vari- 
ous targets,(d) Develop methods to integrate results 
from different HMM models, 

4.3     Other SAR related work 

We have developed a Bayesian approach [22] using 
dynamically selected neighborhoods for the segmen- 
tation of SAR images. The approach allows a variety 
of a prior information to be explicitly included in the 
image segmentation task. Preliminary results have 
been shown on simulated data. 

We have also constructed the models automatically 
for object recognition using ISAR images. Given a 
set of ISAR data of an object of interest, structural 
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features are extracted from the images. Statistical 
analysis and geometrical reasoning are then used to 
analyze the features to find spatial and statistical 
invariance so that a structural model of the object 
suitable for object recognition can be constructed. A 
novel feature of the approach is that it uses the per- 
sistency of scattering centers computed during train- 
ing phase to extract good scattering centers during 
testing phase. Four objects (Camaro, Dodge Van, 
Dodge Pickup and Bulldozer) are used to demon- 
strate the results. There are 351 images in both the 
training and the testing data for each object. The 
testing data are offset by 0.2 degree in azimuth from 
the corresponding training data. The results are sig- 
nificantly better compared to the case when we do 
not use the persistency of scattering centers during 
on-line phase. The results show that this approach 
is promising for automatic model construction [33]. 

4.4    Gabor Wavelets for Target Recognition 
and Target Detection 

Using Gabor wavelets representation we have de- 
veloped model-based, distortion-tolerant flexible 
matching techniques for recognition of occluded and 
nonoccluded targets under varying environmental 
conditions [31]. The key idea is to use magnitude, 
phase and frequency measures of Gabor wavelet rep- 
resentation in an innovative flexible matching ap- 
proach that can provide robust recognition. The 
Gabor grid, a topology-preserving map, efficiently 
encodes both signal energy and structural informa- 
tion of an object in a sparse multi-resolution repre- 
sentation. Flexible matching between the model and 
the image minimizes a cost function based on local 
similarity nd geometric distortion of the Gabor grid. 
Grid erosion and repairing is performed whenever a 
collapsed grid, due to object occlusion, is detected. 
We have performed a variety of experiments with 
second generation FLIR data and synthetic targets 
exhibiting varying signatures with changing environ- 
mental conditions. The results are reported in [31]. 

We have developed a new feature ("composite 
phase") based on Gabor wavelets. Also we have 
developed techniques for the computation of salient 
structures and target detection using wavelets [2]. 

5    Other Research 

Other areas of ongoing work include navigation and 
obstacle detection [4, 13, 15]. We are developing a 
mobile testbed, called UCRover for experiments in 
perception and learning. We have developed model- 
based generic object recognition approaches for qual- 
itative recognition of aircraft in perspective aerial 
imagery and tested them on complex aerial images 
[19, 20, 21]. We have also done research on terrain 
interpretation using multispectral images [14]. 

6    Conclusions 

We have developed promising approaches and ob- 
tained good results to solve some of the fundamen- 
tal problems in lU that will have strong impact in 
solving real-world applications. In the coming years 
our focus will be the development of new algorithms 
and the end-to-end complete system that integrates 
recognition, learning and image databases for im- 
age exploitation using SAR, visible and multispec- 
tral imagery. We shall emphasize the performance 
evaluation of our algorithms and systems to measure 
improvements over current approaches. 
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Abstract 

In the past year, work on image browsing and 
retrieval at Stanford has concentrated on the 
development and use of consistent representa- 
tions of color, shape, and texture content in im- 
ages. These compact representations, called sig- 
natures, are more flexible than feature vectors or 
histograms, because they have variable length 
and imply no ordering among primitives and no 
quantization. A perceptually useful metric for 
color signatures has been defined based on what 
we call the "earth mover's distance." A new 
technique for arranging pictures so that simi- 
lar images are grouped together has been de- 
veloped, based on multi-dimensional scaling. In 
color-based retrieval, a new Netscape-based in- 
terface yields access to a 5,000 image database. 
Retrieval is fast, and display of the results is 
made more intuitive by our two-dimensional 
layouts. An image navigator provides an en- 
tirely new paradigm for interaction with a pic- 
ture database. Based on multi-dimensional scal- 
ing, the navigator arranges all (or a large sam- 
ple of) the images in the database into a three- 
dimensional space, and the user can quickly 
home in to the regions of interest, and form a 
mental model of what is in the database. 

1    Introduction 

The literature on image retrieval is growing, 
with several efforts in both academia [Guibas 
and Tomasi, 1996, Forsyth et ai, 1996, Pentland 
et al., 1996, Strieker, 1996, Santini and Jain, 
1996, Wan and Kuo, 1996, Ravela et ai, 1996, 

*This work was sponsored by the Defense Advanced 
Research Projects Agency under contract DAAH04-94- 
G-0284 monitored by the US Army Research Office. The 
views and conclusions contained in this document are 
those of the authors and should not be interpreted as rep- 
resenting the official policies, either expressed or implied, 
of the Defense Advanced Research Projects Agency, the 
United States Government, or Stanford University. 

Swain and Ballard, 1991, Jacobs et ai, 1995] 
and industry [Faloutsos et ai, 1994, Virage, 
1997, Gallant and Johnston, 1995]. The main 
thrust of our work is the definition of basic im- 
age representations that are most appropriate 
for image search. With the aim of a unified 
treatment, we have developed the notion of a 
signature to summarize image appearance. Sig- 
natures can represent the color, shape, or tex- 
ture content of an image. They are more flexible 
than feature vectors and histograms, as they im- 
ply no fixed number or ordering of feature prim- 
itives, as in vectors, nor fixed-pitch quantization 
of feature values, as in histograms. Color and 
shape signatures are described in sections 2 and 
7. Texture signatures are one of the main goals 
of our current research. 

By using a single representation format for 
the three diff'erent modalities considered in our 
work, that is, color, shape, and texture, we 
hope to make our retrieval mechanisms essen- 
tially uniform across modalities. This should 
lead not only to efficiency and simplicity, but 
also to conceptual consistency. We believe that 
it will be easier to combine searches in these 
diff'erent modalities if the underlying represen- 
tations are mutually consistent. 

The other main ingredient of a retrieval system, 
besides signatures, is a perceptually meaningful 
measure of similarity between two images. We 
have defined such a measure based on what we 
call the "Earth Mover's Distance" (section 3). 
With these two ingredients, the pictures in a 
database can be organized so as to keep sim- 
ilar images close to each other. We are cur- 
rently working on organizing these image sig- 
natures into efficient data structures for sublin- 
ear nearest-neighbor retrieval. In addition, a 
similarity metric between images leads to meth- 
ods for laying out either all the images in the 
database, or a sample thereof, or a small num- 
ber of mutually related images, and for display- 
ing these images in an intuitive way for the user. 
The mathematical tool we used for the creation 
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of this layout is multi-dimensional scaling (sec- 
tion 4). 

In our work on color retrieval, we built a 
Netscape-based interface that allows fast re- 
trieval from a 5,000 image database based on 
color signatures (section 5). Furthermore, we 
demonstrated the notion of a database naviga- 
tor, in which many of the images in a database 
are laid out in three-dimensional space (section 
6). The user then navigates in this space with 
a joystick. The main advantage of this new in- 
teraction paradigm is that the content of the 
database is conveyed to the user all at once, 
rather than piecemeal, as in the more standard 
query/response protocol. A global view lets 
the user form a mental picture of the database, 
just as one forms a mental picture of the con- 
tents of, say, a bookstore by browsing in it for 
some time (see figure 1). If the images are ar- 
ranged in a coherent fashion, consistent with 
our similarity metric, the ordering rationale is 
easily learned by the user without being ex- 
plicitly identified. At a more local level, again 
thanks to our metric, the small number of im- 
ages returned in response to a query in the more 
traditional query/response operating mode can 
be displayed so as to emphasize similarities and 
differences among the images. 

In shape-based retrieval, we continued our ear- 
lier work on developing shape indices by record- 
ing "what basic shape appears where in the 
image." We successfully experimented with a 
data-base of scanned-in Chinese characters (fig- 
ure 2) and used geometric hashing to make our 
indices invariant under a transformation group. 
We are currently experimenting with some vari- 
ants of shape signatures and definitions of the 
earth mover's distance for them. 

In the following sections, we outline the main 
aspects of our color- and shape-based retrieval 
work. In section 8, we discuss research plans 
for next year and beyond. More details on the 
technical aspects of our research are given in two 
companion papers in these proceedings [Rubner 
et ai, 1997, Cohen and Guibas, 1997b]. 

2    Color Signatures 

The color information of each image is reduced 
to a compact representation that we call the sig- 
nature of the image. In general a signature con- 
tains a varying number of points in a Euclidean 
space where a weight is attached to each point. 
In the case of color images, the points represent 
clusters of similar colors in CIE-LAB space, and 
the weight of a point is the fraction of the im- 

age area with that color. The signatures thus 
obtained are compact: the color distribution of 
an entire image is summarized by a handful of 
points, typically eight to twelve. Since signa- 
tures represent distributions in the CIE-LAB 
color space, they are perceptually significant, 
in that Euchdean distances between points are 
strongly correlated with perceptual differences. 
Because of clustering, small variations in the 
colors of an image have little effect on signa- 
tures, thereby providing a moderate degree of 
invariance to changes of viewpoint and lighting. 
Finally, signatures are simple and flexible ab- 
stractions. In fact, the cloud of weighted points 
that makes up a color signature lives in the low- 
dimensional space of colors. Furthermore, just 
as objects and concepts are described in English 
by sentences with a variable number of words, 
so images are summarized by a variable num- 
ber of colors in a signature. The ordering of 
colors in not meaningful, and is therefore not 
used. The relative importance of the various 
colors is explicitly represented by the weight of 
each signature component, and is therefore im- 
mune from the quantization problems inherent 
in color histograms. 

3    The Earth Mover's Distance 

We define the distance between two signatures 
to be the minimum amount of 'work' needed 
to transform one signature into the other. The 
work needed to move a point, or a fraction of 
a point, to a new location is the portion of 
the weight being moved, multiplied by the Eu- 
clidean distance between the old and the new 
locations. When changing one signature to an- 
other, the work is the sum of the work done by 
moving the weights of the individual points of 
the source signature to those of the destination 
signature. We allow the weight of a single source 
signature point to be partitioned among sev- 
eral destination signature points, and vice versa. 
The distance between the source and destina- 
tion signatures is then defined to be the min- 
imum amount of work necessary to thus move 
the weight of the source to that of the destina- 
tion signature. We call this distance function 
the earth mover's distance. 

Computing the earth mover's distance can be 
formulated as a linear programming (LP) prob- 
lem [Rubner et ai, 1997]. Given the compact 
nature of color signatures, this LP problem is 
relatively small. Still, since computing this dis- 
tance is the main operation in our image re- 
trieval systems, we are devoting considerable 
efforts to making this solution as fast as pos- 
sible.  Currently, the distance between two im- 
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ages is computed in a small fraction of a sec- 
ond. Bounds can be used both to exclude from 
consideration images that are too distant from 
the query and to abort computation of a dis- 
tance once it is certain to exceed a certain value. 
These refinements are briefly discussed in sec- 
tion 8. 

4    Multi-Dimensional Scaling 

Our earth mover's distance quantifies the per- 
ceptual difference that separates two signa- 
tures. Consequently, each signature can be rep- 
resented by a single point in a suitably high- 
dimensional space, such that distances between 
these points are equal to the earth mover's dis- 
tances between the corresponding signatures. 
The computation of the coordinates of these 
high-dimensional points is called an embed- 
ding. However, humans can only visualize low- 
dimensional spaces, typically in two or three di- 
mensions. We then look for an approximate em- 
bedding, rather than for an exact one. 

The approximate embedding problem was for- 
malized by Kruskal [Kruskal, 1964] into the so- 
called Multi-Dimensional Scaling (MDS) prob- 
lem. Using MDS can assist navigation in the 
space of images both locally and globally, as we 
now illustrate. 

5    Fast Color-Based Retrieval 

Our Netscape-based retrieval system lets the 
user find images based on their color distribu- 
tions. Queries can either use or ignore posi- 
tional information. Currently, position is han- 
dled by splitting up a query window into an 
array of 5 by 5 rectangles, each of which can 
be searched independently. Queries are either 
specified by coloring each rectangle with a dif- 
ferent color, or by using another image, returned 
by the retrieval system, as a query. We found 
it useful to also provide a "random query" but- 
ton, which returns random images. These can 
be used as starting points for a more focused 
query. 

Performing MDS on the images returned from 
a query gives us a better way to display the 
query results. Instead of the traditional one- 
dimensional list of images sorted by their dis- 
tances from the query, we can display a two 
or three dimensional map of the images, where 
each image is positioned according to the MDS 
result. In this way we are presenting informa- 
tion refiecting (") distances, instead of only n in 

the traditional method. In addition to visually 
representing the relative distances between all 
pairs of images, images with similar color con- 
tent will group together. 

6    Navigating in a Space of Color 
Images 

Performing MDS on a large set of images can 
help the user understand the space of color im- 
ages at whole. In the resulting displays, dis- 
cussed in [Rubner et a/., 1997], images end 
up grouping by a combination of their dom- 
inant chroma, lightness, and saturation. We 
emphasize that these criteria are "discovered" 
by multi-dimensional scaling (section 4), not 
hard-coded by the programmer. As a conse- 
quence, higher dimensional MDS can be done 
on the image database where different charac- 
teristics of the images will be revealed. These 
higher-dimensional layouts can be displayed 
through different projections onto two- or three- 
dimensional spaces. Given one of these layouts, 
including the simple three-dimensional ones we 
have produced in our recent work, when the user 
looks for a sunset she sees immediately where to 
go. At a glance, she can write off most of the 
data-base, and home in to the "sunset-looking" 
part of it. At the same time, the user forms a 
mental picture of the entire data base. Every- 
thing is seen in coarse detail, and the impression 
arises of grasping the overall data-base content, 
at least in terms of color distributions. Given 
a joystick that lets the user get closer to the 
area of interest, the system conveys at the same 
time focus, because nearby images are large on 
the display, and context, because all or most 
other images are still visible at a distance. As 
the user moves about, she has the comforting 
impression that the whole data-base is there all 
the time, rather than being handed down to her 
in small disconnected fragments. 

7    Shape Signatures 

We base our shape signatures on image edges. 
After running an edge detector on the image, 
we link edgels into chains, and then fit a num- 
ber of primitive geometric shapes to the result- 
ing chains. Our initial implementation is based 
on fitting line segments to these chains. We 
also intend to explore fitting with other sim- 
ple primitives, such as corners, circular arcs, S- 
shapes, and so on. These are the kinds of prim- 
itives which the user might quickly sketch with 
a drawing program as a way of indicating the 
shape content of the image. 
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[rill 9 

Figure    1:       2D    MDS    map    of   500    images. A    color    version    can    be    viewed    at 
http://vision.Stanford.edu/irs/colorpics.html. 
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Figure 2:  Sample queries into our Chinese character database, with corresponding results.   Each 
query takes about one second on an SGI Indy. 

498 



The nature of a shape signature element is then 
to record a good fit of one of these basic prim- 
itives with the edges found in the image. Just 
as in the case of color, what we store describes 
'what is where' in terms of significant shape fea- 
tures. Thus shape signature elements come in 
different flavors, depending on the basic shape 
that has been matched. Note that in general 
there will be many good matches of a given ba- 
sic shape into an image and our goal is to choose 
a small and representative subset. For exam- 
ple, near any very good match there will be 
other (less) good matches that are dominated 
by it. Clearly we do not want to record the lat- 
ter in the signature. We have recently had some 
progress in dealing successfully with this issue 
[Cohen and Guibas, 1997a]. 

We have experimented extensively with such 
shape descriptors and obtained very good re- 
sults for a data-base of illustrations from a ge- 
ometry text, where of course there is no noise in 
the shape data [Cohen and Guibas, 1996]. But 
we also obtained good results with a data-base 
of scanned-in Chinese character shapes [Cohen 
and Guibas, 1997b]. 

Shape signature elements correspond to trans- 
formations mapping a basic shape primitive into 
its location in the image. As such they can 
also be viewed as points in An appropriate low- 
dimensional parameter space; in this case the 
weight can indicate the size or length of the 
shape primitive. However, the earth mover's 
distance must be modified to be used success- 
fully with such shape signatures. The reason 
is because, for example, the same edge in two 
similar images might be indexed as one long seg- 
ment in one image, but as two shorter segments 
in the other due to noise, etc. We are currently 
experimenting with various adaptations of the 
earth mover's distance for matching "fragments 
to a whole." 

8    Future Work 

ible, and allow mixing of image details and col- 
ors from the given palette. The MDS display of 
the returned images must be made "alive" by 
letting the user click on it to provide a compo- 
nent for the next query. 

The core computation of the earth mover's dis- 
tance must be made as efficient as possible. We 
have discovered that the dual LP problem is in 
our case much faster than the primal. Also, the 
distance between two signatures can be shown 
to be bounded from below by the distance be- 
tween their centers of mass. This can lead to 
dramatic shortcuts in the computation. Speed- 
ups can be achieved also by using the special 
structure of the problem internally to the LP 
computation, by using an interior-point algo- 
rithm, rather than a simplex method, and by 
terminating the computation of a distance from 
the current query when this distance is provably 
too large to be of interest. 

Another set of issues arises from the applica- 
tion of the signature concept to the description 
of texture. Although we have already developed 
the main elements of texture representation and 
analysis [Rubner and Tomasi, 1996], texture sig- 
natures and the meaning of the earth mover's 
distance for texture are still to be explored. We 
must also determine the significance of MDS in 
texture space. Similarly, much remains to be 
explored in applying these ideas to shape signa- 
tures, as discussed above. 

Perhaps the hardest problems relate to the com- 
bination of different query modalities. How can 
we incorporate spatial position in greater detail 
than by our device of a 5 by 5 partition of the 
query window? How can we more meaningfully 
combine the 25 results from querying each of 
the windows? And how can we combine query 
by color, shape, and texture in order to give the 
user a flexible retrieval tool? We plan to pursue 
these questions in our next year of research and 
beyond. 

The concepts we have developed in our recent 
work form a consistent, solid basis for the con- 
struction of retrieval systems based on color, 
shape, and texture. At the same time, the pro- 
totype systems we have built to demonstrate 
their effectiveness, although efficient and non- 
trivial in size, are merely proofs of concept. Sev- 
eral promising avenues of research present them- 
selves. 

One set of problems relates to the fine tuning 
and improvement of our existing demonstration 
systems. The interface must be made more flex- 
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Abstract 

In ongoing work we are exploring the use of four 
different thermal invariants to identify materials 
and to detect changes in materials in sequences 
of thermal images. An user-selected set of re- 
gions are located in each thermal image through 
the use of a detailed site model, which we have 
built as part of this work. Invariants are calcu- 
lated in each image from the temperature values 
in the regions and from their hypothesized ma- 
terial types. These invariant values are com- 
pared across the sequence to determine their 
stability and accuracy in discriminating materi- 
als. 

1    Introduction 

This paper describes preliminary work studying 
the use of thermal invariants to identify mate- 
rials and to monitor changes in materials us- 
ing sequences of thermal (infrared) image data. 
These materials may be the exterior faces and 
roofs of buildings, the surfaces of roads, airstrips 
or parking lots, or the external surfaces of ob- 
jects outside buildings. The work is part of a 
joint project between the GE Center for Re- 

'This work was supported by DARPA contract 
F33615-94-C-1529, monitored by Wright Patterson Air- 
force Base, Dayton, OH. The views and conclusions 
contained in this document are those of the authors 
and should not be interpreted as representing the offi- 
cial policies, either expressed or implied, of the Defense 
Advanced Research Projects Agency, the United States 
Government, Rensselaer Polytechnic Institute, or Gen- 
eral Electric. This work was done while the first author 
was on sabbatical at GE. 

search and Development and Wright Labs. 

A thermal invariant [Arnold et ai, 1996, Michel 
et al., 1997, Nandhakumar and Velten, 1994, 
Nandhakumax et al, 1996] is a function map- 
ping several quantities to a single real num- 
ber; these quantities include surface tempera- 
tures calculated from thermal imagery, known 
thermophysical properties of hypothesized sur- 
face materials and, potentially, ambient temper- 
ature measurements. In principle, when surface 
and ambient temperatures are measured accu- 
rately and when the correct materials are hy- 
pothesized, this number should be stable with 
respect to time, regardless of the imaging condi- 
tions. Furthermore, the number should ideally 
be the same for different sets of surfaces hav- 
ing the same material properties. Therefore, 
thermal invariants can potentially be used to 
identify surface material types and to monitor 
changes in surface properties. 

Our work, which focuses on the application of 
thermal invariants rather than the theory, dif- 
fers from past work in several ways. First, 
most previous work has applied thermal invari- 
ants to object recognition rather than material 
identification and change monitoring. This al- 
lows us to base our invariant calculations on 
large image regions rather than on individual 
pixels. Second, our test data is "Midwave 
Infrared" (MWIR) imagery rather the "Long- 
wave Infrared" (LWIR) imagery used in previ- 
ous studies of thermal invariants. MWIR sen- 
sors measure radiation in the 3-5 /^m wavelength 
range instead of the 8-14 /xm range of LWIR 
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range. The consequences of this for the physical 
model on which the thermal invariants are based 
have not yet been explored. Third, we only con- 
sider imagery taken at night since other imaging 
modahties will be used for daylight hours. This 
simplifies the calculations since the effects of so- 
lar radiation can be ignored. 

A crucial requirement in developing and study- 
ing thermal invariants is the ability to locate 
the same region in multiple images. In our 
study this is done using both a detailed site 
model and the intrinsic and extrinsic param- 
eters of a perspective camera model for each 
image. Hence, a region in any one image may 
be backprojected onto the site model and pro- 
jected onto any other image. This allows regions 
to be tracked across a time sequence of thermal 
images. We have built a detailed site model 
using visible light intensity images and a CAD 
model from Wright-Patterson Air Force Base. 
The thermal data were all acquired there. 

The remainder of this paper is organized into 
four main sections. Section 2 summarizes the 
thermal invariants studied thus far. It outlines 
the physical model on which they are based and 
sketches the method for deriving the invariants. 
Section 3 describes techniques for using these 
thermal invariants to identify and monitor ma- 
terials. Section 4 presents a set of initial results. 
Section 5 concludes the paper by outlining on- 
going work. 

2    Thermal Invariants 

The first thermal invariant proposed in the liter- 
ature is based on an argument about the ther- 
mal history of object surfaces [Gauder et al, 
1993]. All other suggested thermal invariants 
are based on a model of the thermal equilibrium 
of an imaged surface. This model [Nandhaku- 
mar and Aggarwal, 1988] is 

Wabs = Wrad + Wcv + Wst + W^nd        (1) 

Each of the W terms is a heat flux. The left 
side of the equality is the energy absorbed from 
the environment at the surface. The right is the 
energy lost from the surface. 

Wabs is modeled as being exclusively from solar 

energy and is written as 

Wabs = Wi COS 0ias (2) 

where Wj is the incident solar radiation at the 
surface element, cos6[ is the cosine of the angle 
between the sun and the object surface normal, 
and as is the solar absorptivity of the surface. 
At night, Wabs - 0. 

Wrad is the heat loss due to radiation from the 
surface: 

Wrad = ^(^{Ts  - Tamb) (3) 

where e is the surface emissivity, a is the Stefan- 
Boltzmann constant, Ts is the measured surface 
temperature in (degrees) Kelvin, and Tamb is the 
ambient temperature, also in (degrees) Kelvin. 

Wrv is the heat loss due to convection: 

Wcv = h{Ts - Tamb) (4) 

where h is the "average convection heat transfer 
coeflScient" which depends on a variety of envi- 
ronmental and surface factors (see discussion in 
[Nandhakumar and Aggarwal, 1988]). 

Wst is the stored energy at the object surface: 

(5) W., = Crf 

where CT is the lumped thermal capacitance of 
the object. 

Wend is the heat conducted to the object inte- 
rior: 

Wend = -k dx 
(6) 

where k is the thermal conductivity of the ma- 
terial and X is the distance below the surface. 

2.1    Deriving Thermal Invariants 

The above equations include a variety of pa- 
rameters. Some of these are known constants. 
Some, such as the ambient temperature and the 
surface temperature, may be measured from the 
environment. Some are known when hypotheses 
about materials are specified. The rest, which 
are often called the "driving conditions", are 
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difficult to measure or hypothesize. To make 
use of equation 1, these parameters must be 
eliminated from consideration. This is done by 
using measurements from several different sur- 
faces with different material properties and by 
using a model of how the vaxious parameters 
transform between different views. These allow 
functions to be derived that are independent of 
the unknown driving conditions. Some of these 
functions can be used as meaningful thermal in- 

variants. 

The first step is to rewrite equation 1 as a-^x = 
0, where x includes the driving conditions and 
a includes everything else. Several means of 
achieving this have been proposed resulting in 
different invariants. The following was de- 
scribed in [Michel et al, 1997]: 

ai = CT 

03 = —{Ts — Tamb) 

04 = -a{Tg - T^mb) 

05 = cos 61 

dt 

dx 
xs = h 

Xl 

X2 

(7) 

X4_ = e 

X5 = Wjag. 

The second step is to model the transforma- 
tion of a between views. For five linearly in- 
dependent vectors ai,... ,0.5 formed from one 
view (image) and five corresponding vectors 
a'^,... , a'g from a second view, there is a unique 
matrix M, such that a^- = MSLJ, j = 1,... ,5. 
By constraining the form of M based on prior 
knowledge the degrees of freedom of M can be 
reduced. Specifically, since CT and k do not 
change between views, the first two rows of 
M are completely determined. Therefore, we 
have 25 constraints on M from the equations 
a'- = Ma.j and only 15 unknowns. This implies 
that up to 10 functions involving only terms in 
the vectors aj can be derived [Mundy and Zis- 
serman, 1992] using elimination methods [Ka- 
pur et al, 1995]. Since these functions are inde- 
pendent of imaging conditions, they should be 
invariant across different views. Some involve 
fewer than five points. Many are trivial, but 
others are potentially useful. 

2.2    Invariants Tested 

We have begun testing four invariants proposed 
in the Uterature. The first one, which is quite 
simple, was proposed in [Gauder et al., 1993]. 
The other three are based on different formula- 
tions of a and x derived from the physical model 
of equation 1. These invariants, 12,... ,14, 
are specialized to data taken at night, where 
Wi = 0, so that a has only four components. 
Each of these is a ratio of determinants. 

II: This is just a ratio of temperature differ- 
ences [Gauder et ai, 1993]. Given three 
points (or regions), denoted by m, n, and 
p, with surface temperatures Tm, Tn, and 
Tp, the invariant is 

12: 

13: 

Jl(m,n,p) (8) 

This invariant does not require prior knowl- 
edge of material properties. 

This invariant [Michel et al, 1996] re- 
quires four points (regions), m, n, p 
and q, measured surface temperatures Ti, 
i e {m,n,p,q}, and hypothesized material 
properties, ki and CT,i- The materials must 
be distinct. To simplify the notation, let 
bj = [Ti,ki,CT,i)' (where ' denotes "trans- 
pose" here). Then, 

12{m,n,p,q) = 
|"m; "ni "pi 
|b„,bp,bg| 

(9) 

This does not require the ambient temper- 
ature. 

This invariant [Michel et al, 1997] re- 
quires three points (regions), m, n, and 
p, measured surface temperatures, hy- 
pothesized material properties, and the 
ambient temperature, Tamb- Let bj = 
{CT,i,ki,a{T^^, -Tf))', and let c, = 
{CT,i,Tamb - Ti,a{T^^, - T^))'. Then, 

/3(m,n,p) = 
I "m 1 "n) t>p (10) 

Observe that o can be factored out of these 
calculations, which increases numerical sta- 
bility. 
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14: This invariant was suggested in personal 
communication by Greg Arnold. It re- 
quires four points (regions), m, n, p, and 
q, measured surface temperatures, the am- 
bient temperature, and CT but not k. Let 

bi = {CT,uTamb-TiMTLb-Tt))'- Then, 

|t>j7i, Dji, Dpi 
M{m,n,p,q) = 

|b„,bp,b5| (11) 

This invariant can be extended to use up 
to 6 points (regions) by replacing b„ and 
bp with measurements from other points 
(regions). 

3    Calculating and Using Thermal 
Invariants of Surface Regions 

We envision the following complete scenario for 
using a thermal invariant to identify surface ma- 
terials. The first three steps are currently imple- 
mented. The fourth and fifth are only partially 
implemented, but the implementation is com- 
plete enough for an initial study of the stability 
and relative performance of the invariants. 

1. In one thermal image, the user outlines sev- 
eral regions (one less than needed to form 
the invariant) and chooses for each region 
the material type corresponding to the ma- 
jority of the region's pixels. We refer to 
these known regions, which need not be 
completely homogeneous, as the "basis re- 
gions" . 

The user outlines a "test region' 
an unknown material type. 

which has 

3. 

4. 

The user chooses a thermal invariant, one 
of 71 through 74. 

If 71 is chosen, the system will search a 
database of invariants to select those corre- 
sponding to the basis region materials plus 
one more material. This will form a set 
of candidate materials and invariant values 
for the test region. Independent of this, 
the system will calculate the actual value 
of 71 for the basis regions and the test re- 
gion over a sequence of thermal images. 
(This can be done independently because 

the invariant calculations do not depend on 
material parameters.) The actual invariant 
values will then be compared to the candi- 
date invariant values to choose the correct 
material type or to determine that none are 
appropriate. This requires that the invari- 
ants for different materials be distinguish- 
able. 

5. If 72, 73 or 74 are chosen, the system must 
try different hypothesized materials for the 
test region. It will calculate invariant val- 
ues for each hypothesized material over a 
sequence of thermal images. It will then 
decide the correct material for the test re- 
gion in one of two ways. The first, which 
assumes that incorrect material hypothe- 
ses will produce fluctuating invariant val- 
ues, is to choose the material corresponding 
to the most stable invariant. The second, 
which is more in-line with the use of 71, 
is to compare the invariant values against 
precomputed values for the tested combina- 
tion of materials. The first represents the 
ideal case since it does not require building 
a database of invariants, but it also places 
the greatest demand on the accuracy of the 
model and the calculations. 

When an invariant is being used for change de- 
tection, our envisioned scenario is much simpler. 
It requires only that the basis and test regions 
be identified (including perhaps their material 
types), that the invariant be calculated over an 
initial sequence of images to establish its range 
of values, and that the invariant be monitored in 
subsequent images for persistent and substan- 
tial changes. 

Our implementation thus far has focused on ex- 
perimentally evaluating invariants 71 through 
74 using a variety of basis and test regions. The 
main parts of our implementation are discussed 
in the remainder of this section. The next sec- 
tion summarizes our preliminary experimental 
results. 

3.1    Temperature Calibration 

The raw MWIR data does not give surface tem- 
perature measurements without a calibration 

506 



model. For LWIR data, calibration is done us- 
ing a physical model of the sensor together with 
assumptions about emissivity values of common 
materials [Nandhakumar and Aggarwal, 1988]. 
For the MWIR data we study here, the calibra- 
tion model is entirely empirical [MTL Systems 
Inc., 1996]. Its derivation is based on comparing 
thermal image data to temperatures measured 
on the actual surface using thermocouples. This 
calibration does not lead to a physical under- 
standing of the sensor. 

3.2    Site Model and Camera Models 

A crucial aspect of evaluating invariants over 
a sequence of thermal images is locating the 
same region in multiple thermal images. When 
these regions are parts of building walls, build- 
ing roofs, roads or parking areas, a site model is 
needed. Hence, as part of this project we have 
been building a detailed site model of Wright- 
Patterson Air Force Base. We started from 
elevation data for some buildings and an ini- 
tial CAD model containing building footprints. 
This gave enough information to build initial 
camera and building models. 

New and more complete building models and 
improved camera models were then constructed 
iteratively. This was driven by manual identifi- 
cation of corresponding points in multiple vis- 
ible light intensity images. This was all done 
within GE's TargetJr software system. Once 
complete the site model was used to construct 
camera models for the thermal images, forming 
the basis for subsequent research. An example 
site model overlaid on top of a MWIR image (af- 
ter conversion to temperature measurements) is 
shown in Figure 1. 

To form a basis region or a test region, the user 
starts by outlining a polygonal region of inter- 
est in one thermal image. The image coordi- 
nate vertices of this polygon are backprojected 
onto the site model to form a chain of vertices 
in world coordinates. (If the backprojection of 
a vertex does not intersect the site model, the 
region is rejected.) For a subsequent thermal 
image, these regions are projected to image co- 
ordinates using the camera model of the new 
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Figure 1: A thermal image with an overlaid 
site model 

image, forming a new image region. Example 
basis regions and test regions are shown in Fig- 
ures 2 and 3, respectively. 

3.3    Temperature Calculation in 
Regions 

Regions are used rather than individual points 
for two main reasons. First, since temperature 
measurements should be the same for different 
surface points having the same material proper- 
ties, combining values from many pixels should 
produce more accurate temperature estimates 
and hence more accurate invariants. The trick 
is combining pixel values while tolerating values 
that may correspond to different materials (out- 
liers) . Second, individual points are difficult to 
locate in multiple views of a homogeneous re- 
gion: these points are not distinctive and the 
camera models and site model are not precise 
enough to use backprojection and reprojection 
alone. 

We estimate the temperature for an image re- 
gion using a technique that tolerates up to 50% 
outliers but is more accurate than the median. 
The pixel values are gathered into a list and 
sorted into non-decreasing order. The resulting 
values may be denoted by t[l],... ,t[n\. Then, 
the smallest interval containing half the mea- 
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surements is found. Letting m = \{n + l)/2], 
this interval starts at index i*, where 

i* —      argmin     (<[i + m — 1] — t[i]). 
i6{l,...,Ti-m+l} 

An initial estimate of the temperature, which is 
already less biased than the median when the 
outlier distribution is skewed, is t* = (<[i + m — 
1] + i[«])/2. An estimate of the scale which is 
consistent with Gaussian distributed tempera- 
ture values is s = 1.43 • (t\i + m - 1] - <[i])/2. 
The final estimate of the temperature is found 
by gathering all points within the interval f*±3s 
and computing the mean and standard devia- 
tion. This is much more accurate than the me- 
dian but just as robust. The cost is sorting the 
data, which is trivial since typical regions con- 
tain 100 or so pixels. 

Figure 2: A thermal image with two overlaid, 
rectangular basis regions 
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Figure 3: A  thermal image  overlaid with a 
rectangular test region 

3.4    Summary Statistics for An 
Image Sequence 

Once the values are calculated for an invariant 
formed by a given set of basis regions and a 
test region across a sequence of images, sum- 
mary statistics must be calculated. Currently, 
this is achieved using the technique described 
in Section 3.3. In effect, this treats the invari- 
ants as Gaussian, which they are unlikely to 
be. More sophisticated techniques, such as dis- 
cussed in [Arnold et al, 1996] may be needed 
when our software is extended to include deci- 
sion techniques. For the initial experimentation 
described here, the current techniques are suffi- 
cient. 

4    Preliminary Experimental Results 

We have completed preliminary experimenta- 
tion with the four invariants 71 through 74. 
These results explore the stability, accuracy and 
reliabilty of the invariants. We discuss each in- 
variant in turn. 

The test data were acquired at Wright- 
Patterson Air Force Base over a two week pe- 
riod in August of 1996. Thermal image data 
were taken at one hour intervals all through the 
day and night using a portable thermal imager 
mounted on top of a telescoping tower. The im- 
ager collected data from nine image segments. 
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Images from six twenty-four hour periods were 
acquired, with each segment being imaged ev- 
ery hour for each of the six periods. Ambient 
temperature readings were taken at 10 minute 
intervals during this period. In addition, visi- 
ble light images were taken for use in building 
the site model. Our tests thus far have focused 
on images of the buildings shown in Figure 1. 
The center building has a fiberglass shingle roof, 
painted cinderblock walls, and galvanized steel 
in the arch between the cinderblock walls and 
the roof. Just below the building is a wooden 
trash screen. The parking lots in front of the 
center building are asphalt. A building in the 
background has face brick walls. 

The most promising results thus far were ob- 
tained for invariant 71, a simple ratio of temper- 
ature differences. Figure 4 shows values of three 
different invariants over two nights, plotted as a 
function of Universal Time (subtract four hours 
to obtain Eastern Standard Time). The same 
basis regions of soft wood and cinderblock are 
used for all three invariants. The three test re- 
gions are fiberglass shingle, asphalt, and face 
brick. The plots show the invariant values to be 
relatively stable and somewhat separated from 
each other. These results are representative of 
other tests. 

As further illustration of invariant II, Figure 5 
shows the values of the same invariant over a 24 
hour period for three different days. The basis 
regions are fiberglass shingle and soft wood, and 
the test region is asphalt. The invariant value 
fluctuates radically during the day, but is steady 
at night. 

The results for 72 are quite poor. The invariant 
values themselves are extremely stable, having 
standard deviations on the order of 10"^. How- 
ever, when the basis region set is fixed and the 
hypothesized material for the test region is fixed 
but the location and material type of the test 
region are shifted, the value for the invariant 
does not change significantly. This is consistent 
across all combinations of basis regions and test 
regions we have examined. Thus we have seen 
no discriminatory power in 72. 

The results for invariants 73 and 74 are some- 
what better.  Representative results are shown 

< 
i       -0.5 

B. 231 -•— 
B.230 -+-- 
A. 230 -B- 
A.231 -»- 
F.230 -»-- 
F, 231 ■*■■ 

Universal Time 

Figure 4: Plot of invariant values for 71 (or 
"ratio of temperature differences") 
against universal time for three dif- 
ferent invariants over two nights. 
"F" indicates the fiberglass shingle 
test region, "A" indicates the as- 
phalt test region, and "B" indicates 
the face brick test region. 230 and 
231 are the Julian days for which the 
invariant values are plotted. 

1000 1500 
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Figure 5: Plot of invariant values for 71 (or 
"ratio of temperature differences") 
against universal time for three dif- 
ferent 24 hour periods. 
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in Tables 1 and 2. The results show a fixed set of 
basis regions, a series of test regions with known 
material types, and different hypothesized test 
region materials. Results are rank-ordered by 
the robust standard deviations of the invari- 
ant values. In some cases the correct region 
material yields the lowest standard deviation, 
while in others the correct material is no better 
and sometimes worse than the other materials. 
For invariant /4 concrete and cinderblock yield 
the lowest standard deviations consistently with 
the basis regions used here, but this eflfect does 
not carry over to other basis regions (data not 
shown). 

The results for invariants 72, 73 and 74 are 
cause for concern. Since other work on ther- 
mal invariants has reported much more positive 
results [Arnold et al., 1996, Michel et al, 1997, 
Nandhakumar and Velten, 1994, Nandhakumar 
et al, 1996], our guess, based on our initial re- 
sults, is that there is a problem with the data, 
the material properties or the physical model. 

• There are two potential problems with the 
data. One is the mapping from MWIR in- 
tensities to temperatures, which is based on 
a heuristic calibration equation rather than 
a physical model. The second is that the 
ambient temperature readings, which are 
only measured to tenths of degrees, appear 
to fluctuate. 

• Material properties k and CT are difiicult 
to obtain. The method used in other stud- 
ies is to match material descriptions with 
entries in tables of materials printed in 
texts such as [incropera and DeWitt, 1981]. 
This is particularly difficult for the painted 
surfaces and building materials which pre- 
dominate in our image data. 

• There are two potential problems with the 
physical model. The first is that the model 
was derived for LWIR imagery whereas 
the current data is MWIR imagery. This 
means the validity of the physical model 
has not yet been tested. The second poten- 
tial problem is that the model assumes the 
only incident heat is solar radiation, which 
is zero at night. However, if there is heat- 

Tests Standard 
Deviation Region Material 

Soft wood Soft wood 4.03 
Fiberglass 5.59 
Concrete 15.1 
Rubber 29.3 
Cinder 32.2 
Steel 37.9 
Brick-common 41.1 
Tin 1550 

Cinder Brick-common 5.30 
Cinder 5.61 
Soft wood 6.36 
Fiberglass 8.32 
Concrete 27.1 
Rubber 28.0 
Steel 40.7 
Tin 661 

Steel Fiberglass 2.90 
Soft wood 5.88 
Concrete 5.96 
Rubber 22.3 
Steel 34.5 
Brick-common 36.9 
Cinder 37.6 
Tin 2160 

Fiberglass Concrete 6.38 
Steel 8.62 
Cinder 10.5 
Brick-common 13.6 
Rubber 13.8 
Fiberglass 19.2 
Soft wood 34.8 
Tin 316 

Table 1: Sample test results for invariant 73 
using face brick and asphalt as ba- 
sis regions. The test region was var- 
ied and tested against a battery of 
materials. Results for each test re- 
gion are ranked in increasing order of 
standard deviation, to three signifi- 
cant figures. 
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ing (or cooling) from inside the buildings, 
this assumption is violated. 

If further experimentation with the current data 
shows results similar to those reported here, 
these concerns should be investigated. 

Tests Standard 
Deviation Region Material 

Cinder Concrete 0.0933 
Cinder 0.200 
Steel 0.779 
Brick-common 0.810 
Rubber 5.83 
Tin 6.07 

Steel Concrete 0.174 
Cinder 0.506 
Steel 0.896 
Tin 0.950 
Rubber 1.09 
Brick-common 1.42 
Soft wood 16.8 

Soft wood Concrete 0.101 
Cinder 0.390 
Rubber 0.569 
Steel 0.896 
Tin 0.950 
Brick-common 1.08 
Soft wood 15.8 

Table 2: Sample test results for invariant 74 
using face brick, asphalt and fiber 
glass as basis regions. The test re- 
gion was varied and tested against a 
battery of materials. Results for each 
test region are ranked in increasing 
order of standard deviation, to three 
significant figures. 

5    Summary 

We have reported our current and ongoing work 
in using thermal invariants to identify materi- 
als and to monitor changes in materials in se- 
quences of thermal imagery. We have built a de- 
tailed site model, developed camera projection 
models, and implemented a system to calculate 
invariants from a user selected set of regions 
over the image sequence. Our initial experi- 
mental results are mixed, with some invariants 
working relatively well and others poorly. Our 
ongoing work will mostly be experimental, with 
further analysis to identify the cause of prob- 
lems if they persist. We hope these studies will 
enable us to develop a robust system for classify- 
ing materials based on thermal invariants, both 
to identify material types and to monitor sites 
of interest for changes in materials over time. 
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Texture Segmentation of SAR Images 

By-Her Wang and Thomas O. Binford * 
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Abstract 

The image surface of synthetic aperture radar im- 
agery (SAR) is dominated locally by peaks and clus- 
ters of peaks, especially in terrain and vegetation 
areas. More globally, there are extended regions dis- 
tinguishable by texture, trees, fields, shadows, roads, 
etc. We describe an algorithm which segments SAR 
images into a set of regions of pre-specified clcisses, 
based on two procedures: first, the classification of 
peaks into TV = 3 pre-specified classes, and second, a 
segmentation of the Delaunay triangulation of peaks 
into connected regions. A peak detection operator 
is used to estimate peaks in SAR images; thresh- 
olds are determined by using the histogram of the 
peak amplitude of each class. Peak amplitude was 
found to be the most useful discriminant by far in the 
multi-variate distribution in peak amplitude, peak 
width, and peak density. A Delaunay triangulation 
was established on the peaks of each class. Links in 
the triangulation were removed if they were unlikely 
for a population' of that class. The boundary of a 
texture region is the boundary of a connected com- 
ponent of the modified Delaunay triangulation of the 
appropriate class of peaks. Linking by boundary 
traversal was developed to extract closed boundaries 
of each class. Experimental and simulation results 
are presented in SAR and synthesized images, re- 
spectively. Boundaries of regions can be determined 
to an accuracy of about 2 pixels. 

1    Introduction 

One apparent characteristic of Figure 3 is the den- 
sity of peaks nearly everywhere in the image. From 
the physics of SAR imaging, trihedrals are important 
in analyzing scattering from components of targets 

'This research was supported by a contract from 
the Air Force, F33615-93-1-1281 through WPAFB from 
ARPA ASTO "Multi-Sensor ATR: Quasi-Invariants and 
High Accuracy Measurements in Bayesian Inference" 
and "Context and Quasi-Invariants in ATR with SAR 
Imagery". 

and in clutter analysis. Around peaks, the SAR im- 
pulse can be modeled by two-dimensional Gaussian 
functions. It is known that other components have 
different scattering behaviors, e.g. dihedrals. An im- 
age may be interesting at the level of single peaks, 
e.g. a corner reflector may be interesting on its own. 
However, typically, physically similar areas are inter- 
esting as extended structures or regions, e.g. trees, 
grass, fields, buildings, and targets. Extended re- 
gions appear as textures of peaks. 

Thus, a second level of image model is piecewise re- 
gions of uniform textures of peaks. Textures could 
be complex, directional, and hierarchical; in fact 
they are complex, as in a plowed field. But a class 
of textures appears useful that are isotropic, i.e. 
non-directional, distinguished by the values of peak 
amplitude, peak width, and peak density. Further, 
it appears empirically as though the local textures 
are distinguished by the probability density function 
(pdf) of peak amplitude. 

There is a growing interest in the development of 
algorithms which can extract boundaries automati- 
cally for a broad range of applications, such as con- 
ventional optical, radar and medical imagery [5]- 
[14]. In some domains, boundary detectors iden- 
tify boundaries between surfaces with uniform re- 
flectivity as oriented edgel discontinuities of order 
zero or one in the image intensity surface (e.g. [1]). 
Some special SAR images containing smooth objects 
{e.g. sea ice) can be segmented by an edgel-based 
operator[2]. Unfortunately, this kind of edgel-based 
algorithm can not be applied to general SAR images 
very generally because various features, either natu- 
ral or man-made, are dominated by peaks. 

A peak-based texture segmentation operator is thus 
important for SAR images. This paper develops a 
new algorithm to extract closed boundaries of vari- 
ous features in SAR images. N classes of peaks, in 
our case tree, ground, and shadow, are extracted by 
a peak detector [3] and classified by thresholds. For 
an image including one single class of peaks, peak 
densities can be determined from distances of neigh- 
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bors, thus from lengths of links in the Delaunay tri- 
angulation; from this it determines discontinuities 
in peak density. Therefore, boundaries can be de- 
termined by traversal of peaks which are located at 
these discontinuities. 

In Section 2, peak detection and classification are 
described briefly. In Section 3, the algorithm for 
texture segmentation is presented. In Section 4, the 
performance of this operator is examined in synthe- 
sized and real SAR images. 

DIGITAL SAR IMAGE 

PDF  OF U 
PEAK AMPLITXIDE! 

PEAK DETECTION 

THRESHOLDS OF 
PEAK AMPLITUDE 

•- PEAK CLASSIFICATION 

DELAUNAY TRIANGULATION 

HISTOGRAM OF 
LINKS 

THRESHOLDS OF 
LINK LENGTH 

BREAKING LONG LINKS 

LINKING BY TRAVERSAL 

BOUNDARIES OF OBJECTS 
(TREE, SHADOW, GROUND..) 

Figure 1. Block diagram of the texture 
segmentation algorithm. 

2    Peak Detection and  Classification 
of Peaks 

A peak detector developed in previous work[3] is 
used to extract peak position, width and ampli- 
tude in SAR images. Based on pdfs of peak ampli- 
tude, peak width, and peak spacing for pre-specified 
classes of peaks, thresholds are determined interac- 
tively to distinguish groups of peaks, in our case, 
shadow, trees, and grass. 

2.1    Peak Detection 

Extended elements in SAR images consist of many 
narrow peaks generated from imaged point scat- 
terers, with the SAR impulse modeled by two- 
dimensional Gaussian functions[3]. Experimentally, 
the assumption of separable Gaussian peaks (see 

Eq.(l)) for narrow peaks is correct. 

I{x,y) = He   """ (1) 

After applying a normalized Gaussian filter, the fil- 
tered peak can be written as 

f{x,y) 
H(Tx(yy 

Vi^7+^?)W? + ^) 
2(,T:^2+.T(2)       2(<rj,^+,T,'i) 

(2) 

where 

at = mask width in transverse {or x) direction 

ai = mask width in longitudinal {or y) direction 

For a separable two-dimensional Gaussian function, 
f{x, y), the level lines of/^ = 0 and fy = 0 are paral- 
lel to the a;-axis and y-axis, respectively. Therefore, 
the peak position can be determined by a unique 
point that satisfies both conditions oi f^ — 0 and 
fy — 0 inside the 3x3 grid of pixels. 

Peak width, a^ or a-y, can be obtained from 
quadratic equations (see Eqs.(3a) and (3b)) which 
are derived by Eq.(2) and its second derivative. 

1 fxx{x,y) _ x^  
j{x,y)        {a.-' + a^f      W + (T^) 

or 

[%(<T.2 -f at^f + (^x' + <T,2) - x2 = 0     (3a) 

[^]{^y'' + ^I'f + {<^y' + '^i') - 2/' = 0      (S'') 

Peak Amplitude, H, can be solved by substituting 
peak width back to Eq.(2). 

2.2    Peak Classification 

The peak-based classification algorithm is described 
in this subsection. To illustrate, detected peaks in a 
SAR sub-image are shown in Figure 3(c), and peaks 
of the non-shadow region are presented as black dots 
in Figure 3(e). 
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• Histogram Analysis and Thresholding 
A peak detector is applied to selected training 
SAR images with N classes, respectively. From 
the detected peaks, the histogram and pdf of 
peak amplitude for each class is computed. For 
N pre-specified classes, (A'' — 1) thresholds can 
be set in order to segment A^ regions. For ex- 
ample, three classes are considered in this case, 
i.e. tree, ground, and shadow. Based on Bayes' 
decision rule, two thresholds are chosen from 
the pdf of peak amplitude to separate peaks in 
tree regions and peaks in non-shadow regions, 
respectively. 

• Peak Classification 
Given a digital SAR image, we detect peaks at 
different amplitudes by using the peak detec- 
tor described in Section 2.1. The first thresh- 
old is used to extract peaks of tree regions and 
the second threshold is used to extract peaks of 
non-shadow regions. 

3    Texture Segmentation Algorithm 

After peak classification, {N — 1) images can be ob- 
tained for an original image with A'^ classes. The 
peak density can be determined by lengths of the 
links in the Delaunay triangulation. A histogram of 
link lengths can be generated to obtain a threshold. 
The hypothesis is that after breaking longer links, 
the boundary peaks (compared to edge pixels) can 
be extracted from discontinuities in the peak den- 
sity. A linker by traversal connects boundary peaks 
to determine the closed boundary. This whole al- 
gorithm is shown in Figure 1 and described in the 
following three stages: 

• Stage 1: Delaunay Triangulation 
A triangulation of P is defined as a maximal 
planar subdivision to interpolate a terrain given 
P sample of points[4]. Given a set P of points in 
the plane, any locally and globally equiangular 
triangulation of P is the Delaunay triangula- 
tion of P. Therefore, the optimal approxima- 
tion of a terrain can be achieved by the Delau- 
nay triangulation. One example of the Delau- 
nay triangulation is shown in Figure 3(d) for 
the terrain of non-shadow. 

• Stage 2: Breaking Long Links 
The lengths of sides of triangles in the Delaunay 
triangulation is inversely proportional to the 
peak density locally as shown in Figure 3(d). 
The histogram of lengths of sides of all triangles 
from the Delaunay triangulation is computed 
to determine the threshold interactively. Links 
that are longer than the threshold are broken 
and recorded. It is intuitively clear that the 
boundary points can be obtained by collecting 

the points that have broken links. Those points 
are discontinuities in peak density. 

• Stage 3: A Linker by Traversal 
To connect those boundary peaks extracted 
by the last stage, a linker by traversal is 
used. In Figure 2, locally a vector, centered 
at one boundary peak (black dot) and pointed 
at the previous neighboring boundary peak 
(gray dot), is rotated by the minimum angle 
to the next neighboring boundary peak (gray 
dot). Boundary peaks are linked by this simple 
traversal algorithm. Finally, with knowledge 
of the average peak distance, the boundary can 
be determined by extending the linked curve by 
half of the average peak distance. An example 
is shown in Figure 3(e) for regions of shadow. 

Figure 2. An example of linking by traversal, where 
the dashed lines represent the broken links and 
solid lines are shorter than the threshold. 

4    Simulation and Experimental Re- 
sults 

The performance of this new texture segmentation 
operator can be evaluated by simulation results. 
Each test image is synthesized with two concentric 
square regions, i.e. shadow and non-shadow regions. 
The boundary of shadow is estimated and compared 
with the pre-specified boundary. The average esti- 
mation error is less than 0.2 pixel at peak density 
of 0.11 per pixel; the standard deviation of estima- 
tion is 1.5 pixels. At peak density of 0.14 per pixel, 
the average estimation error is less than 0.4 pixel 
and the standard deviation is 1.0 pixel. For real 
SAR images that we are deal with, the average peak 
density is about 0.125 per pixel resulting from the 
peak detector.   Therefore, simulation results show 
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that this algorithm determines boundaries to an ac- 
curacy of about 2 pixels in SAR images. The exper- 
imental result is demonstrated in Figure 4, which 
shows the boundaries of tree and shadow regions in 
a sub-image of Figure 3(a). 

5    Conclusion 

A peak-based texture segmentation operator has 
been developed to extract boundaries of regions with 
uniform textures in SAR images. Peak classification 
was accomplished with the pdf of peak amplitude for 
every pre-specified class. With the Delaunay trian- 
gulation, discontinuities in peak density can be de- 
termined by links of triangles. Thus, the boundary 
peaks can be extracted at discontinuities and linked 
by traversal. Finally, the boundaries can be refined 
by extending these curves by half of average peak 
distance. 

The performance of this new operator is demon- 
strated by simulation and experimental results. Sim- 
ulation results show that this algorithm determines 
boundaries to an accuracy of about 2 pixels. 
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CHIP • Delaunay Triangulation of Non-Shadow 

(c) 

(e) 

(a) 
Figure 3: Structures in SAR image: (a) Part of a SAR image with sub-image indicated; (b) a sub- 
image magnified with features (tree, ground, and shadow); (c) detected peaks in sub-image; (d) Delaunay 
triangulation of peaks in non-shadow population; (e) boundary of shadow. 
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MIT_SAR : Test image (512 X 512) 
1 "■^* "-r • • 

100 200 300 
Cross-range direction 

(a) 
MIT_SAR: Boundary of Shadow, break edge > 9 

400 500 

M1T_SAR: Boundary of Tree, break edge > 15 

200 300 
Cross-range direction 

200 300 
Cross-range direction 

(b) (c) 

Figure 4:  An example of texture segmentation in SAR image (a) Part of a SAR image (512 X 512); 
(b) boundaries of shadow; (c) boundaries of tree. 
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Sketching Natural Terrain from Uncalibrated Imagery 

Q.-T. Luong* 

Artificial Intelligence Center, SRI International 
333 Ravenswood Ave., Menlo Park, CA 94025 USA 

Abstract 
We propose a methodology to sketch the 3D ge- 
ometry of an outdoor scene consisting of natu- 
ral terrain. The method requires only a pair of 
uncalibrated images, but it produces a sketch 
where the order with respect to the dimensions 
of height above the ground plane and depth are 
correct. A dense representation is generated as 
a set of profile lines which overlays the original 
images. 

1    Introduction and related work 

Terrain reconstruction is an important task in 
computer vision. There has been an exten- 
sive amount of work done in this area with 
calibrated cameras. The most successful ap- 
proaches use stereo rigs or multiple views. How- 
ever, there are many situations where the cal- 
ibration data (camera parameters and relative 
position and orientation of the cameras) is not 
available. These situations are becoming more 
important as computer vision applications are 
no longer limited to robotics. In this context, it 

*This work was sponsored by the Defense Advanced 
Research Projects Agency under contract DACA76-92- 
C-008 monitored by the U.S. Army Topographic En- 
gineering Center, Alexandria, VA. The author also 
acknowledges Martin Fischler for discussions and the 
Robotvis group at I.N.R.I.A. for providing software 
tools. The views and conclusions contained in this doc- 
ument are those of the author and should not be in- 
terpreted as representing the official policies, either ex- 
pressed or implied, of the Advanced Research Projects 
Agency, the United States Government, or SRI Interna- 
tional. 

is also desirable to have an approach which can 
be used with a minimal number of views. 

Although the investigation of the capacities of 
uncalibrated systems has become a popular re- 
search topic over the past few years (see refers 
ences in [Luong and Faugeras, 1996]) there are 
very few systems which are actually able to per- 
form a usable three-dimensional reconstruction. 
A first class of approaches is to perform a pror 
jective reconstruction from two views [Faugeras, 
1992, Hartley et al, 1992, Shashua and Navab, 
1994] . However, the amount of deformation can 
be very large, which limits the usefulness of the 
reconstruction. A second class of approaches 
is to recover metric representations by perform- 
ing self-calibration [Luong and Faugeras, 1997, 
Hartley, 1994] (which requires a large number of 
views to obtain stable results) or by using scene 
knowledge [Boufama et a/., 1993] . The last 
approach has been used with success to recon- 
struct buildings from multiple images [Faugeras 
et al, 1995]. It requires line segments and ge- 
ometric constraints which are not available in 
images of natural terrain. 

It is generally believed that the area-based ap- 
proaches to stereo are the most adequate for 
natural terrain, since well-defined geometric fea- 
tures are generally lacking. These approaches 
produce a depth map from which further pro- 
cessing is necessary in order to extract higher 
level information about the terrain. By con- 
trast, we propose to represent the terrain by a 
set of profile lines, which is the trace of the ter- 
rain surface on a plane in 3D at the given depth. 
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This representation has a direct meaningful in- 
terpretation. 

The classical approach to stereo consists in de- 
termining the disparity for each point along 
an epipolar line. The epipolar line is deter- 
mined only by the geometry of the cameras, 
and within this line, each point corresponds to 
a different depth. By contrast, given a fixed 
depth, we propose to find all the points which 
lie at this depth. This is based on the idea 
that for the points which lie at a fixed depth, 
there is an analytical relation between their 
projections in multiple images, as exploited for 
stereo in the calibrated case [Robert et al, 1992, 
Robert and Deriche, 1996], and for relative po- 
sitioning of pairs of points in the uncalibrated 
case [Robert and Faugeras, 1993]. By sweep- 
ing 3D space with planes at a set of different 
depths, a representation of the terrain is ob- 
tained. The idea of the sweeping plane method 
was presented in [Collins, 1996], where it was ar- 
gued that such a technique makes a full and effi- 
cient use of multiple images. Our work extends 
these ideas in two important directions. First, 
we show that in order to generate a qualitatively 
useful elevation map, full calibration of the cam- 
eras is not necessary. Instead, the only re- 
quirement, in addition to the epipolar geometry, 
is the identification of correspondences on the 
horizon, a technique well adapted to the type 
of scenes we consider. This makes it possible 
to apply our technique with as few as two un- 
calibrated views. Second, we propose a method 
based on curve evolution to generate the profile 
lines. This makes it possible to enforce conti- 
nuity, smoothness, and uniqueness constraints 
in space (unlike in [Collins, 1996], which was 
based on geometric primitives). The use of PDE 
methods and level set implementations to iden- 
tify the trace of a surface on a given plane has 
been explored by [Deriche et a/., 1996]. This 
work was theoretically extended to 3D and mul- 
tiple cameras by [Faugeras and Keriven, 1996], 
however these authors demonstrate only a 2D 
implementation in the calibrated case. Our 
work differs from the above references by explic- 
itly addressing the situation of a natural scene 
viewed from ground level. Thanks to the ex- 
ploitation of fairly general domain-specific con- 

straints, we obtain a semantically meaningful 
representation, a simpler propagation scheme, 
and we address problems caused by the fact that 
the surfaces are subject to occlusions. 

2    AfRne calibration 

Affine calibration of a pair of views consists in 
determining enough geometric parameters for 
this pair of views so that the ambiguity in re- 
construction will be at most an affine transfor- 
mation of space. This is intermediate between 
the usual Euclidean calibration (which cannot 
be performed in our application), and the pro- 
jective calibration which is too weak. In this 
section, we first describe the theory of affine cal- 
ibration, and then detail our practical approach. 

2.1    Fundamental matrix and infinity 
homography 

The projective model We use the pinhole 
model. The main property of this camera model 
is that the relationship between the world coor- 
dinates and the pixel coordinates is linear pro- 
jective: non-linear optical distortions are ne- 
glected. The consequence is that the relation- 
ship between 2-D pixel coordinates and any 3-D 
world coordinates can be described by a 3 x 4 
matrix P, called projection matrix, which maps 
points from V^ to V'^: 

(1) 

where the retinal projective coordinates xi, 
X2, xs are related to usual pixel coordinates 
by {u,v) = {x\/xz,X2/xz) and the projective 
world coordinates X\^ X2, A3, X4 are related to 
usual affine world coordinates by {X, Y, Z) = 
{XilXi,X2lXA,XzlXA)- The points for which 
A4 = 0 cannot be related to affine space, and 
are called points at infinity. They define a plane 
which is called plane at infinity. 

The projection matrix P can be decomposed 
uniquely as: 

P = A[R, T] 

The matrix A has five entries which are called 

X^ 
Xi ^ A'n 
X2 = P x^ 
^■3  J Xi 
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intrinsic parameters (which describe character- 
istics of the camera and digitalization system 
such as focal length, aspect ratio). R and T 
called extrinsic parameters describes the change 
of world coordinate system (the pose of the cam- 
era). A camera is said to be calibrated when its 
intrinsic parameters are known, which makes it 
possible to derive metric measurements. Cam- 
era calibration requires the observation of a 
number of control features with known 3D coor- 
dinates. For this reason, it is not always possi- 
ble to have access to this information, and this 
is why we propose a method which can deal with 
uncalibrated cameras. 

Projective calibration: the fundamen- 
tal matrix When considering two projective 
views, the main geometric property is known in 
computer vision as the epipolar constraint. It 
can be shown only from the hypothesis (1) that 
the relationship between the projective retinal 
coordinates of a point m and the projective co- 
ordinates of the corresponding epipolar line 1^ 
is linear. The fundamental matrix [Luong and 
Faugeras, 1996] describes this correspondence: 

\l[] Xl 

1'2 =c = Fm = = F X2 

v'A . ^2 

The epipolar constraint has then a very simple 
expression: since the point m' corresponding to 
m belongs to the line \'^ by definition, it follows 
that 

l\x\ + l'2x'2 + /gx^ = m'^Fm = 0       (2) 

The epipolar transformation is characterized by 
the 2x2 projective coordinates of the epipoles e 
and e' (which are defined respectively by Fe = 0 
and F-^e' = 0), and by the 3 coefficients of the 
homography between the two pencils of epipolar 
lines. These seven independent parameters rep- 
resent the only generic information relating two 
uncalibrated views. Unless further hypotheses 
are made, there is no way to extract other geo- 
metric parameters from correspondences. 

The Fundamental matrix of a pair of images can 
be computed using only point correspondences 

thanks to Eq. (2). Robust methods were stud- 
ied in [Zhang et ai, 1995], including automatic 
generation of correspondences. 

AfHne calibration: the infinity homog- 
raphy matrix The fundamental matrix de- 
scribes the projective geometry of the system 
of two cameras. Knowing only the fundameji' 
tal matrix makes it possible to perform a 3D 
reconstruction up to a general projective trans- 
formation of space. Such a representation is not 
very useful for sketching purposes, because the 
degree of deformation can be very large. With 
general projective transformations, there is in 
particular no guarantee that inversions with re-i 
spect to the depth do not occur. 

A way to avoid these problems is to perform an 
affine calibration of the pair of cameras [Quan, 
1993, Luong and Vieville, 1996]. This means 
that in addition to the fundamental matrix, w^ 
need to identify the homography HQO of thp 
plane at infinity, defined as follows: the project 
tive coordinates of two points m and m', pro^ 
jections in the first and second image of a point 
at infinity, are related by: 

m' ~ Hoom (3) 

e', Since any homography matrix satisfies He 
in theory we need only the correspondence of 
three points in order to be able to compute thp 
matrix HQO- 

2.2    Affine calibration in practice 

Determining points at infinity In struc- 
tured scenes, a method which works is to con- 
sider vanishing points. A vanishing point is the 
projection of a virtual point at infinity, definec^ 
by the convergence of parallel lines in space. In 
a natural scene of the type we are interested in, 
a more appropriate method is to identify corrcr 
spending points at the horizon. 

This can be done using a set of simple, but efr 
ficient heuristics, as shown by Fischler in [Fis- 
chler, 1996], where a method to extract the sky- 
line was described. Strictly speaking, there is no 
guarantee that the skyline represents the hori- 
zon, however, in practice, given the image res- 
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olution, points do not need to lie very far from 
the camera to be considered at infinity. 

Robust computation of the infinity ho- 
mography Once the Fundamental matrix is 
determined, there are only three degrees of free- 
dom for the infinity homography. These three 
degrees of freedom can be represented by the 
vector r [Luong and Vieville, 1996] such that: 

Hoo = [e']xF + e'r iJT 
(4) 

where the symbol [.]x designates the skew- 
symmetric matrix associated to the cross- 
product. Writing HQO under this form ensures 
that this matrix is actually consistent with the 
fundamental matrix, in the sense that any pair 
of the form (m, Hoom) will satisfy the epipolar 
constraint in Eq. (2). 

In order to compute robustly HQO, it is neces- 
sary to use more than three points. By substi- 
tution of Eq. (3) into Eq. (4), each of the corre- 
spondences yields one equation (the two other 
equations are proportional) which is linear in 
r. These equations are solved by a linear least- 
squares method, to obtain a starting point for 
the final non-linear minimization, in which the 
vector r is determined by minimizing the least- 
squares sum of the error terms, for each corre- 
spondence (nij, m\) of the horizon line: 

d(m-, Hoonii) + d(mj, H^^m-) 

where HQO is given by Eq. (4) and d{.,.) is the 
Euclidean distance between 2D points. 

Fig. 1 shows a pair of images with the corre- 
spondences superimposed. All the correspon- 
dences were used for the determination of the 
fundamental matrix. The correspondences on 
the skyline were used for the determination of 
the infinity homography. We obtained a RMS 
distance inferior to the pixel for the distance of 
points to corresponding epipolar lines, as well 
as for the distance of points to predicted corre- 
spondences by the infinity homography. 

3    The profile lines 

We first describe how, given a pair of affinely 
calibrated cameras, we can represent the pro- 

file lines. We then discuss a methodology for 
detecting these lines in a pair of images. Some 
very preliminary experimental results are pre- 
sented. 

3.1    An affine representation for 
fronto-parallel planes 

Having performed affine calibration, if we know 
the vanishing line r of a plane in the first view, 
we can define a set of planes Yiz which are par- 
allel to this plane. No 3-D reconstruction is 
needed for that. Instead, the plane Yiz is de- 
fined by its homography Hz-, such that the pro- 
jective coordinates of two points m and m', pro- 
jections in the first and second image of a point 
of lizt are related by: 

m' ~ H^m 

Let us consider the family of homographies: 

llz^^oo + |e'r^ 

where e' is the epipole in the second image. The 
direction of the plane II^ is given by its inter- 
section L with the plane at infinity IIoo, a line 
at infinity in 3D whose projection in the first 
image is the vanishing line of liz in this image. 
Since the projections m of points of L satisfy 
H^m ~ Hooin, the projective equation of the 
vanishing line is r-^m = 0. All the planes ob- 
tained by varying Z have the same vanishing 
line, therefore they are parallel. Note that such 
a construction could not have been done only 
in the projective framework where the notion of 
parallelism is not defined. 

The representation of the terrain that we are 
interested in is a set of profile lines. Strictly 
speaking, a profile line is the trace in a vertical 
plane of the surface which represent the terrain. 
We can define a family of parallel vertical planes 
if the vertical vanishing point can be identified 
in the images. An example of such an identifi- 
cation in uncalibrated imagery is in [Reid and 
Zisserman, 1996]. If the vertical direction can- 
not be identified reliably, then we can still apply 
these ideas using the family of planes which are 
parallel to one of the camera's retinal plane (ie 
fronto-parallel with respect to this camera). 
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Figure 1: A pair of images with the correspondences used for affine calibration superimposed. 

The particular case of the construction de- 
scribed above which is of interest to us here 
is fronto-parallel planes: planes parallel to the 
image plane of one of the cameras (which will 
be assumed to be the first camera). They are 
obtained with r = [0,0,1]-^, which means that 
their vanishing line is the line at infinity in the 
image plane, ensuring that the image plane and 
the planes Hz are parallel. Each of these planes 
Hz is defined by its homography matrix: 

H2 ;Hoo+e'[0,0,-] 
^11 H12 Hi3 + U'l ■ 

H23 + h'2 
H33 + |e^ . 

r 
21 H22 

r 
31 H32 

A remarkable property is that although the cal- 
ibration is only affine, the parameter Z has a 
metric interpretation. It represents the perpen- 
dicular distance of the plane to the origin, up to 
an unknown scale factor, IIoo being the plane at 
infinity, and XIQ being the focal plane of the first 
camera. If A is the matrix of intrinsic parame- 
ters of the first camera, then the equation of the 
plane Hz in the coordinate system of the first 
camera is given by: n-^M = d, where n, the 
unit vector normal to the plane and d the per- 
pendicular distance of the plane to the origin, 
are given by: 

\ ° 1 \ ° 1 
^ = A^ n   0 
d 1 1 

L z J L z J 

However, the epipole e' is determined only up 
to a scale factor, and this is why it is possible 
only to specify the depth of the plane Hz up to 
a scale factor. 

3.2    Locating the profile lines 

Charting a plane cross-section Knowing 
the homography H^ makes it possible to deter- 
mine whether a point m in the first image is the 
projection of a 3D point which belongs to the 
plane Hz'- if it is the case, its correspondent in 
the second image should be H^ni. 

The idea is to compute a correlation score be- 
tween the point m in the first image and the 
point H^m in the second image. If m is a pro- 
jection of a point which lies on the plane Hz, 
then this correlation score should be high. By 
computing such a score for each point of the 
first image, we create a correlation image, in 
which we expect the high values to correspond 
to points of the profile line. 

Prom a computational point of view, for tradi- 
tional correlation-based stereo, the total num- 
ber of correlation scores to be computed is the 
image size times the number of pixels of the dis- 
parity interval. This is in addition to the rectir 
fication required to map the images into a pair 
with epipolar lines coincident to scan lines. In 
the approach that we propose, which does not 
require rectification, this number is at most the 
the image size times the number of depth sam- 
ples. However, since some of the points H^m 
will lie outside of the borders of the second im- 
age, and since the search zone is vertically re- 
duced as the algorithm proceeds, as described 
latter, the number of correlation scores is sig- 
nificantly less than the upper bound. 

In preliminary experiments, we have tried the 

523 



sum of squares of differences (SSD) and the 
cross-correlation (CC) scores, both in zero- 
mean (Z) and normalized mode (N), with vari- 
ous window sizes. It was found that the ZNCC 
score generated more false high correlation ar- 
eas than the ZNSSD approach. An example of 
thresholded correlation image is shown in Fig. 2. 
It can be seen that the target profile line which 
goes through the white cylinder on the left is 
correctly located. However, there are other false 
high correlation areas. In this example, many 
of them can be eliminated just by increasing the 
size of the correlation window, however the hor- 
izontally repeating pattern at the base of the 
trees causes false high scores which cannot be 
eliminated. In order to find out whether this 
problem is due to the fact that we do not per- 
form a search (as opposed to the traditional 
stereo, which underlies the approach of [Deriche 
et al, 1996], and would negate the computa- 
tionnal advantages provided by our approach), 
we applied the inverse homography H^^ to the 
second image, which results in a pair of recti- 
fied images, and then applied a classical stereo 
correlation algorithm with back-validation. In 
Fig. 3 we show the sign of the disparity which 
was found. It can be seen that although the 
target profile lines actually separates the pos- 
itive disparities from the negative disparities, 
there are still problems around the base of the 
trees. This suggests that the difficulty lies with 
defining a suitable correlation score, and we are 
in the process of investigating alternative ap- 
proaches. 

Taking into account the local orientation 
The classical measures assume that the neigh- 
borhood of a point can be locally approximated 
by a fronto-parallel plane, so that the transfor- 
mation between a neighborhood in the first im- 
age and a neighborhood in the second image is 
only a translation, followed by a scalar transfor- 
mation to take into account possible differences 
of photometric properties of the two cameras. 
This has proved to be very effective on aerial 
imagery, but is more questionable for ground- 
level images. A more general approach is to 
consider that the neighborhoods are local planar 
surfaces of arbitrary orientation. It has indeed 

been shown by Devernay and Faugeras [Dever- 
nay and Faugeras, 1994] that it is possible to 
recover the local orientation of the surface from 
correlation. However, this approach is com- 
putationally quite expensive, since it involves 
non-linear minimization at each pixel value. To 
avoid having to do such a computation, a pos- 
sible approach is to precompute the local ori- 
entation of the plane at depth Zi based on the 
orientations which can be deduced from the re- 
constructions at depth Zi-i and Zi-2- This is 
only an approximation, but in general it is much 
better than considering the local plane to be 
fronto-parallel. 

Computation by curve evolution Using 
the correlation score described above, to locate 
a given profile line at depth Z is equivalent to 
find, by looking only into the first image, a curve 
which links all the points which maximize the 
correlation score. While several algorithmic ap- 
proaches are possible, the methods of curve and 
surface evolution which have been developed in 
computer vision under the name of snakes [Kass 
et al., 1988] and then reformulated by Caselles, 
Kimmel and Sapiro [Caselles et al, 1995] and 
Kichenassamy et al. [Kichenassamy et al., 1995] 
in the context of PDE driven evolving curves, 
are particularly suitable for solving the problem 
of locating the profile line. 

The profile line is modeled as a deformable 
curve which optimizes two criteria: an objec- 
tive function which represents the sum of the 
correlation scores over each point of the profile 
line, and a regularization term, which enforces 
regularity properties. This makes it possible to 
draw continuous profile lines which are reason- 
ably smooth even if the correlation score is not 
very reliable. 

The 2^ hypothesis In the general case, the 
cross-sections by a plane are sets of closed 
curves, rather than a single curve. An elegant 
way to handle these topological difficulties is 
provided by the level set methods [Osher and 
Sethian, 1988, Sethian, 1990, Sethian, 1995]. 
However, in our case there is a major simpli- 
fication, which makes it possible to consider a 
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Figure 2: The correlation score between points m in the first image and points H^m, with window 
sizes of 9 and 19 pixels 

' Jf ..^■'^'^■A 

Figure 3: The sign of the disparity of the pair of images rectified with respect to the homography 
Hz- The profile lines separates the positive disparities from the negative disparities 

profile line as a function v = f{u), where u is 
the horizontal a:xis of the image and v the verti- 
cal axis. We assume that to each point (X,Y) is 
associated a single elevation h{X,Y). This hy- 
pothesis is verified if there is no overhanging ob- 
jects. In practice, although it is not satisfied by 
objects such as trees, however, since they have a 
rather small spatial extension, we shall consider 
when there are multiple elevations associated to 
a point (X,Y) (in the case of a tree: the ground, 
the lower branches, the upper branches), only 
the upper point. As it will be seen next, this is 
equivalent to consider that everything which is 
under an overhanging object is actually part of 
this object, an approximation which is generally 
acceptable for the tasks to be performed with 
the sketch. Another reason why such an ap- 
proximation is reasonable is that because of the 
imprecisions associated with affine calibration 

and correlation, a profile line cannot be anyway 
located with an very high accuracy. 

Taking into account ordering and occlu- 
sions Within the previous framework, using 
the fact that (a) the planes are ordered in depth, 
(b) anything under a profile line is considered to 
be solid, it is possible to take care of occlusions 
with a simple reasoning. We first determine the 
profile line which is closest to the cameras. This 
profile line should be limited only by the image 
frame. The next profile line is then above the 
previous one (in the image), and should be lim- 
ited only by the image frame, and the previous 
profile at the bottom, and so on. By proceeding 
using the depth ordering of the parallel planes, 
we can make sure that the profile lines which 
are found do not include hidden parts. 
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Generating successive profile lines starting from 
the bottom of the image has two other benefits. 
First, when looking for the profile line at depth 
Zj, we have to consider only the portion of the 
first image which lies above the profile line at 
depth Zj_i. This reduces the amount of com- 
putations to be done. Second, we can use as a 
starting point for the evolving curve the profile 
line at depth Zj-i, and let this curve propagate 
upwards in the image. 

4    Summary 

We have proposed a scheme for sketching natu- 
ral terrain. This scheme takes advantage of gen- 
eral domain-specific constraints: the availability 
of an horizon line, and the 2^ nature of the nat- 
ural terrain. By taking advantage of these con- 
straints, we are able to propose a method which 
has the potential to produce a useful represen- 
tation from minimal data (two uncalibrated im- 
ages) in a domain which has been traditionally 
considered to be difficult. 

This method produces a dense sketch consist- 
ing of a set of profile lines where the order with 
respect to the dimensions of height above the 
ground plane and depth are correct. These pro- 
file lines are a semantically meaningful repre- 
sentation of natural terrain. 
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Abstract 

We propose a methodology for the devel- 
opment of image understanding systems 
that provide both convenience and flexibil- 
ity. In this methodology, the image ana- 
lyst provides the input data, specifies the 
lU task to be performed, and then provides 
feedback in the form of qualitative evalua- 
tions of the result(s) obtained. These as- 
sessments are interpreted in a knowledge- 
based framework to select the best algo- 
rithms and to find the most suitable pa- 
rameter settings. In this manner the lU 
system is given the capacity to tune itself 
for optimal performance. A sample appli- 
cation (vehicle detection in aerial imagery) 
is developed to illustrate the approach. 

1    Introduction 

Image Understanding (lU) systems used in challeng- 
ing operational environments should satisfy the con- 
flicting requirements of flexibility and convenience. 
Flexibility is the ability of the system to accommo- 
date variations in the characteristics of the input 
data. Convenience means that the system can be 
operated by an image analyst (lA) who is not fa- 
miliar with the technical details of the algorithms 
employed. 

Variations in image characteristics are caused by a 
number of factors such as weather, lighting condi- 
tions and image acquisition parameters. An lU sys- 
tem should accommodate a reasonable amount of 
such variations, and should degrade gracefully as the 
image characteristics deviatefrom the ideal. Modern 
lU systems allow for such variations by providing al- 
ternative algorithms for each task, as well as tuning 

The support of the Defense Advanced Research 
Projects Agency and the Office of Naval Research un- 
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parameters for each algorithm. In most cases, a ju- 
dicious choice of algorithms and parameters provides 
results of acceptable quality under a wide range of 
operating conditions. 

Most lU tasks, especially in defense applications, are 
handled by lAs who, while competent in the visual 
analysis of images, may not be familiar with the 
technical details of the algorithms they employ. It is 
not reasonable to expect the lA functioning in an op- 
erational situation to select and tune the algorithms 
for the task (s)he is required to perform. This func- 
tion is best left to the designer of the system (the 
lU specialist) who may not be available during its 
operation. It is thus obvious that an lU system that 
provides flexibility in the choice of algorithms and 
parameter values may not be very convenient for the 
lA to utilize. 

In order to achieve the conflicting goals of flexi- 
bility and convenience, we propose a framework to 
partially or fully automate the reasoning employed 
by the lU specialist in obtaining satisfactory results 
from the system. The algorithms in the system are 
semantically integrated into this framework, and the 
integrated system can be made available to the lA. A 
simplified model of a self-tuning lU system is shown 
in Fig. 1. This type of system is capable of self- 
tuning, i.e. adapting to changes in data character- 
istics and performance requirements with minimal 
external intervention. Any interaction with the IA 
is in terms of qualitative result evaluations, and not 
in terms of algorithms and parameters. In many sit- 
uations, the same processing task is performed on a 
large data set consisting of hundreds or even thou- 
sands of images. In such cases, the system can be 
interactively tuned on some representative images, 
and once satisfactory performance is achieved, can 
then be used with fixed settings for batch processing 
of the remaining images in the data set. 

In a previous paper [Shekhar et a/., 1996], we dis- 
cussed the knowledge-based semantic integration 
of lU   algorithms using  the   OCAFI   architecture 
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Figure 1: Architecture of a self-tuning lU system. 

[Clement and Thonnat, 1993]. In this architecture, 
the reasoning of the lU specialist is formally rep- 
resented using frames and production rules. Mech- 
anisms are provided for program supervision tasks 
such as algorithm selection and tuning. In this 
paper, we extend this work to handle more com- 
plex program supervision strategies. We use the 
LAMA (Library for the Adaptive Management of 
Algorithms) architecture [Vincent et ai, 1996] to im- 
plement our ideas. 

The organization of this paper is as follows. Sec- 
tion 2 briefly reviews related work. Section 3 dis- 
cusses the basic concepts of a self-tuning lU system. 
Section 4 presents the LAMA architecture for devel- 
oping adaptive applications. In Section 5, results of 
applying our methodology to the vehicle detection 
problem are presented. The final section contains 
the conclusions resulting from our work. 

2    Review of previous work 

Knowledge-based systems have been traditionally 
used for the high-level interpretation of images, 
and for specific lU tasks such as segmentation (e.g. 
[Nazif and Levine, 1984]). These systems incorpo- 
rate mechanisms for the spatial and temporal rea- 
soning that is characteristic of intermediate- and 
high-level image understanding. For an excellent 
survey of the various knowledge-based systems and 
techniques that have been developed in this context, 
see [Crevier and Lepage, 1997]. 

The use of a knowledge-based approach for the de- 
velopment of self-tuning lU systems is a relatively 
recent phenomenon [Clement and Thonnat, 1993; 
Crevier and Lepage, 1997]. Some of the early 
work is reported in [Hanson and Riseman, 1978; 
Toriu  et al,  1987; Matsuyama,  1989].    More re- 

cently, this problem has been addressed in the con- 
text of the VIDIMUS project [Bodington, 1995], 
with the aim of developing an intelligent lU envi- 
ronment for industrial inspection. The automatic 
generation of an image processing script based on 
a user request and a knowledge-based model of an 
application domain is addressed in [Chien, 1994]. 
In [Draper, 1996] lU algorithm control is posed 
as a Markov decision problem. In [Strat, 1993; 
Strat and Fischler, 1991] a context-based vision 
paradigm is proposed, where the basic aim is to use 
contextual information to select methods and pa- 
rameters in an lU application. The use of contextual 
information derived from site models to construct 
control patches for the self-tuning of lU algorithms 
is discussed in [Burlina et ai, 1997]. 

3    Self-tuning 

In a typical lU application, a number of stages of 
processing are involved in going from the raw input 
data to the final result, as shown in Fig. 1. Typi- 
cally, at each stage of processing a number of alter- 
native algorithms can be employed. Each of these 
algorithms, in turn, may have one or more tunable 
parameters. These parameters may be continuously 
variable, or may take discrete set of values. Self- 
tuning is the ability of the lU system to select the 
appropriate algorithms and parameter values based 
on the input data, contextual information, and re- 
sult evaluations. In most cases, the selection of al- 
gorithms may be performed, before any data pro- 
cessing has taken place, based on the contextual in- 
formation alone [Strat, 1993]. Parameter tuning, on 
the other hand, is dependent on the characteristics 
of the specific data set. It can only be performed 
in real time, interleaved with the processing of the 
data, based on the operator's evaluation of the re- 
sults. In this paper we examine the parameter tun- 
ing problem in detail. 

3.1    Ideal operating point 

Consider an lU system A composed of m stages, with 
Tii parameters in the ith stage: 

A- A1A2 ...Ai ...Am 

where each Ai is of the form 

Ai = Ai{pii,Pi2, ■ ■ ■,Pin.) 

As shown in Fig. 2 the entire lU system can 
be regarded as consisting of a single algorithm 
A(pi,p2,... ,PN)- The A'^ parameters that tune this 
"black box" algorithm are the YlTLi "»' parameters 
of the m individual stages. We refer to a specific 
setting of these A^ parameters as an operating point 
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Figure 2: A simplified black-box model of an lU 
system consisting of stages Ai-Am- The parameters 
of the individual modules become the parameters of 
the black box. 

P, 
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Figure 3:  Parameter tuning viewed as a search for 
an ideal operating point in the parameter space. 

(OP). We define an ideal operating point as a pa- 
rameter seting that yields satisfactory performance 
for the given data set. Our basic assumption is that 
there exists at least one ideal operating point (or, in 
the case of continuous-valued parameters, operating 
region). In general, the default parameter setting 
will not be an ideal one. The objective, then, is to 
be able to find an ideal OP for the given data set in 
an efficient manner. If each parameter pi has ki pos- 
sible values, the total number of parameter settings 
is Yli ki ■ An exhaustive search of the TV-dimensional 
parameter space may therefore be too computation- 
ally expensive. This is where a knowledge-based 
approach is applicable. An lU specialist employs 
a problem-solving strategy consisting of heuristics, 
rules of thumb, etc., which effectively help him or 
her find a short cut ("tuning path") to an ideal op- 
erating point, as shown in Fig. 3, without having 
to explore the entire parameter space. The strategy 
employed by the specialist has to be integrated into 
the lU system to give it a self-tuning capability. 

input 
All A12 A21 

A2 
A22 

T11 T12 

T1 

T21 

repair 

output 

T22 

T2 

evaluation 

Figure 4: Specialist tuning mode for a three-level lU 
system. The results of the modules A, Ax, A^ and 
^11-^22 and the corresponding strategies T, T\, T2 
and T11-T22 are available. 

3.2    Modes of self-tuning 

Any lU task A can be hierarchically decomposed into 
a set of subtasks Ai-Am, each Ai of which may be 
decomposed further into subtasks An-Aim, and so 
on. For instance, a typical lU system may consist of 
a top-level module A, consisting of sub-modules Ai 
and A2, and these may be composed of elementary 
subtasks An, A12, A21, and ^422- Attached to each 
(sub)task A,,, at any level in the hierarchy is a strat- 
egy T.. which contains all the specialist's knowledge 
about the module: how/when it should be used, how 
to evaluate its performance, and how to adjust it if 
improved performance is required. Depending on 
the strategies available, a self-tuning lU system can 
function in one of two modes: the specialist mode or 
the user mode. 

In the specialist mode, shown in Fig. 4, all the strate- 
gies at every level of the hierarchy are available. In 
other words, results at every stage, including the in- 
termediate ones, are available for evaluation by the 
specialist. This is applicable to the test phase when 
the specialist is in the process of testing the func- 
tioning of the system. In the user mode, shown in 
Fig. 5, only the top-level strategy T is directly avail- 
able and only the results of the final stage are avail- 
able for evaluation by the lA. This mode is designed 
for the operational phase. From a control-theoretic 
viewpoint, a self-tuning lU system can be regarded 
as a closed-loop system where the observer is the lA, 
who provides feedback in the form of result evalua- 
tions. This feedback can be either at the highest 
level (corresponding to the user mode), or at all lev- 
els (corresponding to the specialist mode). 

In the specialist mode, the availability of intermedi- 
ate results enables linear planning for the fine-grain 
local optimization of algorithms.   The user mode. 
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Figure 5: User tuning mode for a three-level lU sys- 
tem. Only the results of the top-level module A and 
the corresponding strategy T are directly available. 
The strategies Ti, T2 and T11-T22 are available only 
indirectly through message transmission. 
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Figure 6: Example of the two types of result evalua- 
tion. The application here is the detection of vehicles 
in an aerial image from the TEC-2 data set. 

however, necessitates the use of more complex rea- 
soning, since only the final result is available, based 
on which any algorithm at any stage of the process- 
ing may have to be retuned. Previous work, reported 
in [Shekhar et al, 1996], dealt mainly with the spe- 
cialist mode. In the present work, the user mode is 
the primary focus. 

3.3    Result evaluation 

In the user mode, the lU system is tuned based on 
the evaluation of results by the lA. We can define two 
types of result evaluation: general and specific. Gen- 
eral evaluation consists of global judgments about al- 
gorithms and results ( "too many false alarms", "too 
many missed detections at road intersections", etc.). 
Specific evaluation, on the other hand, pertains to 
particular objects or regions in the result ("this air- 

Figure 7; The LAMA platform 

plane is a false alarm", "this portion of the image 
contains too many false alarms", etc.). This is il- 
lustrated in Fig. 6. In our present work, we deal 
exclusively with general evaluations. Specific evalu- 
ations, although more detailed and informative, are 
also difficult to deal with in a general-purpose frame- 
work. They require mechanisms for reasoning and 
for user interaction that are application-dependent. 
This makes separation of the application from the 
knowledge base more difficult. Finally, specific eval- 
uations are not very useful for batch processing. 

4    The LAMA platform 

LAMA is a methodology as well as a general-purpose 
platform for developing intelligent applications, con- 
sisting of a kernel library, a knowledge-base descrip- 
tion language YAKL (Yet Another Knowledge-base 
Language), verification and validation (V & V) fa- 
cilities, a graphical user interface and other tools, as 
shown in Fig. 7. A complete description of LAMA 
is beyond the scope of this paper; the interested 
reader is referred to [Vincent et al., 1996]. For 
our purposes, LAMA may be viewed as an archi- 
tecture based on frames and rules for encapsulating 
the problem-solving knowledge of the lU specialist. 

A self-tuning lU application developed using LAMA 
consists of a set of pre-existing algorithms (also 
referred to as programs, modules or methods), a 
knowledge base (KB) on using these algorithms, and 
a control (supervision) engine. Knowledge about lU 
algorithms is expressed at two levels of abstraction. 
A goal is the abstract form of an lU functionality, 
which is realized in a more concrete form by one 
or more operators corresponding to it. An opera- 
tor may be either simple, corresponding to an ex- 
ecutable program, or composite, represented by a 
predefined skeletal plan. A skeletal plan describes 
a network of connections between operators (choice, 
sequence, repetition, etc.) for achieving a given goal. 
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The description of an operator contains information 
about its arguments (name, type, range, default val- 
ues, etc. of the input data, output data and param- 
eters), semantic information about its applicability 
(in the form of pre- and post-conditions), as well 
as criteria for parameter initialization, result evalu- 
ation, etc. For operators corresponding to real exe- 
cutable programs the calling syntax is also provided. 

The functioning of the control engine can be decom- 
posed into a number of phases: planning and exe- 
cution of programs, evaluation of the results, and 
repair. The planning step first builds a plan, or part 
of a plan, which is then executed. The results of exe- 
cution are then assessed in the evaluation step. The 
evaluation mechanism consists of a collection of as- 
sessment rules which can be used to evaluate an algo- 
rithm output, a parameter or an algorithm in its en- 
tirety. If the assessments are positive, the planning 
process continues. If failures are detected, the repair 
step invokes the appropriate remedial measures, en- 
coded in the form of repair rules, which may either 
result in re-execution or in re-planning. Failure han- 
dling is performed either locally inside the operator, 
or nonlocally by message transmission to another 
part of the plan. Local failures are handled by pa- 
rameter tuning (specified using adjustment rules). 

4.1    Integrating an application into 
LAMA 

lU applications typically consist of a number of ex- 
ecutable programs with associated syntactic and se- 
mantic knowledge. Syntactic knowledge consists of 
calling syntax, data formats, etc. Semantic knowl- 
edge is the specialist's expertise about the use of the 
programs. An application is integrated into LAMA 
by encoding both types of knowledge using the struc- 
tures described in the previous section. A knowledge 
representation language, YAKL, is used for this pur- 
pose. Mechanisms are provided to test the consis- 
tency of the knowledge base thus created. A number 
of different control engines are available for running 
the integrated application. A GUI is provided for 
examining the knowledge base as well as for moni- 
toring the application during execution. 

5    Example: Vehicle detection 

The methodology discussed in Section 4 has been 
applied to the detection of vehicles in aerial im- 
agery. We have used a simplified version of the vehi- 
cle detector developed at the University of Maryland 
[Chellappa et al., 1996]. The objective is to detect 
and approximately localize vehicles of a specified size 
and orientation. In the current implementation, a 
precise localization and geometric description of the 
detected vehicles is not attempted, nor do we con- 

preprocessing hypothesis 
generation 

hypothesis 
validation 

Figure 8: A simplified version of the UMD vehicle 
detector. 

sider vehicles of differing sizes and orientations. The 
main stages of processing, shown in Fig. 8, are as fol- 
lows. 

Preprocessing: Edge pixels are extracted using the 
Canny edge detector. Both gradient magnitude and 
gradient direction are computed. 

Hypothesis generation: A modified generalized 
Hough transform (GHT) is used to locate areas cor- 
responding to centers of candidate vehicles. Edge 
pixels vote for all possible centers of vehicle contours 
which contain the pixel. The votes are collected in 
an accumulator array, and thresholded. The result is 
a set of hypothesized vehicle centers. Local "rubber- 
band" contour matching is subsequently applied to 
reject candidate vehicles which do not have sufficient 
support boundaries on both sides of the vehicle. The 
rubber-band matching technique ensures unique lat- 
eral counts of edge pixels within the template band- 
width. 

Hypothesis verification: This stage resolves spa- 
tial conflicts (overlaps) between vehicle hypotheses. 
This is done in three steps. In the first step, the 
conflict resolution is done purely on the basis of dis- 
tances between the centers of candidate vehicles. If 
two candidate vehicles are closer than a certain frac- 
tion of their width, the one with the greater bound- 
ary support is retained. The second step uses the 
size of the overlapping area between two conflicting 
vehicles as the criterion to reject the weaker vehicle. 
In the final step, the longitudinal distance between 
adjacent vehicles lying on the same axis is used as 
the filtering criterion. 

Vehicle grouping: This optional step uses inter- 
vehicle spacing as a basis for grouping vehicles into 
clusters. 
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Figure 9: Operator hierarchy for the UMD 
vehicle detector. 
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Figure 10; User evaluation of the UMD vehicle de- 
tector. 

5.1     Knowledge base 

The operator hierarchy for the vehicle detector is 
shown in Fig. 9. The knowledge base is under de- 
velopment. Currently, it consists of 12 operators (4 
composite and 8 simple), 9 sequential operator links, 
and 22 rules (6 repair, 2 initialization, 10 assessment 
and 4 adjustment). As the knowledge base for this 
application is developed further, the number of op- 
erators is expected to increase only slightly, whereas 
the number of rules is expected to increase consid- 
erably. 

5.1.1     Evaluation and repair 
strategies 

As in any target detection system, there are two 
principal types of errors: missed detections (MDs) 
and false alarms (FAs). The general objective is to 
reduce both types of errors as much as possible. In 
practice, some tradeoff is made between the MD rate 
and the FA rate. Currently, the user is asked to 
choose between the responses MD (too many missed 
detections), FA (too many false alarms), and OK 
(results are satisfactory). A future version will deal 
with the common situation where errors of both 
kinds are simultaneously present. If the response is 
not OK, then the user is further queried about the 

strategies exhausted! 

Figure 11: Example of repair strategy. 

type of MD or FA, as shown in Fig. 10. Currently, 
MDs due to the following three situations are recog- 
nized: vehicles too large or too small, vehicles with 
low contrast, vehicles too tightly packed. Four types 
of FAs are handled: multiple hits from the same ve- 
hicles, false positives at parking lanes, puddles/oil 
stains mistaken for vehicles, FAs due to pavement 
texture. Extensive testing on a diverse set of aerial 
images will enable us to create a richer taxonomy of 
errors. 

The repair mechanism has a nested structure, and 
is interleaved with the evaluation mechanism. For 
every allowed error subtype there are one or more 
repair strategies. The repair strategies are tried one 
after the other until either the error disappears or 
the strategies are exhausted. An example is shown 
in Fig. 11, and sample results in Fig. 12. 

An alternative approach to this problem is taken in 
[Burlina et al., 1997], where it is posed as the de- 
termination of the optimal operating point on a Re- 
ceiver Operating Point (ROC) curve [Poor, 1988]. It 
is then solved using an optimization method. This 
is applicable when there is a single tuning parameter 
(generally some kind of threshold). 

6    Conclusions and future work 

This paper has presented a methodology for adding 
flexibility and convenience to an existing lU system 
by integrating the lU specialist's knowledge into it 
using a knowledge-based architecture. The system 
can then self-tune in response to the lA's evalua- 
tions. 
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Evaluation : FA (parking lanes) 

Action: Increase smoothing 

Evaluation: MD (low contrast) 

Action : Relax template matching criterion 

Evaluation: MD (insufficient spacing) 

Action: Relax spacrrig check criterion 

The proposed methodology assumes that the lU sys- 
tem has a non-empty operating region at which it 
yields satisfactory results. It imitates the strategy of 
the specialist in reaching a point in this region from 
a given or default setting. Obviously, if no combi- 
nation of the tuning parameters can yield satisfac- 
tory results, neither the specialist nor the self-tuning 
framework will have any possibility of succeeding. 
On the other hand, if the self-tuning strategy does 
not capture the full complexity of the specialist's 
reasoning, it may fail in difficult cases even if a solu- 
tion exists. Detecting this failure may not always be 
easy for the lA, since the self-tuning strategy may 
have loops and other complex chains of reasoning, 
If the system does not solve the problem in a rea- 
sonable amount of time, it should be considered as 
having failed. Experimentation on large and diverse 
data sets and constant refinement of the knowledge 
base will ensure that such failures do not occur too 
often. 

Currently, result evaluations are in the form of gen- 
eral remarks about the results obtained, and not 
about specific portions or objects of the output. Our 
future work will incorporate some mechanisms for 
handling specific evaluations. We will also consider 
a more sophisticated version of the vehicle detector 
capable of detecting vehicles of all sizes and orienta- 
tions. We also propose to test the methodology on 
other candidate problems such as multisensor regis- 
tration. 
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Abstract 

Super resolution aims to provide a magnified image, 
several times the size of a given small image, while 
avoiding blurring, ringing or other artifacts. Pre- 
vious approaches to this problem produced either 
increased artifacts and noise or over smoothed im- 
ages [8, 4, 11, 6]. We propose a new approach which 
relies on interpolating where it is justified and not 
interpolating across edges. Previous methods which 
selectively interpolate across edges [10, 2] tend to 
promote false edges leading to noticeable artifacts. 
This occurs due to the imprecise location of the 
edges in the magnified image (since we only have 
access to a sub-sampled image) and the algorithms 
make one-step decisions as to the course of action 
in edge-areas of the image. The adaptive nature of 
the proposed scheme is aimed at avoiding such an 
error by not committing blindly to a predetermined 
course of action at the edge locations. Further more, 
we avoid stair case (or smoothing) approximation to 
the edges in the magnified images (which causes an- 
noying artifacts) by using a simple scheme which 
performs very well in practice. The multi-scale na- 
ture of the transform [1] may be utilized to further 
reduce artifacts due to false edges. 

1    Introduction 
Resolution enhancement involves the problem of magni- 
fying a small image to several times its actual size while 
avoiding blurring, ringing or other artifacts. Classical 
methods include bilinear, bi-cubic or FIR interpolation 
schemes followed by a sharpening method like unsharp 
masking [8, 5]. Interpolation schemes tend to blur the 
images when applied indiscriminately. Unsharp mask- 
ing, which involves subtracting a properly scaled Lapla- 
cian of the image from itself,  produces artifacts and 

* This research was supported by the Advanced Research 
Projects Agency under grant N00014-93-1-1167 administered 
by the Office of Naval Research and the NSF grant IRI 93- 
19038. 

increases noise. More sophisticated schemes involving 
Wavelet or Fractal based techniques have also been pro- 
posed [4, 11, 6, 7]. Such methods perform extrapolation 
of the signal in either the Wavelet or Fractal domain, 
which lead to objectionable artifacts when the assump- 
tions behind such extrapolation are violated. It may 
also be noted that such extrapolatory assumptions pre- 
dict and actively enhance the high frequency content 
within the image thus increasing any noise present in 
the sub-sampled image. In this paper, we propose an 
iterative method which improves the performance of any 
given base interpolation scheme while not making ex- 
plicit "high frequency enhancing" assumptions. 

The key idea behind the proposed method is: inter- 
polation is good until we interpolate across an edge. So, 
instead of making ad hoc extrapolatory assumptions, we 
depend on interpolating in the "right fashion". Meth- 
ods which selectively interpolate across edges have been 
previously proposed [10, 2, 3]. Such methods tend to 
promote false edges leading to noticeable artifacts. This 
occurs because the location of the edges in the magni- 
fied image is itself imprecise (since we only have access 
to a sub-sampled image) and the algorithms make one- 
step decisions as to the course of action in edge-areas of 
the image. The iterative nature of the proposed scheme 
is aimed at avoiding such an error by not committing 
blindly to a predetermined course of action at edge lo- 
cations. We allow the edge pixels to vary within a con- 
fidence interval of {+S, -S) around the initial values as- 
signed to them. The final values attained by the edge 
pixels within this confidence interval are determined by 
other constraints which we would like the reconstructed 
image to satisfy (please see following paragraph or Sec- 
tion 2). Further more, the multi-scale segmentation algo- 
rithm used to find edges [1] provides segmentation infor- 
mation (and hence edges) at different scales of gray level 
homogeneity. So, one can avoid "weak edges" that cause 
errors, by selecting the right scale of segmentation. How 
ever, this usually decreases the sharpness of the image. 
In this paper, we provide results at two different scales 
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of segmentation (a fine scale and a coarse scale). 
The question to answer is: how do we obtain an it- 

erative algorithm which provides a good reconstructed 
image starting with the sub-sampled image and segmen- 
tation information from the algorithm in [1]? We for- 
mulate the iterative procedure within the projection on 
convex sets (POCS) formalism [9]. POCS is used to find 
a solution which lies at the intersection of various con- 
vex constraint sets. One of the convex sets has already 
been described in the previous paragraph. It involves 
constraining the edge pixels to lie within a confidence in- 
terval around the initial values assigned to them (please 
see Section 2 for more details). Another constraint that 
naturally arises is that the values at non-edge locations 
should lie within a confidence interval around the values 
generated by the base interpolation scheme. This forms 
the second convex constraint to be satisfied by the re- 
constructed image. It is well known that sub-sampling 
retains the low frequency content of the image in the 
Fourier domain. Thus constraining the low frequency 
content in the Fourier domain to remain unchanged in 
both the sub-sampled and the reconstructed image forms 
the third and final constraint (which is also a convex set). 
This kind of formulation has been treated by us in a gen- 
eral context in [12]. 

In order to facilitate comparison, we subsample the 
Lena image and then reconstruct the image using (a) the 
base interpolation scheme and (b) the proposed scheme. 
Results indicate distinct reduction in blurring and im- 
proved quality (both visually and in terms of the PSNR) 
in the reconstructed images for the proposed method 
over the base interpolation scheme. The comparison in 
each case is made with respect to the original, unsub- 
sampled image. In two other sets of results we start with 
a small image (taken from the standard images Barbara 
and Gold hill and not obtained by sub-sampling) and 
then employ (a) the baseline scheme and (b) proposed 
scheme for magnification. Section 2 describes the pro- 
posed scheme in more detail while a few illustrative re- 
sults are in Section 3. 

2     Enhancement Scheme 
The interpolation scheme proceeds in three steps: (a) ob- 
tain an interpolated image with the base interpolation 
scheme, (b) obtain segmentation information from the 
multi-scale segmentation algorithm and (c) use an itera- 
tive algorithm to reconstruct the image. We assume that 
we have a base interpolation scheme to start with [8]. 
The second step in the proposed method is to obtain an 
edge mcisk locating edges of interest in the image. There 
is more than one way to do this. [10, 2] find the edges 
from the sub-sampled image and then finds their approx- 
imate locations in the magnified image. This leads to a 
staircase (or smoothing) approximation of the edges and 
causes visual artifacts. We found that a better approach 

is to interpolate the image (with the base interpolation 
scheme) and then find the edges from the interpolated 
image. This scheme is based on the assumption that it 
is better to find edges directly in an interpolated image 
rather than find edges in the small image and then in- 
terpolate the edge locations. This assumption bears out 
well in practice and is much simpler to implement. Seg- 
mentation (and hence edges) are found using a recently 
proposed multi-scale segmentation algorithm [1]. 

2.1     Outline 
As explained in the previous section, the reconstruction 
algorithm is constructed using the POCS formalism [9, 
12]. In order to define the algorithm we need to define 
the convex constraint sets. The solution (reconstructed 
image) lies at the intersection of the following convex 
sets: 

1. The values in the non-edge locations are constrained 
to vary within limits (-j-(Ji ,-(Ji) from their interpolated 
value. 

2. The values in the edge locations are constrained to 
vary within limits {+S2-S2) from their predicted value. 
The predicted value is found by averaging over the 
nearest 8-pixel neighborhood with appropriate weight- 
ing corresponding to distance. A weight of zero is 
given to those pixels which do not lie in the same re- 
gion as the current pixel. 

3. In the Fourier domain, low frequency values are con- 
strained to be the same as those obtained by taking 
the Fourier transform and scaling (by zero padding the 
DFT) the initial, unmagnified image. 

The need for the first two constraints is evident (as 
described in the introduction). They constrain the so- 
lution to be close to the model generated by an appro- 
priate combination of the segmentation and interpola- 
tion schemes within the confidence limits set by Si and 
62- The last constraint is obtained from the fact that a 
sub-sampled image in two dimensions preserves the low 
frequency content of the original image. Appropriate 
scaling of the frequency values is necessary in order to 
account for the size change due to magnification. For ex- 
ample, a 4X magnification means that we have (l/16)th 
of the Fourier coefficients from the sub-sampled image. 
In the absence of noise in the sub-sampled image and 
any apriori constraints on the enhanced image, we use 
all the available Fourier data. 

2.2     Control parameters 

In Section 2.1, three different control parameters were 
used i.e.. Si, 62 and the scale of segmentation. The ques- 
tion which naturally arises is: how do we select these pa- 
rameters? The answer is dependent on various criteria: 
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(1) the base interpolation scheme used effects the con- 
fidence interval {+Si,-6i), (2) if edge sharpness is the 
primary criterion, {+62,-62) should be small, and (3) 
if the magnification is large, the confidence in the edge 
locations is reduced and this should be reflected in choos- 
ing the 6 values. For a fixed base interpolation scheme, 
similar edge sharpness criteria and the same magnifica- 
tion, a single set of 6 values should give good results. 
This observation is verified in practice. This fixed set 
of ^'s may be obtained by testing the fidelity of the ini- 
tial iterate over a wide class of images. We can thus 
use the following scheme averaged over a training set 
of images:(l) sub-sample the image without aliasing, (2) 
magnify the sub-sampled image to the original size (using 
the scheme described in Section 2 which gives the initial 
value of the image for the iteration process) and (3) find 
the expected value of the absolute error at the edges (de- 
termines 61) and the interior of the regions (determines 
62) separately. In order to generate the results shown 
in this paper which required 4X magnification and had 
bi-linear interpolation for the baseline scheme, we used 
fixed values of 61 and 62 which were 1.0 and 5.0 respec- 
tively. We do not claim that these choices of 6's are the 
best possible values in all applications. In some situa- 
tions (for example medical images) it might be better to 
have sharper edges at the expense of artifacts. Practi- 
cally, a fixed choice of 6's is found to give good results for 
a wide range of images, provided that the criteria which 
went into the selection of the values were not changed. 

Selecting a particular scale of segmentation is aimed 
mainly at avoiding the weak and false edges generated 
by the baseline interpolation scheme which precedes seg- 
mentation. In the results shown we used two different 
segmentation scales, one at a fine level and the other at 
a coarse level. The fine scale of segmentation tends to 
enhance artifacts in some cases, but in general improves 
the sharpness of the image. 

3    Results 
Figure 1.1 gives the results of magnification at two dif- 
ferent segmentation scales using the proposed method. 
For the results shown in this paper POCS required 3-4 
iterations to converge to within 10% of the final solution 
(in terms of mean square error). The initial unmagnified 
image was obtained by sub-sampling the original image 
(Lena) by a factor of 4 (avoiding aliasing by low pass 
filtering). The base interpolation scheme used in this 
case was bilinear interpolation. At both scales of seg- 
mentation we get more than IdB improvement in the 
PSNR for the region of interest shown in the figure. The 
PSNR is found by comparing the region of interest with 
original Lena image. It may be noted that some arti- 
facts (especially around the nose region) may be found 
in figure 1.1(c). This occurs because the scale of segmen- 
tation chosen detected finer edges than necessary.  Two 

other sets of results are presented in figure 1.2(a)-(c) and 
figure 1.3(a)-(c). These results were obtained by using 
small clips of standard images (not obtained from sub- 
sampling a larger image). The images were then mag- 
nified 4X using the baseline scheme and the proposed 
scheme. In figure 1.2 the striped shawl is enhanced with 
the stripes clearly visible as opposed to linear interpola- 
tion which blurs the stripes. Note that the face portion of 
figure 1.2 is too blurred to be enhanced very much and 
the algorithm adapts to this situation correctly with- 
out producing artifacts. In figure 1.3, the bars on the 
windows become more distinct and the texture on the 
wall becomes enhanced. The images show the efficacy of 
the method in scenes with different textures and varying 
amounts of detail. 
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Figure 1: Resolution Enhancement results: 1.1(a) Bi-linear Interpolation 1.1(b) Proposed scheme at a coarse .scale 
of segmentation (c) Proposed scheme at a fine scale of segmentation. Both 1.1(b) and 1.1(c) have more than klB 
improvement in PSNR over (a) when compared with original Lena image (the original small image was obtained by 
sub-sampling Lena by a factor of 4). 1.2-1.3 (a)-(c):Same as 1.1 (a)-(c) except that the original small image was an 
actual unsub-sampled clip from the Barbara (1.2 (a)-(c)) and Gold Hill (1.3 (a)-(c)). 
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Abstract 

We present a new framework for hierarchical seg- 
mentation of multidimensional multivariate func- 
tions into homogeneous regions. Homogeneity 
is defined as constancy of n-th order derivatives 
(called features) of the function. The degree of ho- 
mogeneity (scale parameter) is used to obtain mul- 
tiscale segmentation. Three special types of the 
region hierarchies are used as tree representations 
of the multiscale image structure. Results show- 
ing noise robustness and computational efficiency 
of the proposed method are presented. Experi- 
ments to compare the method with five other seg- 
mentation techniques and applications to two- and 
three-dimensional images having one-, three- and 
six-variate data are described for the zeroth and 
first order region features. 

1    Introduction 
This paper is aimed at the fundamental problem of im- 
age segmentation. The method described extracts the 
hierarchical [7, 5, 1] structure present in an image char- 
acterized by varying degrees of intra-region homogene- 
ity and inter-region contrast. The image is viewed as a 
multivariate multidimensional function. The goal is to 
partition a regular nj-dimensional grid of sample points 
in the domain of a n^-variate function into nonoverlap- 
ping connected sets of sample points forming homoge- 
neous regions. Homogeneity is defined as constancy of 
n-th order derivatives (called features) of the function 
[6, 9]. The hierarchical segmentation problem has not 
been satisfyingly solved in general due to the following 
reasons: (1) The definition of features (e.g., the order 
of derivatives) is a priori unknown. (2) The amount 
and type of noise in the input data is unknown. Fur- 
ther, the computational requirements of the previously 
proposed methods are severe. These difficulties become 
more serious as the dimensionality of the data increases. 

'This research was supported in part by Advanced Re- 
search Projects Agency under grant N00014-93-1-1167 ad- 
ministered by the Office of Naval Research and National 
Science Foundation under grant IRI 93-19038. 

In this paper, the degree of similarity (measure of ho- 
mogeneity) of two n-th order features is modeled by the 
Euclidean distance of their n-th order differences. It is 
denoted throughout the paper as homogeneity d, which 
is an upper bound on the maximum difference between 
any pair of features within a region. The choice of or- 
der n of features depends on the application area. For 
perceptual purposes it suffices to use the order n < I 
[2]. The segmentation method presented in this paper 
uses a varying homogeneity parameter which gives rise 
to a number of segmentations. The noise robustness 
and computational efficiency of the detected regions are 
characterized. A tree representation of the segmenta- 
tion is extracted from these segmentations that retains 
the subset of regions corresponding to all different scales 
present in the data. Experiments are reported with 
medical data, botanical data, satellite data, range data 
and gray level and color video sequences, having dimen- 
sionalities Ug = 1, 2, 3 (multidimensional sample space) 
and nj = 1,2,3,6 (multivariate function space), and 
using zeroth and first order region features. 

2    Segmentation Using Homogeneity 
Analysis 

Given the feature model, the proposed method consists 
of three major steps: (1) An image is segmented into 
regions having the same degree of feature homogeneity. 
(2) The degreg of homogeneity is used as a scale param- 
eter to obtain a number of nj-dimensional (usD) seg- 
mentations. The detected regions split (merge) as the 
homogeneity parameter is made more (less) stringent 
and lead to a hierarchical region structure. (3) nsD re- 
gions from the hierarchical organization are selected to 
obtain a tree representation of segmentations. 

Mathematical framework: An rigD image is mod- 
eled as a multidimensional multivariate function x, —>■ 
f{xi), where a;,- = {xi,X2, ■■■,Xn,) is a sample point 
and f{xi) = {foixi),fi{xi),...,fn^{xi)) is the nj- 
dimensional {njO) function value or attribute at lo- 
cation Xi. An n-th order feature /"(^i) at a sam- 
ple point Xi is the n-th order derivative of / (esti- 
mated by the difference), e.g., f'^{xi) = f{xi), f^{xi) = 
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Figure 1: Homogeneity 5 and contrast a for n = 0. 
The thick solid line shows a ID cross section of UsD 
regions Sf and 51.  ^ = max{ ||   f{xi e Sj) - f{xk € 
Sj)  II }> J = 1.2, and a = min{ || f{xi G ^i) 
^2)   II }. 

fi^k e 

SEGMENTATION OF 

IMAGE 

FEATURES ATf AMPLE POINTS 

f'(viB S,) 

f(i|in  S^ 

Figure 2: Homogeneity 6 and contrast a for n = 1. 
The dots show derived features f^{xi) = {txi,tx2) = 
(9Zfc) 9ifcl) from the left image (arrows denote the 

sign of a derivative along that particular direction). 6 = 
max{ II f'i^i e Sj) - f\xk G Sj) \\ }, j = 1,2, and 
a = min{||  /^(a;^ G 5i) -/H^* £ ^2)  || }. 

9f(xi)-, (£^^n ^J^^^, ...^^). The objective of segmentation 
V   dxi    '    dx2    ' axn   ' •*       . . 
is to partition the regular nj,-dimensional grid of sample 
points Xi into nonoverlapping connected sets denoted 
as regions Sj — {KJ}, where j is the index of the re- 
gion. risD regions are defined by homogeneity (simi- 
larity) of features within the region, and contrast (dis- 
similarity) with the surround. The homogeneity (5 of a 
region 5| is defined as the maximum distance between 
a pair of^features at the sample points within the region 
5/; max{|| r{xi G 5/) - /"(^c, G S]) ||} = b (see Fig- 
ures 1 and 2). The contrast a of two neighboring regions 
S\ and S\ is defined as the minimum distance between 
a pair of features located across the region boundary; 
a = min{ || Pixi G 5^) - /"(s, G Si) \\ } (see 
Figures 1 and 2). 

Segmentation method: (1) Create regions S^^. = {xk} 
at each sample point Xi such that || f^ixA — f"{xk) \\< 
6. (2) Compare the pair of regions S^^., S^f for every two 
adjacent sample points Xi,xi. (3) Define final regions or 
boundaries based on the comparisons. 

Noise robustness:   Mean attribute values computed 
over 5^*, 5^f are used as region descriptors in the com- ' 
parison in Step 2 to achieve noise robustness.  The de- 

scriptor of 5^* is calculated as /ij,^ = j^ Ylk^i /"(^* ^ 

S^^.). The comparison in Step 2 and assignment of 
samples to different regions in Step 3 are performed 
based on the following inequality: If || fix, - jix, ||< ^ 
then Xi and xi belong to the same final region else Xi 
and xi are boundary points. This grouping rule is an 
outcome of similarity analysis. The similarity analy- 
sis relates the values of region homogeneity and con- 
trast statistically. Two cases are considered: a > 6 and 
a < 6. The probability of obtaining correct segmenta- 
tions is obtained analytically and numerically in terms 
the probability of error in grouping x,- and x; into one 
region, li a > 6 then Pr(error) = 0. U a < 6 then 
Pr{error) = 1 -Pr(|| fi^.es^ ~ fij ll< ^i where fij is the 

sample mean of features from an unknown region Sj. 

Computational efficiency: The dimensionality of 
computations is reduced using a separability property. 
Efficient segmentation method using the separability 
property is performed in three steps: (a) divide UgD 
grid of sample points into several lower-dimensional 
grids, which leads to lower-dimensional images, (b) 
compute segmentations of lower-dimensional images 
and (c) assemble computed lower-dimensional regions 
or boundaries into ngD regions or boundaries of regions. 
The use of the separability property reduces computa- 
tional complexity but decreases noise robustness. Accu- 
racy analysis of the method using descriptors and sepa- 
rability shows that if a > 5 then Pr(error) = 0, but if 
a < S then Pr(error) is larger than for the method not 
using the separability. 

Hierarchical segmentation: Image segmentations are 
obtained for different values of a homogeneity param- 
eter 6. A hierarchy of regions is created such that 
every region Sj obtained at scale 6 cannot split at 
S + AS into smaller subregions (bottom-up constraint) 
and cannot merge &t 6 — A6 with other UgD regions 
(top-down constraint). The hierarchy is guaranteed by 
replacing feature values within created regions Sj at 
each scale 5 by the sample means of created regions. 

g{xi,6) 
,M 

Mj J2k=i f"i^k eS^), where Mj is the num- 

ber of samples in 5|. Three types of tree representa- 
tions are derived from the set of regions comprising the 
hierarchical organization. These trees consist of (a) sta- 
ble regions, i.e., SJ = 5?*; (b) regions characterized by 
large boundary discontinuity, i.e., a > 5 for a part of 
boundary, or (c) regions participating in a merger of 
Sl' and ^2= at 6 > Si + 62 but not before. Thus, a 
tree contains only some of the regions and links from 
the original hierarchy, selected to ensure a certain type 
of distinction among the different regions. The different 
levels in the tree correspond to salient structures seen 
in the image at different scales. 
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3    Performance Evaluation 

Segmentation quality is judged based on three main cri- 
teria: (a) accuracy, (b) time and memory requirements 
and (c) comparisons with other segmentation methods. 
The tradeoff between segmentation accuracy and com- 
putational requirements is as follows: the proposed seg- 
mentation using descriptors is 3 times more noise robust 
than the proposed segmentation using descriptors and 
separability but 77 times slower and 7 times more mem- 
ory intensive. The experiments were conducted for the 
zeroth and first order region features (n = 0,1) with the 
worst case boundary error of 7.1% which occurred for 
the faster but less accurate method using descriptors 
in one-dimensional space. The average segmentation 
time for the faster method was OAs/seg if n = 0 and 
l.Ms/seg if n = 1 for 100a;100 image (n^ = 2,n/ = 1) 
on Sparc 20 workstation. Three other segmentation 
methods were compared based on the number of mis- 
classified sample points using synthetic images with re- 
gions characterized by a = 1 and 6 = 49. The best per- 
formance was achieved by the proposed method using 
descriptors, followed by segmentation based on Markov 
Random Field (MRF), the proposed method using de- 
scriptors and separability, and morphological segmen- 
tation and Canny edge detector. The comparison of 
two proposed methods was extended by using two syn- 
thetic images from the work of Won and Derin [8]. The 
results obtained by segmenting these two images (is- 
lands and berries) were compared to the results stated 
in [8] and [4] obtained using different implementations 
of segmentation based on MRF. Although the accuracy 
of the proposed method with descriptors and separabil- 
ity is worse than that of the best results given in [4] 
by 0.098% (islands) and 0.577% (berries), the time re- 
quirements of our method are 10 times less that in [4] 
and 20 times less than in [8]. The proposed methods 
were used in applications involving the following types 
of real data: angiograms (Figure 3), magnetic resonance 
images (Figure 4), botanical data (Figure 5), satellite 
images (Figure 6), range data (Figure 7) and gray-scale 
and color images and video sequences (Figures 8, 9 and 
10). 

4    Conclusions 

We have presented a new framework for hierarchical 
image segmentation into homogeneous regions defined 
by constancy of the n-th order derivatives. The de- 
gree of homogeneity was used as a scale parameter to 
obtain a multiscale space of segmentations. Segmen- 
tation results are represented in the form of a tree of 
regions. We have formulated into the method a tradeoff 
between the segmentation accuracy and computational 
requirements. Comparative analysis and experiments 
with multidimensional multivariate real data were con- 
ducted to demonstrate the superior performance of the 
proposed methods. 

Figure 3: Results from one scale of segmentation of an- 
giograms. 
Top row - windows of size 300x300 from a large an- 
giogram; n, —2,nj = 1. Courtesy of the Department 
of Neurosurgery, College of Medicine, University of Illi- 
nois in Chicago. Bottom row - selected cross sections of 
a tree of detected regions [n — Q). 

Figure 4: Results from two scales of segmentation of 3D 
MR data. 
Top row - 2D slices of a 3D image along z axis (256x256), 
rij — Z,nj = 1. Courtesy of the Department of Neuro- 
surgery, SUNY Health Sci Center, Syracuse, New York 
13210. Cross sections of the 3D segmentation at (1) fine 
scale (5i (second row from top), coarse scale 62 (bottom 
row, ^1 < ^2) (n = 0). 

543 



Figure 5: Results from one scale of segmentation of the 
2D cross section of a plant. 
Left - original image n^ = 2,nj = 1. Courtesy of the 
Department of Plant Biology, University of Illinois at 
Urbana-Champaign, Illinois. Right - contours of de- 
tected regions at one scale for features with n = 0. 

Figure 7: Results from one scale of segmentation of 
range data. 
Left - a window of original range data n^ = 2, n/ = 1 
obtained from [3]. Middle - segmentation result for fea- 
tures with 72 = 1. Right - the ground truth segmenta- 
tion. 

■g'^x^ ft ..:■-' 
Sh.   ' •* 

Figure 6: Results from one scale of segmentation of a 
satellite image. 
Top - the original 6-band Landsat-5 TM collage, left - 
1st, 2nd and 3rd band together, right - 4th, 5th and 7th 
band together, «« = 2,n/ = 6. Courtesy of the Illinois 
Natural History Survey. Bottom - segmentation of the 
satellite data for features with n = 0. The detected re- 
gions from the tree representation are shown with their 
average intensity values (left) or their contours (right). 

Figure 8: Results from two scales of segmentation of a 
gray scale image. 
From top down: original Wj = 2,nj = 1, segmentation 
at two different scales for features with n = 1. 
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Figure 9:  Results from one scale of segmentation of a 
color image. 
Top - original Ug = 2,nj — 3, bottom - segmentation 
result for features with n = 0. 
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Figure 10: Results from one scale of segmentation of a 
color video sequence. 
Top - original frames at <o = 0 (left) and ij > <o (right); 
Us = 3, n/ = 3. Bottom - segmentation result for fea- 
tures with n = 0. 
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Abstract 

sarMapper is near-real-time, interactive software 
for generating high-accuracy tactical ground 
cover maps from synthetic aperture radar (SAR) 
imagery using current-technology laptop 
computers. Such maps make it possible to 
automate the focus-of-attention mechanism that 
is the foundation of tactical image analysis, target 
detection, and target recognition. This document 
describes a proof-of-concept first instantiation of 
sarMapper and outlines further technical issues to 
be addressed in the 1997 sarMapper research 
effort. 

1 Introduction 

sarMapper is computational software and a 
human-machine interface that learns how to 
generate ground cover maps from synthetic 
aperture radar (SAR) images, given minimal 
human supervision.   It is a real-time, interactive 

This newly-funded research is sponsored by the 
Defense Advanced Projects Research Agency 
under grant F33615-91-1-1017, monitored by the 
United States Air Force Wright Laboratory ATR 
Development Branch, Wright Patterson AFB, 
Dayton, OH. The views and conclusions 
contained in this document are the author's and 
should not be interpreted as representing the 
official policies, either expressed or implied, of 
the Defense Advanced Research Project Agency, 
Wright Laboratory, the U.S. Air Force, or the U.S. 
government. 

learning tool that the military (as well as 
scientists) can teach and subsequently use to 
make maps for tactical (or scientific) analysis of 
ground cover. sarMapper runs on current- 
technology laptop computers, generating detailed 
mega-pixel maps in one to three minutes, 
depending on the level of map detail specified. 

1.1 Background 

Current-generation military SAR platforms 
produce vast quantities of imagery. Ground truth 
for this imagery — areas in which the type and 
quantity of ground cover is known in detail — is 
both scarce and expensive to obtain. Moreover, 
temporal changes in ground cover mean that 
ground "truth" is ephemeral. Added to these 
facts are tactical imperatives of military 
operations that rely on timely, accurate maps: 

• military image analysts are drowning in a sea 
of data for lack of a real-time ability to 
process the data into usable information. 

• military commanders need accurate tactical 
maps now, not two hours from now. 

• they need them in the field, where their troops 
can use them; the troops need to be able to 
update their maps rapidly in order to reflect 
the changing tactical situation in real-time. 

• they must be able to do this with minimal 
effort and training and little or no prior 
information regarding the area being imaged 
by the SAR reconnaissance platform. 

sarMapper addresses these issues by learning to 
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generate detailed ground cover maps in near-real- 
time with minimal human intervention, using a 
current-technology laptop computer. The 
sarMapper described herein is a proof-of-concept. 
The proof-of-concept was designed to show that 
detailed ground cover maps can be generated 
using a human-guided "semi-supervised" 
parametric learning procedure without prior 
knowledge of ground cover. This paper describes 
the learning procedure, validates the concept, 
and describes the underlying technical and 
computational framework that make its real-time, 
interactive implementation possible. 

1.2 sarMapper Overview 

The sarMapper project seeks to provide the 
military with two fundamental capabilities: 

• Fast, automated, high-accuracy, tactical map 
generation. 

• Tactical focus of attention. 

sarMapper itself is to have the following 
characteristics: 

• Real-time learning & map generation 
• Without prior ground-truth 
• On a laptop (with a CD-ROM or large 

external disk) 
• Computational efficiency (generate a high- 

accuracy mega-pixel map in one to three 
minutes on a laptop) 

• High resolution / accuracy ground cover 
assessment 

• Interactive graphical user interface (GUI): 
human aids computer in initial learning 
phase; after learning, computer maps 
autonomously 

• Human oversight 
• Assess focus-of-attention warnings 
• During sarMapper's learning phases 

• Multiple 
• Wavelength (P-, L-, C-, X-Band, etc.) 
■ Polarization (single and fully 

polarimetric) 
■ Spatial resolution 
• Data Sources (e.g.,...) 
- MSTAR public data (airborne, X-band) 
- LL ADTS SAR (airborne, X-band) 
- JPL AirSAR (airborne, P, L, and 
C-band) 
- NASA SIR-C/X-SAR (spacebome L, 
C, and X-band) 

• Focus-of-Attention (FOA) 
• Detect & locate man-made ground cover 
• Warn human according to prior tasking 

• Usable with ~1 hour training 

Computational efficiency forms the core of 
sarMapper, allowing it to generate mega-pixel 
maps on a current-generation laptop in one to 
three minutes. Ground cover types are learned 
using low-complexity parametric models of RF 
backscatter: learning takes the form of efficient 
model parameter estimation, which allows 
ground cover types to be characterized in terms 
of their backscatter signature — the learning and 
subsequent mapping take place in near real-time, 
owing to the efficient, low-complexity algorithms 
employed. In comparison, standard maximum- 
likelihood map generation algorithms generate 
maps on a time scale of hours. 

sarMapper uses semi-supervised learning, which 
obviates the need for prior ground truth. The 
principle behind this supervised learning 
procedure is straightforward: humans can discern 
different ground cover types in a SAR image by 
the differences in their appearance in the image. 
Different ground cover types in a single- 
polarization image will appear to have different 
shades and/or textures of gray; in a false-color 
composite of multiple polarizations, different 
ground cover types will appear in different 
colors. Consequently, a human can identify 
regions of different ground cover in an image and 
label these regions without knowing what the 
different ground cover types are — using 
pseudonyms for the unknown ground cover 
classes. These pseudo-classes of ground cover 
can be learned, and their backscatter signatures 
can then be used to generate a high-resolution 
pseudo-map over a wide-area in the vicinity of 
the image used for learning. Many of the 
unknown ground cover types can be inferred by 
an image analyst from context, site-invariant 
backscatter signatures, historical imagery, or 
focussed follow-on surveys conducted using the 
pseudo-map to target specific survey sites. The 
critical characteristic of semi-supervised learning 
is that it can generate a useful map in real-time 
without prior knowledge of the area; missing 
details can be filled in as they are obtained, 
without having to re-learn or re-map the area. 

Since man-made ground cover tends to 
backscatter little RF energy (as in the case of 
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obliquely illuminated metal or concrete surfaces) 
or substantial RF energy (as in the case of 
trihedral reflectors common to military vehicles), 
semi-supervised learning is compatible with 
sarMapper's focus-of-attention (FOA) mission. 
Very large areas (hundreds to thousands of 
square kilometers) can be mapped and surveyed 
for small areas of potential tactical interest by a 
single human and sarMapper team. Survey time 
for a thousand square kilometer area (10-meter 
map resolution) requires between ten minutes and 
one-hour on a single laptop computer, depending 
on the number of ground cover classes 
enumerated; survey time for a fifty square 
kilometer area requires between 15 seconds and 
three minutes under the same conditions. 

1.3 Proof-of-Concept 

The proof-of-concept objectives were to 

• generate detailed ground cover maps from 
JPL AirSAR images without prior knowledge 
of ground cover. 

• validate Tobit parametric models of radio 
frequency (RF) backscatter envelope at P, L, 
and C bands. 

• show that these Tobit models can be learned 
with human supervision, even though the 
human has no prior knowledge of the ground 
cover at the site being mapped. 

• show that Rayleigh-compressed SAR images 
(see section 2.2) and their associated Tobit- 
generated maps (section 2.5) can be used to 
target a small, well-defined, set of locales in 
a site (or set of sites) where ground truth 
should be surveyed. 

• show that the Tobit-generated map can be 
converted to a true ground cover map with a 
few key strokes, once ground truth has been 
established at the selected survey sites. 

• validate a number of image processing and 
computational advantages derived from the 
use of Tobit parametric models for ground 
cover. 

• point the way to a highly automated focus-of- 
attention version of sarMapper. 

2 Technical Summary 

Figure 1 illustrates the sarMapper graphical user 
interface (GUI). In this paper, sarMapper takes 
SAR images that have been decompressed from 
the JPL AirSAR compression format described in 

[DuBois-87,AirSAR-90], but sarMapper is 
designed to work with arbitrary SAR platforms. 
The main control panel has controls for 
specifying the receive and transmit polarizations 
to be synthesized when the complex floating- 
point SAR data is compressed into a real 8-bit 
integer image. Common polarizations (e.g., HH, 
HV, VV, Left Circular, and Right Circular) are 
synthesized (when fully polarimetric data are 
available) by efficient code, tailored to the 
specific polarization. Arbitrary polarizations are 
synthesized via a general compression-and- 
synthesis algorithm, which — in the case of JPL 
AirSAR — is a modified ANSI-C version of 
FORTRAN code supplied by Eric Rignot and 
Pascale DuBois of JPL, section 334. Tools for 
labeling SAR images are above the polarization 
controls; these are used in the semi-supervised 
learning procedure described in section 2.3. 

A browser (upper right comer of figure 1) shows 
all the SAR data files currently loaded; when a 
file name is highlighted, the contents of its header 
are displayed in an information window, which 
allows string searches (so the user can quickly 
find information of interest). Multiple SAR 
images can be generated from the compressed 
SAR data files and displayed simultaneously. 
Figure 1 contains two false color images derived 
from C- and P-band AirSAR data over NASA's 
Raco, Michigan super site. Each of these images 
overlays HH (red), HV (green), and VV (blue) 
polarized images to form the color composite 
(see the author's lU web site for a color version 
of this figure). The lower-right window contains 
locale-specific histograms for each of these three 
polarizations in the P-band image: they and their 
corresponding parametric models, listed in the 
lower portion of the window, are related to the 
leaming and map generating functions of 
sarMapper described in sections 2.1, 2.4, and 2.5. 

2.1 Parametric RF Backscatter Models 

sarMapper uses SAR amplitude (i.e., RF 
envelope) images to generate ground cover maps. 
Envelope statistics are used to derive parametric 
models of radio frequency (RF) backscatter; 
when the SAR is fully-polarimetric, three 
parametric models are derived for each ground 
cover class specified for a site: one model for 
each of the three polarizations (HH, HV, and VV) 
that comprise a color-composite image. One 
parametric model is generated when the SAR is 
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Figure 1: The sarMapper graphical user interface (GUI). The main controls allow the human 
operator to specify the polarization of the SAR image when the SAR is fully polarimetric, the number 
and type of ground cover classes, image labeling modes, etc. Multiple images can be loaded and 
displayed simultaneously (HH-HV-VV composites are shown for C- and P-band images of NASA's 
Race Michigan super site imaged by the JPL AirSAR platform). Histograms of the backscattered 
SAR radio frequency (RF) envelope can be generated from the entire image, a single region, or all the 
regions belonging to a user-specified ground cover class: These histograms are used to generate 
Tobit maximum-likelihood parametric models for each ground cover class, which are in turn used to 
generate a ground cover map for the site and surrounding sites. 

single-polarization. sarMapper      models 
backscatter envelope (a real-valued scalar 
random variable); it does not model backscatter 
as a complex (in-phase and quadrature) random 
variable, as is common in the SAR literature 
(e.g., [Kong-87]). The reason for this is 
complexity. Parametric models are derived from 
one-dimensional histograms of RF backscatter 
when the envelope is used ; when complex 
backscatter is used, the histograms are two 
dimensional. Assuming eight-bit precision, a 
(one-dimensional) envelope histogram has 256 

See section 2.6 for the rationale behind the use of 
histogrammed versus full-precision amplitude 
statistics in the parametric modeling procedure. 

bins,   whereas   a   (two-dimensional)   complex 

backscatter histogram has 256 = 65,536 bins. 
Consequently, the training sample size necessary 
to generate a relatively smooth complex 
histogram — from which a low-bias, low- 
variance parametric model can be inferred — is, 
roughly speaking, the square of the size necessary 
to generate a relatively smooth envelope 
histogram and associated parametric model. 
Moreover, the computational complexities of 
evaluating log-likelihood functions — a 
necessary step in estimating parametric models 
— are proportional to the dimensionality of the 
histogram used: in short, using RF envelope, 
sarMapper     avoids      Bellman's      curse     of 
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dimensionality [Bellman-61,Duda-73]. The 
computational and sample complexities of the 
parametric modeling procedure are orders of 
magnitude lower than they are for the complex 
backscatter paradigm (see section 2.6), so the 
resulting parametric classifier is significantly 
more efficient in its data and computational 
requirements. 

sarMapper uses Rayleigh, Rician (aka Rice- 
Nakagami), Nakagami-M, and LogNormal 
parametric models of the backscattered RF 
envelope. The Rayleigh, Rician, and Nakagami- 
M models are progressively general ones 
governing the statistics of the backscattered RF 
envelope when the complex backscatter is 
Normally distributed: a concise and well- 
formulated derivation of these models is given in 
[Beckmann-67]. The LogNormal parametric 
model spans a wide range of disciplines from 
econometrics to RF propagation; see [Strohbehn- 
75] for a motivation and description relevant to 
SAR backscatter. The probability density 
functions (pdfs) of these models follow, along 
with references: exhaustive details of all of them 
can be found in the appendices of [Hampshire- 
88]. In all the following pdfs a denotes the 
backscatter envelope random variable (rv), and A 

denotes the domain of a (i.e., a e A); E. [a] 

denotes the expected value of a over its domain; 

andf (a) denotes the pdf of the rv a evaluated at 

a = a. 

Rician pdf: a is distributed according to 
[Rice-44,Nakagami-60,Beckmann-67] 

(3) 

a  +ar 
/a(a)=^exp(—^-2- lo 

aao 

I  O^ 

where   a^  is   the   value  of the   deterministic 

component of a, 0 is a variance-like parameter, 
and IJ] denotes the modified Bessel function of 

order zero [Abramowitz-70]. 

Nakagami-M pdf: a is distributed according to 
[Nakagami-60,B eckmann-67] 

(4) ^"^"^=    TimyQ'"     ^M"^ 

where i^ = E. [a ], m is an inverse normalized 

variance parameter, and r[] denotes the gamma 
function [Abramowitz-70]. 

LogNormal pdf: a is distributed according to 
[Aitcheson-66,Strohbehn-75] 

1 

PJ V27i:aCTin(a) 
exp 

\\n{a)-yY 
2o2 ln(<x) 

Rayleigh pdf: a is distributed according to 
[Strutt-29,Davenport-58,Beckmann-67,Ishimaru- 
78] 

/a(«)=-Texp - 
2o^ (1) 

where 2o^ = E^[a^].    Note that the Rayleigh 
pdfs mean is given by 

EA[a]=4/CT' 
71 

(2) 

Here I use the term "efficient" in both the classical 
Cramer-Rao context [Rao-45,Cramer-46] and the the 
related pattern recognition context I have defined 
elsewhere [Hampshire-93a,Hampshire-93b]. 

where y = E[ln(a)] (i.e., y is the mean log- 

envelope) and    o^in(a) = EA [ln(a)2 ] - y^ 

(i.e., a , . N is the variance of the log-envelope). 

2.2 Rayleigh Image Compression & 
Equalization 

SAR signals have dynamic range on the order of 
55 dB , but an eight bit number encodes at most 
about 53 dB of dynamic range. Consequently, 
when a SAR image is displayed on a typical 
computer   monitor,   many   of  the   pixels   are 

Personal communication regarding the dynamic 
range of JPL AirSAR from J. Van Zyl, November, 
1994. 

551 



saturated, taking on the minimal value of 0 or the 
maximal value of 255. 

RF envelope (amplitude) displays of SAR 
imagery are formed by converting the complex 
backscatter amplitude (in-phase and quadrature 
components are generally represented with 32-bit 
floating-point representation or some derivative 
of this format) into a real magnitude represented 
with an 8-bit integer. If this compression is done 
with too much gain the resulting image is very 
bright; if it is done with too little gain, the 
resulting image is very dark. In either case, 
image detail is lost (either due to high-end or 
low-end saturation). The key to good image 
contrast and brightness is a compression scheme 
that minimizes the amount of both high- and low- 
end saturation while preserving as much of the 
dynamic range contained in the complex floating- 
point representation. From an information- 
theoretic perspective, the compression scheme 
that minimizes saturation and maximizes 
dynamic range minimizes the information loss 
between the complex floating-point and real 
integer image representations. 

Typically, SAR images are compressed so that 
the mean pixel value is some target value in the 
vicinity of 128 (half of 8-bit full scale). The 
mean pixel value is estimated by sub-sampling 
the image with some default gain factor. Then 
the full image is compressed using a new gain 
factor that results in a mean pixel value close to 
the specified target value. This works well if the 
pixels are Normally distributed, but they are not. 
Rather the pixels are generally distributed 
according to one of the pdfs described in the 
previous section, all of which are characterized 
by a fairly high level of skewness. The histogram 
in the lower left image of figure 2 illustrates. It is 
based on the HH-polarized image generated from 
a JPL AirSAR L-band image of the Flevoland 
super site in The Netherlands (top, left). The 
image was generated using the standard mean- 
based compression scheme just described. The 
whole image histogram is approximately 
LogNormally distributed, with a very long tail: 
three quarters of the pixels have values less than 
120, but more than ten percent of all pixels have 
the maximum value of 255. This is because the 
mean-based compression algorithm tends to set 
the compression gain too high in its attempt to 
match the mean pixel value with the target value 
(again, owing to the skewness of the RF envelope 

pdfs described above). 

Rayleigh compression works somewhat 
differently. Instead of trying to match the mean 
pixel value with some target near half scale, it 
determines the compression gain factor so that 
the fraction of pixels with the maximum value of 
255 approximates a pre-determined target value 
of 5%. I call this value the "target saturation 
fraction". Matching the actual fraction of 
saturated pixels to the target fraction ensures that 
the image is neither too bright nor too dark. The 
compression scale factor needed to realize the 
target saturation fraction is computed by sub- 
sampling the image, fitting a Rayleigh pdf to the 
resulting histogram, and estimating the 
cumulative distribution function (cdf) for the data 
(under the Rayleigh assumption). The cdf can 
then be used to determine the compression 
scaling factor necessary to achieve the target 
saturation fraction. Here is how it works... 

We have the sub-sampled image pixels, which we 
view as realizations of the RF envelope 
backscatter rv a. We compute the maximum- 
likelihood   estimate   of   the   Rayleigh   pdfs 

2 2 parameter 0   in (1). Let's call this estimate ~a . 
Next we compute the Rayleigh cdf for the high- 
end saturation amplitude minus one (a  =   254) 

— which we denote by C(x(254) — given ~a . 

This is given by 

(6) 
Ca(254) = 1-exp 

(255)- 
2-02 

We can then compute the compression scaling 
factor 5 that we should use so that the cdf of the 
re-scaled backscatter rv (5-a), evaluated at the 
saturation amplitude minus one (254), is equal to 
one minus the target saturation fraction/: 

(7) 
C5.a(254) ^ 1 

.    (255)2; _ 

2-05^ 

Solving (7) for the Rayleigh parameter ~0g , 
which   corresponds   to   the   target   saturation 
fraction /, we obtain 
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Figure 2: Two HH-polarized images generated from a JPL AirSAR L-band image of the 
Flevoland super site in The Netherlands. The left-hand image was generated using mean-based 
compression: the whole-image histogram below the image indicates that about ten percent of the 
image pixels are saturated (i.e., they have the maximum value of 255). The large number of light 
regions in the image confirms this. The right-hand image was generated using Rayleigh-based 
compression in which the image saturation was limited to Order[5%]: the whole-image histogram 
below indicates that only about two percent of the image pixels are saturated. The resulting 
monochromatic HH image is darker and shows less detail that its mean-compressed counterpart in 
this grayscale version, but the associated HH-HV-VV color composite image has better contrast 
and color balance. More importantly, the statistically consistent balance between image contrast 
and brightness afforded by Rayleigh compression equates to consistent dynamic range in the 8-bit 
data vector used for parametric learning and classification. This, in turn, leads to more consistent 
parametric models for ground cover classes and more accurate maps. 
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(8) -1=- (255)^ 

2\n(fs) 

Given (2), we find that the scaling factor that will 
generate/ is given by 

EA[5a] 
EA[a] 

(255)^ 
2\n(f,) -O' 

-;0</, < 1 

(9) 

The right-hand side of figure 2 shows the effect 
of Rayleigh compression. The scaling factor 8 is 
computed for a target saturation fraction /^ = .05 

and the image is compressed. After compression, 
the whole-image histogram is generated (bottom, 
right) and we find that the actual saturation 
fraction is about 2%. The difference between the 
target value of 5% and the actual value of 2% 
follows from the actual distribution of the whole- 
image data. In computing the scaling factor, we 
assumed that the whole image is Rayleigh 
distributed, when in fact it is approximately 
LogNormally distributed. Because the Rayleigh 
pdf isn't a proper model of the data, our 
computations are biased, and our actual 
saturation fraction is smaller than the 5% target. 

This requires an explanation of our rationale for 
using only the Rayleigh pdf to compute the 
scaling factor instead of considering other 
models: the Rayleigh cdf can be computed in 
closed form. Consequentiy, the scaling factor 5 
can also be computed in closed form (i.e., very 
efficiently). What we lose in an imprecise 
estimate of the scaling factor necessary to 
achieve the target saturation fraction, we make up 
for in speed (the whole scaling factor estimation 
procedure for a mega-pixel SAR image takes a 
fraction of a second). The Rayleigh pdf is 
generally sufficient to get us within plus or minus 
3% of our target saturation fraction of 5%. 

Rayleigh compression generates images with 
statistically consistent dynamic range and 
saturation; mean-based compression generates 
images with dynamic range and saturation that 
can vary significantly with the skewness of the 
whole-image    histogram. This     statistical 
consistency contributes to statistically better 
ground cover maps generated from the Rayleigh 
compressed images. 

One final note on the Rayleigh compression 
algorithm... The HH-polarized image is sampled 
to compute the scaling factor because it is 
consistently the one with the highest dynamic 
range. It is sub-sampled by sampling all the 
pixels in every 17th line in the image, beginning 
with the 23rd image line — these numbers are 
intentionally prime numbers, so the chance of 
computing a bad estimate of the whole-image 
statistics due to some periodic artifact is reduced. 

2.3 Semi-Supervised Learning 

sarMapper was conceived with two basic 
assumptions: 

• There is usually little or no ground truth 
associated with a SAR site to be mapped. 

• SAR backscatter statistics correlate strongly 
with the physical structure of the illuminated 
ground cover, and parametric models of the 
backscattered RF envelope are well 
understood (section 2.1). 

The lack of ground truth implies an un- 
supervised learning procedure, but the strong 
prior knowledge we have about the statistics of 
radar backscatter suggests a parametric modeling 
paradigm, which involves supervised learning. I 
concluded that it would be possible to design a 
"semi-supervised" learning procedure that 
would use parametric models without prior 
knowledge of ground cover. What I will describe 
in this section is the first instantiation of this 
semi-supervised learning, which involves a 
human supervisor. The critical reader will note 
that human-supervised learning is a risky 
business because the supervision is subjective 
(we are non-deterministic creatures) and it varies 
from human to human (we are all different). 
Statistically, therefore, the level of human 
involvement in this first instantiation of semi- 
supervised learning is a weakness, but it conveys 
two advantages: 

• It exploits the strong inferential capabilities of 
the human supervisor. 

• It is fast and highly interactive. The user can 
interact with the machine and see the results 
of this interaction in real-time. For example, 
he can make a change to the ground cover 
regions specified for the machine's learning 
phase, have the machine re-leam the regions. 
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and generate a new map 
minutes. 

all in about two "V    '-'   •stfc'J'^ 

How does the human user identify these 
homogenous regions? sarMapper generates a 
color composite image of the site by overlaying 
an HH image in red, an HV image in green, and a 
VV image in blue in the case of fully- 
polarimetric radar (or a single grayscale image of 
the HH polarization in the case of single- 
polarization radar); igure 3 shows such an image, 
derived from a JPL AirSAR P-band image of the 
Landes maritime pine forest in France. The user 
then identifies a number of regions in the image 
with the same basic color (or shade of gray), 
outlines them or colors them in, and groups them 
into one so-called "pseudo-class". This process 
is repeated for each pseudo-class identified in the 
composite image by the human supervisor: each 
pseudo-class is assigned a map color and a 
pseudonym. sarMapper's main control panel, 
shown in figure 1, contains the region labeling 
controls. Regions representing a given ground 
cover pseudo-class can be outlined using one of 
three modes (square region, rectangular region, or 
polygon) or they can be "penciled in" — a 
fourth labeling mode that identifies small, oddly- 
shaped regions (e.g., winding rivers) by coloring 
in a local binary bitmap. The number of ground 
cover classes, their names, and their map colors 
are user-specified to the right of the labeling 
controls in figure 1. 

Once the training regions for each pseudo-class 
have been identified by the human supervisor, 
sarMapper characterizes each ground cover 
pseudo-class by computing the maximum- 
likelihood parameters for all four possible 
backscatter parametric models (Rayleigh, Rician, 
Nakagami-M, and LogNormal) — it does this for 
each of the three polarizations (HH, HV, and 
VV). The parametric model with the greatest 
log-likelihood (summed across the three 
polarizations) is then chosen as the maximum- 
likelihood (ML) model for the ground cover 
pseudo-class. Summing the log-likelihoods 
implicitly assumes that the HH, HV, and VV 
polarized images are independent, which they are 
not; the procedure is taking a statistical liberty for 
the sake of computational simplicity. The 
resulting ML model characterizes its associated 
ground cover pseudo-class and is used — along 
with all the other ML models — to produce a 
map (section 2.5). Figure 3 shows how the color 

Figure 3: A sarMapper-generated HH-HV- 
VV false-color composite image of the 
Landes forest in France. The composite 
(shown here in grayscale — see the author's 
lU website for a color version) was generated 
from a JPL AirSAR P-band image. A human 
labels distinctly colored regions in the case of 
a fully-polarimetric radar (or shaded ones in 
the case of a single-polarization radar) 
denoting distinct backscattering properties in 
the image. These regions are shown above 
with "hooks" used to move/resize them. 
The regions are given color codings and 
pseudonyms (since the actual type of ground 
cover is generally not known a priori). The 
legend in the upper left comer of the figure 
shows these pseudonyms and color codings. 
sarMapper then leams a Tobit maximum- 
likelihood parametric model for each ground 
cover class and generates a color-coded 
ground cover map of the entire site and its 
surrounding areas. 

composite image looks when a number of 
pseudo-classes (note the names) have been 
identified and outlined. At this point, sarMapper 
is ready to generate Tobit ML parameter 
estimates for all the candidate pdfs, in order to 
determine the ML model for each pseudo-class. 

In the next two sections I will describe how Tobit 
parametric estimation works, how Tobit models 
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are used to generate ground cover pseudo-class 
maps, and how these pseudo-maps are converted 
into true ground cover maps. 

2.4 Tobit Estimation of Ground Cover 
Class-Conditional Densities with RF 
Envelope Backscatter Models 

In section 2.1 I described the parametric models 
that sarMapper uses to characterize the 
backscattered RF envelope and I hinted why 
sarMapper uses eight-bit data representations and 
real backscatter (amplitude) histograms, rather 
than 32-bit floating point data representations of 
complex backscatter (I explain this fully in 
section 2.6). In section 2.2 I explained that 
Rayleigh compression is used in order to control 
the amount of saturation in the SAR images 
synthesized during compression of the JPL 
AirSAR data. Because the backscatter contains 
at least 2 dB more dynamic range than can be 
encoded with an eight bit number, there is always 
some image saturation, which raises the 
following question: how does sarMapper 
develop good parametric models of regions that 
generate heavily saturated RF backscatter 
statistics? The answer: by using a Tobit (i.e., 
Tobin probit) maximum-likehhood parameter 
estimation procedure. 

A detailed explanation of Tobit estimation is well 
beyond the scope of this paper, so I will discuss it 
in very general terms. Tobit estimators were first 
developed in the 1940's by Hald [Hald-49], but 
the work went un-recognized. When it was 
developed independently and published almost a 
decade later by Tobin [Tobin-58], it was called 
the "Tobin-probit" model, a name that was later 
shortened to "Tobit model". Amemiya has 
written extensively on Tobit models in the 
econometrics context; his most general 
description can be found in [ch. 10, Amemiya- 
85]. I describe Tobit models in the RF 
backscatter context in [Hampshire-88,Hampshire- 
92]. Given a random variable a with a known 
pdf, the corresponding Tobit model is the pdf for 
the random variable a', which a becomes when it 
is measured by a saturating device. In its 
simplest form, a high-end saturating device 
produces a' by "clipping" a for all values above 

the saturation threshold a: 

«■ = { 
a,   a<ai: 

^,  otherwise (10) 

Audiophiles will recognize the clipped output of 
an over-driven amplifier as a saturated random 
variable. The audio mathematics are more 
complicated because the transition from linear to 
non-linear amplifier operation is gradual, not 
discontinuous, as it is in (10). 

When computer images are generated from SAR 
data, the backscattered RF envelope a is 
converted to a saturated, eight-bit-quantized 
envelope a'. Equation (10) is a reasonable 
description of the saturated RF envelope prior to 
eight-bit quantization. Rayleigh compression 
limits the amount of saturation in the whole 
image, but it does not limit the amount of 
saturation in localized regions of the image. As a 
result, some regions within an entire SAR scene 
are heavily saturated. Figure 4 shows the 
histogram for a heavily saturated region in a JPL 
AirSAR P-band image of the Raco, Michigan 
super site (HH-polarization). The left view 
shows the full histogram, and the right view 
shows the un-saturated part of the histogram. 
Thirty four percent of the region's pixels are 
saturated, so the histogram is dominated by the 
statistics of its most significant bin iQ(a') = 255, 
where Q(-) denotes the 8-bit quantization 
operator). This is clear in the left-hand view. If 
we ignore the most significant bin, we see that 
the un-saturated part of the histogram still has a 
recognizable shape. When a LogNormal Tobit 
estimator is applied to the full, saturated 
histogram, the resulting parametric model fits the 
data well (a plot of the model is superimposed on 
the histogram in the right-hand view). 
Mathematically, the Tobit estimator combines 
what can be inferred from both the un-saturated 
and saturated parts of the histogram to estimate 
the parametric model of the Mn-saturated rv a 
from its quantized, saturated counterpart Q(a'). 
In fact, Tobit estimators for the parametric 
models described in section 2.2 are efficient 
maximum-likelihood estimators (in the Cramer- 
Rao sense [Cramer-46,Rao-45]) [Hampshire-92]. 
They yield good models even when the amount 
of saturation is substantial (as it is in figure 4). 
Since sarMapper learns Tobit parametric models 
of the 8-bit quantized RF backscatter envelope to 
characterize each ground cover class, it is able to 
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Figure 4: Two views of one histogram, which characterizes the RF envolope (JPL AirSAR, P-band, 
HH-polarized) backscattered from a region in NASA's Raco, Michigan super site. The left-hand view 
shows the full histogram: about 34% of the HH image pixels in the region are saturated. The right 
hand view shows the un-saturated part of the histogram (i.e, the histogram for bins 0 - 254). About 
66% of the pixels fall in this range. The Tobit ML estimation procedure found that the histogram was 
best fit by the LogNormal pdf using the parameters listed below the display. Note that the model 
(superimposed on the histogram) fits the histogram well, despite the heavy amount of saturation. This 
illustrates two important facts: an 8-bit histogram of the RF backscatter envelop remains a sufficient 
statistic for inducing the parametric model of the backscatter despite substantial saturation; the Tobit 
estimator remains efficient (in the Cramer-Rao sense) under substantial saturation. A standard 
maximum-likelihood parameter estimation procedure for the LogNormal pdf would yield a very poor 
fit to this saturated data (see [Hampshire-92]). 

generate good maps from eight-bit amplitude 
images in near real-time. 

The histograms and box plots [Tukey-77] for 
each ground cover pseudo-class are generated by 
compiling statistics on the values of all the pixels 
belonging to that class: this is done for the three 
(fully-polarimetric radar) or single (single- 
polarization radar) 8-bit (i.e., 256-value) plane(s) 
in the sarMapper data vector. For fully- 
polarimetric radar these correspond to the 
Rayleigh-compressed HH (red), HV (green), and 

VV (blue) polarized data vectors for the image; 
for single-polarization the Rayleigh-compressed 
HH image is displayed in a single grayscale 
image plane. The ML Tobit model is then 
computed for each of the pseudo-classes as 
described in the previous section. The Tobit 
estimation procedures described in [Hampshire- 
88,Hampshire-92] govern the computations by 
which each model's parameters and log- 
likelihood are estimated. 

The      training      data      and      computational 
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Figure 5: Histograms, box plots [Tukey-77], and the resulting Tobit maximum-likelihood (ML) 
parametric models for four ground cover pseudo-classes in the Landes maritime pine forest P-band 
image (see figure 3). The box plots and list of Tobit ML models are arranged as follows for each 
pseudo-class: HH (top), HV (middle), VV (bottom). The histogram polarizations are not obvious in 
a grayscale version of this figure, but can be inferred from their corresponding box plots. In general 
the HH histogram is the right-most (i.e., the one with the largest mean/median/mode), the VV is the 
central one, and the HV is the left-most (i.e., the one with the smallest mean/median/mode) for each 
pseudo-class. The Tobit ML parametric model for each polarization is superimposed as a solid line 
on its associated histogram. Nakagami-M and LogNormal models are the common (although not 
exclusive) ML choice since they represent more general RF scattering paradigms. Note that the 
models typically fit the histograms well. The Tobit parametric estimators are robust, despite the 
samration that inevitably occurs when a radar signal is modeled with only 8-bit precision. 

requirements of sarMapper are reduced by about 
four orders of magnitude when the low- 
complexity eight-bit/real data representation I 
have described is used instead of the 32- 
bit/complex representation commonly used. 
Tobit models allow sarMapper to exploit the 
efficiencies afforded by the low-complexity data 
representation without significant reductions in 
map accuracy or precision.   Figures 5 illustrates 

why this is so: it shows the maximum-likelihood 
Tobit parametric models for four ground cover 
pseudo-classes found in the JPL AirSAR P-band 
image of the Landes maritime pine forest (figure 
3). In general, the Tobit models fit their class- 
conditional histograms well. When a pseudo- 
map is generated from these models and 
subsequently converted into a true ground cover 
map (using the procedure described in the next 
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section) figure 6 results. My initial comparison 
of this map with ground truth indicates an 
accuracy on the order of 80-90% for those areas 
in which ground truth is known, but the 
confidence bounds on this estimate are large 
since the amount of ground truth for the Landes 
site is limited. This result and the others like it 
suggest that sarMapper's use of the eight-bit/real 
representation and Tobit models is sufficient to 
generate high-accuracy maps in near real-time. 
Research plans for this calendar year include 
quantitative evaluation of this hypothesis. 

2.5 The Tobit Parametric Classifier & 
Map Generation 

The Tobit parametric classifier is nothing more 
than a set of Tobit models — one for each ground 
cover pseudo-class identified by the human user. 
The classifier generates a pseudo-map for the 
SAR site by computing the class-conditional log 
likelihoods for all the pixels in each n x n pixel 
region in the site (these regions are contiguous, 
and the user specifies the map resolution n): the 
class of the Tobit model with the largest log- 
likelihood is chosen as the class for the region. 
This is standard maximum-likelihood parametric 
classification. 

The resulting map is a pseudo-map in that the 
human user is assumed to have no prior 
information about the site's true ground cover. If 
ground truth exists (or can be inferred), the 
human user cross matches areas with known 
ground cover to the corresponding ground cover 
pseudo-classes. For cases in which the 
correspondence is one-to-one, the user can 
convert the pseudonym to the true ground cover 
name by simply re-typing the class name. For 
cases in which a pseudo-class represents more 
than one ground cover class, the user replaces the 
pseudonym with a list of all the true ground 
covers that the pseudo-class represents. Map 
colors can also be changed interactively. 

In my experiments, I generated a pseudo map and 
saved the labeled pseudo-class regions. When I 
obtained ground truth for the site, I loaded in the 
pseudo-map labeled regions and changed the 
names/colors to reflect the truth. I then saved this 
ground truth data in a second label file and used it 
to re-generate the ground cover map — this time 
with the correct ground cover names and, 
perhaps, more meaningful colors. Representative 
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Figure 6: A ground cover map generated 
from the fully polarimetric image in figure 3. 
Fourteen different ground cover classes are 
distinguishable; of these seven represent the 
same species of tree at various ages, and four 
represent clearcut areas in various stages of 
regrowth. A full-color copy of this map can 
be found on the author's lU website (see 
references). Man-made ground cover is 
denoted by white and light gray in the 
lower/left part of this slant-range map. 

maps are discussed further in section 3. 

2.6 Efficiency Of The Tobit Maximum- 
Likelihood Classifier 

Tobit maximum-likelihood mapping is both 
statistically efficient [Hampshire-92] and 
computationally efficient. Single-polarization 
JPL AirSAR images generally contain about 1.3 
million pixels, so a 3-plane sarMapper color 
composite image (HH-HV-VV polarizations) 
contains about 4 million pixels. Using a 32-bit 
representation for each of the three polarizations, 
we would require almost 32 megabytes (Mb) of 
storage for each composite image. The 
requirement is 32 Mb rather than 16 because each 
data point would be a complex number. Let's 
assume that there are 10 ground cover pseudo- 
classes associated with an image. Using the 32- 
bit floating point representation, we would need 
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to evaluate 40 million log-likelihood functions — 
one for each polarization of each pixel, given 
each ground cover pseudo class — to generate a 
high-resolution map. 

By using an 8-bit envelope (real) representation 
for each of the three image planes, we require 
only 4 Mb of storage per composite image. 
Moreover, if we have 10 ground cover pseudo- 

o 
classes, we need only evaluate 3x2 x 10 = 
7,680 unique log-likelihoods — one for each 
polarization of each possible pixel value, given 
each ground cover pseudo-class. sarMapper pre- 
computes these log-likelihoods and writes them 
into a look-up table prior to generating the map: 
when it actually generates the map, it does table 
look-up to get the log-likelihoods (which is about 
four orders of magnitude faster than actually 
computing them). This is why sarMapper can 
generate a high-resolution map with 15 ground 
cover pseudo-classes in about one minute on a 
current-technology laptop computer. 

Again, the Tobit parametric estimation procedure 
enables sarMapper to exploit the computational 
efficiency of the low-complexity representation 
with little or no reduction in map accuracy. In 
fact, map accuracy might even be better using the 
eight-bit/real representation instead of the 32- 
bit/complex one. This possibility exists owing to 
the Bellman's curse of dimensionality argument 
in section 2.1. Research plans for this calendar 
year include quantitative evaluation of this 
possibility. 

3 Preliminary Results 

Figures 8 and 9 are sarMapper-generated maps of 
NASA's Raco, Michigan supersite. They were 
generated from the JPL AirSAR C-band image in 
figure 7, using only the HH-polarization image 
(not shown) in order to approximate the process 
of generating maps from single-polarization X- 
band military imagery. 

I spent about five minutes studying the image in 
figure 7, selecting regions of vegetation, water, 
and tarmac, which I inferred from the image 
without any ground truth. I generated the low- 
resolution map of figure 8 in approximately five 
seconds, and the high-resolution map of figure 9 
in approximately 15 seconds. These two maps 
illustrate how sarMapper might be used to focus 
the attention of image analysts searching for 

\-^^ 

Figure?: An HH-HV-VV composite C-band 
JPL AirSAR image of NASA's Raco, 
Michigan supersite (shown here in grayscale 
— see the author's lU website for a color 
version). Note the airfield in the lower right 
quadrant of the image. 

man-made ground cover of potential tactical 
interest: figure 8 represents a first-stage focusing 
process that identifies ground cover that could be 
either water or tarmac. This very coarse map 
identifies a small number of regions in the map 
that warrant further analysis. Figure 9 is a 
higher-resolution of the site. Imagine that figure 
8 is used as a focus-of-attention (FOA) mask 
overlayed on figure 9. Detailed mapping and 
analysis of the masked regions (figure 9) would 
reveal the area containing the airfield with a 
small number of additional "false tarmac" areas. 
A simple automatic target recognition (ATR) 
post-processing of this image would recognize 
the "false tarmac" regions as water, and the 
airfield as the single area of potential tactical 
interest. 

Figure 10 shows another map of the Raco, 
Michigan super site, produced from a longer- 
wavelength JPL AirSAR P-band image. 
Knowing nothing about the site, I generated a 
pseudo-labeled HH-HV-VV color composite 
image   and   sent   it   to   Leland   Pierce   (U. 
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Figure 8: A coarse(300 m) resolution focus- 
of-attention map of the Race, Michigan site, 
generate from a C-band HH-polarized image. 
Darker regions on the map indicate areas of 
potential interest (water or tarmac; the latter 
is of tactical interest). High-resolution 
mapping and Automatic Target Recognition 
can be focussed on these areas. 

Figure 9: A fine(36 m) resolution map of the 
Raco, Michigan site, generate from the same 
C-band HH-polarized image used to generate 
the focus-of-attention map in figure 8. The 
darkest regions on the map indicate areas 
likely to be tarmac. The physical structure of 
the airfield, combined with its tarmac ground 
cover identify it as a legitimate target of 
interest. 

Michigan), who graciously sent me ground truth 
corresponding to the regions I had sent him. I 
compared his ground truth to the map I had 
generated from the same labels and derived the 
true ground cover classes (shown) from the 
original pseudo-classes (see the author's lU web 
site for a color version of this map). The map is 
generally in good agreement with the ground 
truth, with some notable exceptions I discuss 
below. Five pseudo-classes corresponded to 
clearcut/grassland, two to non-scattering ground 
cover (water and man-made materials), two to 
hardwoods (aspen, birch, and northern 
hardwoods), and four to conifers. The P-band 
image does not discriminate non-scattering 
ground cover (water and man-made materials) 
from scattering ground cover well. This is due in 
part to the steep SAR incidence angle (small look 
angle) at the top of the image, which generates 
strong HH backscatter from all ground cover. 
Also, the long wavelength generates some 
backscatter from undulations in water surfaces. 

The shorter wavelength in figure 7 generated 
substantially less backscatter from the water and 
man-made materials, so they were easier to 
distinguish from vegetation than they were in the 
P-band image. Water and asphalt/concrete 
should be more distinguishable in an X-band 
image. Nevertheless, figure 10 illustrates the 
utility of longer-wavelength radar for generating 
detailed wide-area tactical maps. A military 
commander planning an assault on the airfield in 
this image would know where to conduct 
paratrooper air-drops (in the fresh clear-cut areas 
to the north of the airfield), and would realize that 
an armored assault landed on the beach at the top 
of the map should not take a direct route towards 
the airfield. Such a route would require the 
armor column to penetrate a forest of old-growth 
hardwood trees (more than 20 meters tall). A less 
direct route eastward across the top of the map, 
and then south-southwest to the airfield would be 
better, since it would be through groves of aspen. 
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Figure 10: A detailed vegetation map of the 
Raco, Michigan site generated from a long- 
wavelength JPL AirSAR P-band image (see 
the author's lU web site for a color version of 
this map). The map indicates that sarMapper 
can distinguish subtle differences in ground 
cover, providing important tactical 
information to a commander who might, for 
example, be planning an assault on the 
airfield in the lower-right quadrant of the map 
(see text). 

birch, and small conifers, which would be easier 
to penetrate. 

4 Future Work 

Pre-processing will be added to sarMapper so 
that it can map imagery from these three sensors 
(in addition to the JPL AirSAR platform): 

• Lincoln Lab ADTS SAR (X-band) 
• MSTAR SAR (Sandia/DOE X-band) 
• NASA SIR-C/X-SAR (L, C, X-band) 

Four research questions will be addressed this 
year. These questions — all of them technical in 
nature — touch on the speed, accuracy, and 
robustness of sarMapper's mapping and focus-of- 
attention capabilities: 

• Can high-accuracy maps be generated from 8- 
bit X-band backscatter envelope data? Is the 

accuracy of these maps significantly better or 
worse than the accuracy of maps generated 
from the same imagery using standard 
maximum-likelihood techniques on floating- 
point representations of complex RF 
backscatter? 

• Is semi-supervised learning a statistically 
consistent paradigm? 

• Can man-made ground cover be identified 
consistently in SAR imagery and pseudo- 
maps without ground truth? 

• How can a robust focus-of-attention algorithm 
be derived for real-time laptop 
implementation? 

4.1 Evaluation 

Pursuant to research efforts to address them, the 
research questions listed in the previous section 
will be answered by objective evaluation of 
sarMapper using SAR data from a wide variety of 
sensors. 

Speed: Average semi-supervised learning time 
will be assessed with human-computer timing 
trials. Map generation times will be tabulated for 
a corpus of evaluation images. 
Accuracy: Map accuracy will be assessed using 
imagery for which ground truth is known or can 
be inferred. Accuracy will be quoted according 
to general methods of statistical inference/pattern 
recognition, with 95% confidence bounds and 
ground cover confusion matrices derived from 
test images (or test areas within an image) not 
used during semi-supervised learning. 
FOA: sarMapper's focus-of-attention algorithm 
will be assessed according to general methods for 
evaluating detection algorithms; namely, receiver 
operator characteristic (ROC) curves will be 
generated and evaluated for FOA performed on 
test imagery/maps not used for semi-supervised 
learning. 
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Abstract 

A method for change detection using a com- 
bination of view-based and model-based repre- 
sentations is presented. Coarse geometric mod- 
els are enhanced with appearance-based infor- 
mation using a small number of training im- 
ages, resulting in a hybrid representation that 
maps local appearance characteristics onto ob- 
ject subparts. This is accomplished by matching 
segmented features in a training set to model 
edges, and generalizing this information over 
multiple images using evidential combination. 
The hybrid representation provides a more real- 
istic prediction of object appearance than geom- 
etry alone, thereby improving the performance 
of change detection and pose adjustment. The 
learning behavior of the system is studied as a 
function of the number and characteristics of 
the images in the training set. Results are pre- 
sented showing the level of improvement of sys- 
tem performance in a change detection task as 
images are added to the training set, in compar- 
ison with using a purely geometric approach. 

1     Introduction 

Recently view-based object recognition systems 
have demonstrated significant capabilities in 
recognizing complex 3D objects in simple scenes 
[6,  9,  2].     These systems operate  by  learn- 

ing appearance characteristics of objects from 
training imagery without recovering geometry. 
This data-driven approach allows view-based 
systems to learn visually complex objects with 
many surface features, but often requires an ex- 
tensive training set spanning the range of all pa- 
rameters affecting object appearance. In effect, 
the segmentation problem is circumvented by 
enumerating many possible imaging conditions 
in advance. Also, figure-ground discrimination 
and occlusions can cause difficulties because fea- 
tures are computed over the complete object or 
image. 

In previous work [4, 5] we describe an alterna- 
tive approach to object representation, called 
segmentation modeling, that uses learning from 
training images, but is also model-based. The 
learning paradigm is designed to incrementally 
improve its performance as training images are 
added, beginning with no training images at 
all. The system also relies on coarse 3D geo- 
metric models of objects, such as CAD mod- 
els, but the objects themselves may have com- 
plex surface features that would cause difficul- 
ties for most model-based methods because the 
projected model does not effectively match the 
objects' true appearance. The geometric model 
provides a spatial framework for localizing these 
surface appearance characteristics learned from 
training data,  and it also allows the system 
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to operate successfully with very little training 

data. 

As more training data is given to the system, 
the accuracy of the model should improve. To 
measure this quantitatively, the hybrid repre- 
sentation has been incorporated into a larger 
change detection system that attempts to iden- 
tify significant changes in a scene over time. Im- 
ages of the scene are taken periodically, from 
arbitrary viewpoints and with arbitrary illumi- 
nation angles. Currently, the change detection 
system is focused on detecting the disappear- 
ance or removal of objects from the scene. Ob- 
jects of interest are modeled with coarse CAD 

models (usually by hand), and these are used to 
detect the objects in later images. The hybrid 
model representation is well-suited to this do- 
main, since images are input only periodically, 
and the wide range of imaging conditions pre- 
cludes the use of pixel-level comparison. Re- 
sults showing how our representation improves 
performance are discussed in Section 4. 

Combining model-based and view-based repre- 
sentations has significant advantages over ei- 
ther method alone, especially when the scene 
is complex. Using only geometry to predict 
object appearance leads to significant perfor- 
mance degradation when scene or imaging con- 
ditions give rise to poor segmentations. How- 
ever, these segmentation behaviors caused by 
sensor imaging effects, surface albedoes, and un- 
modeled surface features are accounted for im- 
plicitly through the training imagery. Further- 
more, these appearance characteristics are lo- 
calized to specific object features. Other recent 
work [7, 2, 10] has concentrated on localization, 
since this allows geometric indexing, robustness 
under occlusion and figure-ground discrimina- 
tion. However, Ikeuchi's system is specialized 
to range data, and the other systems do not use 
3D models, leading to the need for prototypi- 
cal views and relatively large training sets. By 
using the 3D model to provide geometric con- 
straints, we avoid these difficulties under many 
circumstances. 

The formulation of segmentation models is 
briefly reviewed in the next section.    Section 

projected model edge 

extracted edge 

Figure 1: The correlation of an extracted edge 
to a projected model edge. 

3 describes the change detection system, and 
how segmentation models are incorporated into 
it. Section 4 presents results and analysis com- 

paring change detection with and without seg- 
mentation models created over a range of image 

training sets. The results indicate that segmen- 
tation models improve change detection perfor- 

mance, particularly on difficult problems. 

2    Segmentation Models 

In previous work [5, 4], we describe an approach 
to modeling segmentations of geometric repre- 
sentations. This section summarizes that work, 
examining the specific case of segmentations of 
the edges of polyhedral object representations. 

Segmentation models are constructed by associ- 
ating segmentation information from a training 
set with projected geometric features. This re- 
quires that geometric models of objects in the 
scene are available, and that the images used in 
construction are registered (calibrated) to the 
scene. 

When a registered image is presented to the 
system, the first stage of processing is to ex- 
tract salient lines from the image. We use a line 
finder built upon the Canny edge detector [1, 8] 
to extract segmentation features. The edges of 
modeled objects are projected onto the image, 
and a linear correlation technique is applied to 
associate projected object edges and extracted 
segmentation edges based on distance and ori- 
entation, as shown in Figure 1. If c?i -|- ^2 < Dj 
and 0 < 0T, where DT and 6T are fixed thresh- 
olds, then the extracted edge is determined to 
be correlated to the object edge. 
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The correlated edges are then used to update 
the segmentation models of the mode! edges. 
Each model edge has its own Object Edge 
Segmentation Model (OESM). This may be 
thought of as a statistical generalization of ob- 
served edge characteristics, or attributes, along 
an object edge. Information computed from im- 
age segmentations is mapped into the OESM ac- 
cording to the projection of the object edge into 
the image. Currently, the attributes included 
in the segmentation models are correlation and 
gradient magnitude. The correlation attribute 
is the proportion of the object edge covered by 
observed edges, and the gradient is measured by 
taking the difference of the average intensities of 
rectangular regions on either side of the edge. 

The segmentation model is defined in terms of 
edge attributes. For the purposes of this pa- 
per, we assume that viewpoint and illumination 
orientation, termed the imaging parameters, are 
the dominant factors causing differences in seg- 
mentations. Each segmentation model is de- 
fined as a mapping M from imaging parame- 
ters into segmentation values for an object edge. 
If the segmentation values are represented as a 
vector A of feature attributes (or distributions 
over each attribute), then the mapping M is de- 
fined as M : S X V -> A where V and S are 
imaging parameters (viewpoint and solar orien- 
tation) affecting the segmentation. In the case 
of the OESM, A is defined to be (c, g)^ where c 
is the correlation attribute and g is the gradient 
attribute. S is a vector, described by two an- 
gles 0 and ^, and V is also a vector, described 
by {ay,(iy). 

The OESM may be simplified by reducing 
the partitioning of the (S, V) space based on 
whether the edge is interior or occluding relative 
to viewpoint and illumination [4], as shown in 
Figure 2. For each edge, this leads to twelve par- 
titions of the (S, V) space, or imaging modes; 3 
possibilities for viewpoint (invisible edges are ig- 
nored), and 4 for illumination. Separate models 
are maintained for each mode. 

The attributes computed from observed edges 
are associated to the corresponding object edge 
by partitioning the object edge into equally- 
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Figure 2: Prototypical imaging conditions for 
four common imaging modes. The edge of in- 
terest is enhanced and labeled E. 

sized discrete intervals, each containing its own 
attribute vector. This provides spatial localiza- 
tion of attribute values within an object edge. 

Segmentation models are learned over a set 
of training imagery containing representative 
views and scene conditions. The technique used 
to build segmentation models should perform 
well on small sets of training images and should 
allow incremental updates as new images are 
acquired. Using statistical methods for devel- 
oping segmentation models has the advantage 
that segmentation errors and spurious, atypi- 
cal segmentations tend to be filtered out over a 
set of imagery. Because segmentation informa- 
tion is combined across multiple images, there is 
very little dependence on specific parameter val- 
ues used in segmentations - the same parameter 
values can be used on every image in the train- 
ing set. Also, dynamic construction allows ob- 
jects with arbitrarily complex surface features 
to be modeled, providing robustness on images 
of real buildings in outdoor settings. 

Given an image / taken from viewpoint V/ with 
a single illumination source at orientation S/, 
the segmentation model M for feature / is up- 
dated as follows. Let AM be the representa- 
tive attribute vector corresponding to V/ and 
S/. The attribute vector Aj for image / is com- 
puted, and used to update AM'- 

AM = /^{AM,AI) 

where \[AM,AI) is a function defined by the 
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learning paradigm. If / is the first image in the 
training set, then AM is initialized to Aj. 

The A function used to update the OESM is a 
simple Bayesian estimator (with uniform prior), 

i 1 

where i is the number of images used to build 

AM, not including the new image /. This func- 
tion was chosen over other A functions for a 
number of reasons. A Kalman filter approach is 
sensitive to the initial image used to create the 
segmentation model, giving it an inappropriate 
importance. Over time this effect disappears, 
but within the data sets we used (40 images) 
the influence of a poor initial image was still 
apparent. The median was also tested, but it 
proved to be less informative because the corre- 
lation attribute tends to be exactly zero or one 
in most edge intervals derived from /. Thus the 
correlation profiles contained mostly zeroes and 
ones, which do not provide accurate estimates 
of probabilities. 

The complete process for building segmenta- 
tion models on object edges is outlined in Fig- 
ure 3. The combined correlation attribute is 
computed using the geometry of the extracted 
edges. When multiple segmentation edges are 
correlated to a common object edge, their cor- 
relation intervals may overlap, or there may 
be gaps in coverage of the object edge. The 
combined correlation attribute is computed by 
merging the correlation intervals of all of the 
extracted edges correlated to one object edge. 
Similarly, the combined gradient attribute is 
computed by taking the correlation-weighted 
average of the gradient values of any overlap- 
ping extracted edges. 

3    Using Segmentation Models 

Segmentation models provide a formulation for 
estimating segmentation behavior based on pre- 
vious imagery. These estimates can then be 
used by higher-level systems to derive predic- 
tions of object appearance in new images that 
are more accurate than using only object geom- 
etry. Geometry in combination with prior seg- 

1. For each image / in T, perform line extraction yield- 
ing a set of extracted segments Sx. 

2. Determine the imaging mode q beised on the view- 
point and illumination of /. 

3. For each object edge Eo, find the set of segments So, 
So C Sx, that are correlated with the projection of 
Eo in the image plane of /. 

4. For each segment in So, compute the gradient at- 
tribute. 

5. For each interval i in Eo, compute the combined cor- 
relation attribute c; across So- 

6. Using the combined correlation attribute, for each i 
compute the combined gradient attribute g, across 
So. 

7. For each interval i in Eo, update each attribute in 
mode q of Eo using the A function: 

yv 1 
Ec,q{l, C) =  J^-^Eo,q{t, C) + 

Eo.qil,9) - 

+ 
N 

■Eo,q{i,g) + 

N+l 

1 

Ci 

where Eo,q(i,g) is the value of the i'   interval of the 
gradient attribute of edge Eo in mode q. 

Figure 3: The steps in constructing edge seg- 
mentation models. The training set T contains 
m images showing the same object(s) without 
physical change, but from a variety of view- 
points and illumination conditions. 

mentation information should lead to improved 
performance in many model-based vision algo- 
rithms [10]. 

To investigate how segmentation models could 
be used effectively to improve the performance 
of higher-level vision systems, we have devel- 
oped a change detection system that identifies 
changes in time-sequenced images (not video) of 
man-made structures such as buildings, roads, 
construction areas, etc. in outdoor scenes. 
In this scenario, images of a fixed location 
are taken from aerial sensors over a period of 
time. Buildings and structures may be cre- 
ated, destroyed or modified; more frequently, 
the appearance of structures varies considerably 
based on weather, season and imaging parame- 
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Figure 4: Change detection process flow. 

ters. The goal of our system is to identify true 
changes in structures while ruling out apparent 
differences due to non-geometric effects. 

The change detection system architecture is 
shown in Figure 4. Initially, segmentation mod- 
els are created using the model geometry of 
structures in a scene and registered (calibrated) 
training images of the scene. When a new image 
of the scene is presented to the system, it is reg- 
istered to the geometric models or other scene 
features using manual or automatic techniques. 
Image registration itself is a well-studied area, 
and is beyond the scope of this work. 

Many existing image registration algorithms, 
manual or otherwise, typically result in at least 
2 pixels of error because of unmodeled sensor 
distortions and noise. To compensate for this, 
the system performs a local 2D translational 
pose refinement step that adjusts the position 
of a single object model with respect to the 
image. Described in previous work [5, 3], the 
pose adjustment step uses a hierarchical ap- 

proach based on relaxation of matching toler- 
ances between the image and the object model. 
A bounded search area is defined locally around 
the initial object position, and this area is 
scanned in the image at increasing levels of spa- 
tial resolution and decreasing levels of match 
tolerance. At each level a fixed number of the 
points in the area yielding the highest match 
scores are kept, and are explored at the next 
level of resolution. The object position cor- 
responding to the highest match score at the 
finest spatial resolution (usually one pixel) is 
returned. 

The next stage of the algorithm, match compu- 
tation, is a virtual operation; the pose refine- 
ment stage actually computes the match score 
that is the output change measure. The same 
matching algorithm or metric between image 
and object model is used in pose refinement 
and change detection, so that the optimal value 
found in pose refinement is considered to be the 
best estimate for the change measure. 

The match metric is computed using the seg- 
mentation model. Our previous work demon- 
strated the utility of using the segmentation 
model over pure model geometry for pose ad- 
justment [5], and we have continued to develop 
this approach. 

The model matching procedure is similar to that 
used in segmentation model construction. An 
image of the scene is segmented and the ap- 
propriate modes of each object edge (i.e., which 
segmentation model to use) are computed based 
on prior knowledge of the viewpoint and illu- 
mination directions. Since the search does not 
compute object rotations, these modes remain 
constant throughout the search. The segmented 
lines are correlated with the projected model 
edges for a given model position. Edge at- 
tributes are computed from the image for each 
visible model edge (the edge profile), and a 
match score between the single-image attributes 
and the prior edge segmentation models is cal- 
culated. The match score is then used to guide 
the hierarchical search by ranking position hy- 
potheses. 
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Defined over an object model with multiple 
edges, the match metric ^o has three primary 
components: 

KG 

MO 
Ef^l I. 

n K+Kc -tJ'G + 
Ef=l h 

if^cf^g) 
1/2 

fiG is purely geometric term that accounts for 
object edges that do not have any training data 
in the current imaging mode. It is the length- 
weighted sum of the geometric match scores of 
its visible edges: 

fJ-G 
E^ km, 
ES h 

where KQ is the number of visible object edges 

without training data, li is the length of the pro- 
jection of object edge i, and m,- is the propor- 
tion of edge i that is correlated to any extracted 
edge. 

The second term involves Hc and ^g, which are 
derived from the two segmentation model at- 
tributes, correlation and gradient, fic is defined 
over all edges of the object: 

/^c 

EJLi/,Etimin(P,(0,5,(0j 
Ef=i/iEr=i^.(0 

where K is the number of visible object edges 
with training data, Ij is the length of the projec- 
tion of object edge j, n is the number of intervals 
in the edge model, Pj{i) is the correlation value 
of the i*^ interval of the edge model of j, and 
Sj{i) is the correlation value of the i^^ interval 
of the profile oi j extracted from the new image. 

A graphic representation of fic is shown in Fig- 
ure 5 for a single object edge. fXc is actually 
computed using all model edges visible in the 
image to approximate a joint density function 
between the intervals of all object edges. 

fj,g is computed using the direction of the gra- 
dient attribute. The gradient direction of an 
object edge encodes the relative albedoes of the 
surfaces bordering the edge, and can often be 
consistently extracted from images in the same 
mode. fXg is defined to be the ratio of the num- 
ber A of correlated intervals that have the cor- 
rect gradient direction to the number B of all 

Figure 5: A graphic depiction of the correla- 
tion match metric fic- The horizontal axis rep- 
resents the segmentation model intervals along 
the object edge, and the vertical axis repre- 
sents the probability of an interval being cor- 

related to a segmentation feature. An exam- 
ple extracted profile from one image might con- 

sist of the top straight segments, corresponding 
to two segmented lines correlated to the object 

edge, fic is defined to be the ratio of the areas of 
the shaded regions to the area under the entire 
model profile curve. 

correlated intervals: 

Mp 
Eii / 3 Bj 

Ej=i h 

The complete metric /IQ is the weighted sum 
of the two terms. The weighting function is the 
length of the object edges that do (fic and fig) or 
do not {fio) have training data compared to the 
total length of all object edges. The attribute 
metrics fic and fig are multipled together be- 
cause fig is dependent on fic', only intervals con- 
tributing to fic are used to compute fig. The 
square root of the attribute term is used to nor- 
malize it with fiG- 

4    Learning Analysis 

Every learning-based system is dependent on its 
training data. However, by combining training 
images with known geometry we hope to reduce 
the burden of each representation while retain- 
ing their advantages. We desire to produce a 
system that performs well on very small train- 
ing sets that are highly unconstrained, i.e. no 
assumptions are made about the distribution of 
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viewpoints or illumination angles in the training 
images. 

To assess the effectiveness of our representation, 
we have compared the hybrid system to one us- 
ing geometry alone on the same change detec- 
tion problems. The images in Figure 7 show 
four aerial views of an example scene contain- 
ing a difficult building obscured by trees. The 
building has a flat white roof, but it is occluded 
by tall trees and their shadows. We have a data 

set containing 24 images of this scene, which 
includes a number of other buildings of vary- 
ing detectability. Four more of these images are 
shown in Figure 8; note that in three of these 
images the object model is close to the image, 
but further pose refinement is necessary to align 
the model edges with the image. 

Using six images for training on the displayed 
building model, the results of the geometric 
and hybrid change detection systems are plot- 
ted in Figure 6. The training images were se- 
lected temporally, as they would be in a true 
change detection framework; the 24 images were 
taken at random intervals over a period of four 
months, and the training images are the first six 
of these. Hence, there is no attempt at optimiz- 
ing the training data to span the viewing sphere 
or to meet any other criterion. Two of the six 
training images are the upper right and lower 
left images in Figure 8. 

In Figure 6, the dashed line connects the change 
levels computed by using geometry alone (1 — 
//G), while the solid line plots the change levels 
computed using the segmentation model metric 
(1 - Ho)- For the segmentation model case, the 
scores on the training images (1 - 6) are plotted 
to show the best expected performance given 
the training data. All images except /12 show 
the building; for /12 the building was shifted to 
another part of the scene to simulate a change 
in the building (/12 is the bottom right image 
in Figure 8). Note that the peak in change 
level at I12 is nearly equal for both cases, and 
is clearly more distinctive in the segmentation 
model case. 

The data shows that, in this case, the train- 

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Figure 6: Image-by-image comparison of the 
match level over a set of images. The images are 
plotted on the horizontal axis; each number rep- 
resents a different image /, of the object. The 
vertical axis is 1.0 - /i, or the computed change 
level. The dashed line represents geometry only, 
while the solid line shows the improved perfor- 
mance from using the segmentation model. 

ing data improves performance significantly on 
the images without change while producing a 
change level nearly equal to the purely geomet- 
ric model on the image showing change. Note 
that the absolute values of the change levels are 
not important - it is the separation between 
change and no-change image results that mat- 
ter. 

To assess the system's learning capabilities on 
small training sets, we analyzed its performance 
as the number of training images varies from 
0 to 10 (Figure 7 shows four of these training 
images). After training on the building model 
shown, the system was tested at each number 
of training images on the 14 images not in- 
cluded in any training set. Four of these test 
images are shown in Figure 8 (three of these 
show no change), and four more images showing 
change are in Figure 9. The 14 change images 
were "created" by shifting the building model 
in each of the no-change images. The building 
was placed by hand intentionally close to other 
buildings and distractors to increase the diffi- 
culty of detecting change.  No system parame- 
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Figure 7: Four of ten training images used in computing the learning curves. The building model 
is shown overlaid on the image in the bottom right pane. 

ters (including segmentation parameters) were 
adjusted specifically for or during the experi- 
ments. 

The results are shown in Figure 10. This graph 
shows the average level of change computed for 
three cases - on training images, on test images 
showing no change, and on test images show- 
ing change - as the number of training images 
is increased. For the cases showing no change 
(respectively change), the desired score is 0 (re- 
spectively 1). Ideally, the change test curve 
should converge to 1 and the no-change test 
curve should converge to 0 as more images are 
added to the training set. The critical metric on 
the graph is the level of discrimination between 
change and no change, which corresponds to the 
separation of their curves (i.e. their ratio). 

This divergence is apparent in the graph, espe- 
cially as the first few training images are added. 
The case of 0 training images corresponds to us- 
ing only model geometry; in this case, the dis- 
crimination between the change and no-change 
images is negligible (.05). With one training 
image, the difference increases to .14, and it 

increases to .17 at 10 training images. How- 
ever, the ratio of the change to no-change val- 
ues increases steadily and reaches a maximum 
of 1.6 at iO training images. Thus, on this data 
set, the 'nsleni demonstrates rapid improve- 
ment when using small numbers of training im- 
ages. 

As expected, the training data produces the 
best performance. The test images closely fol- 
low the training data, however, indicating that 
the segmentation model has learned character- 
istics of the training set that are also found in 
the test set. On the test images showing change, 
the level of change score decreases as more im- 
ages are added to the training set because of the 
increased generality of the model. The model 
generality can be measured by the performance 
on its training data - if the level of change is 
nonzero, then there must be a difference be- 
tween training images in the same mode. Thus 
this value measures the variance in the training 
data in a quantitative, task-based way that pro- 
vides direct feedback on expected learning per- 
formance. This value inherently measures the 
difficulty of visually interpreting the scene in a 
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Figure 8:   Three images showing no change, and one showing "simulated" change by building 
displacement (lower right). The building model is overlaid in white. 

W^A^^I^Art^tft/inAtfUVWWW^WI^rtrtrtAA^Arf^^^^^VtfW^^^^rf^^^^VM/M^^^^^tf^^VWWV^MVWWWtfWW 

Figure 9: Four images showing change (lower right). The building model was placed near similar 
buildings to act as distractors. 

573 



model-based way. 

As a means of assessing which imaging con- 
ditions contribute to the model variance, the 
learning curves were recomputed without parti- 
tioning on illumination angle. In other words, 
only viewpoint was used to divide the images 
into imaging modes. The resulting data is 
shown in Figure 11. 

The results are surprising. The system perfor- 
mance actually improves when illumination is 
not used as a means of discriminating between 
images (the ratio of change to no-change in- 

creases to 1.8 at 10 training images). The model 
variance is higher, since the metric values on the 

training images are higher, but the change val- 
ues are also higher. This phenomenon could be 
caused by the reduction in the total number of 
imaging modes. Since only viewpoint is used, 
there are three imaging modes, not twelve, and 
there is a corresponding increase in the num- 
ber of images in each mode. This increases the 
variance of each mode, but introduces a greater 
range of attribute values that seem to corre- 
spond better to the test data. 

It is worth mentioning that in many of 
the change images, the pose adjustment step 
aligned the building model with the distractor 
building, since the distractor is locally the high- 
est match. Despite this, the system was still 
able to produce a low match score because the 
distractor building does not have the same ap- 
pearance characteristics as the source building. 

It is also worth noting that the variance of the 
level of change scores impacts system perfor- 
mance. In the experiments, the standard devi- 
ations of these scores typically did not overlap, 
i.e. the average no-change value plus one s.d. 
was less than the change value minus one s.d. 

5    Conclusion 

This paper describes how our method for inte- 
grating view-based and model-based representa- 
tions is used in a higher-level system perform- 
ing change detection. By mapping segmenta- 
tion features from small sets of training images 

z 
<0.8 
o 

'0.6 
^ 

0.4 

go.2 

^^ 
Test Images, Change 

\^ ^Test Images, No Change 

Training Images, No cKange"' 

123456789  10 

NUMBER OF TRAINING IMAGES 

Figure 10: The learning curve using both view- 
point and illumination to partition the imaging 
modes. 

onto 3D geometric models, the system provides 
data-driven prior information to improve ap- 
pearance prediction. Model geometry is used to 
constrain the large number of parameters affect- 
ing segmentation behavior, so that performance 
improvement is apparent on small training sets. 
Segmentation models also yield a measure of the 
difficulty of scene interpretation, which is useful 
for predicting system performance. 

By merging appearance characteristics and 3D 
geometry, the hybrid representation enhances 
model matching in domains where prior 3D 
models are available. The work presented here 
is necessarily limited in scope, but the tech- 
niques and principles described could be ex- 
panded and generalized to incorporate many 
problem domains, such as 3D object recognition 
and image registration. 

There are many open issues in segmentation 
modeling that we are pursuing. The edge- 
based models described here can be general- 
ized to two-dimensional, surface-based models 
for richer scene description. Additional edge 
attributes could provide useful information, and 
the evidential framework should be expanded to 
include edge, face and object information in a 
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Figure 11: The learning curve using only view- 
point to partition the imaging modes. 

common representation. Such a representation 
could then be applied to study the effects of 
imaging parameters, interpolation across imag- 
ing modes, and other interesting problems. 
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Abstract 

Within the framework of the RADIUS 
project, the University of Maryland at Col- 
lege Park hcis been developing algorithms 
for the detection of prespecified vehicles in 
designated areas as well as the detection 
of global vehicle coniigurations in aerial 
imagery. These algorithms are character- 
ized by several parameters which present 
problems when unsupervised batch-mode 
operation on a large set of images is re- 
quired. In this paper, we present decision- 
theoretic approaches for the off-line train- 
ing of most parameters. The remaining pa- 
rameters are tuned using automatic cali- 
bration techniques. These techniques use 
control patches present in the site model 
which allow the derivation of empirical 
ROC curves from which optimal operating 
points are chosen. Different optimality cri- 
teria are presented. Several examples from 
the RADIUS dataset are provided. 

1    Introduction 

Context-based aerial image understanding (AIU) 
has been studied quite extensively recently; the ap- 
proach is often referred to as "site-model-based im- 
age exploitation", e.g. [l; 5]. Such an approach is 
very well suited for routine AIU work such as de- 
tection and counting of vehicles and global vehicle 
configurations, because it enables discrimination be- 
tween irrelevant changes {e.g. illumination changes, 
seasonal variations, etc.) and actual changes. The 
approach consists of maintaining an abstraction of 
a site, referred to as the site model. The site model 

The support of the Defense Advanced Research 
Projects Agency (ARPA Order No. 8979) and the U.S. 
Army Engineer Topographic Center under Contract 
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consists of a coordinate system and various features 
which are models of the objects that the site con- 
sists oi{e.g. parking lots, roads, buildings, etc.). A 
typical AIU task would be to detect changes in a 
newly acquired image of the site. Note that the new 
image may have been taken with a different illumi- 
nation level or in a different season from the earlier 
images. Prior to doing any processing on the image, 
it is necessary to register [4] the image with the site, 
which means calculating the image's transformation 
with respect to the site's frame of reference. In other 
words, registration provides a mapping from features 
in the site, which are image-independent, to the im- 
age in question. This enables running the detection 
algorithms on selected portions of the image, for ex- 
ample, parking lots or other areas of interest. The 
detection algorithms, however, depend upon several 
parameters as input. The optimal choice of these pa- 
rameters can be very image-dependent, and clearly 
for reasonably accurate results one cannot use the 
same parameters for every image. Optimal choice 
of these parameters appears to need extensive input 
from the image analyst on a per-image basis. This 
presents an obvious problem as regards the applica- 
tion of these algorithms in batch {i.e. unsupervised) 
modes over large image databases. 
In this paper, we address various issues involved in 
solving the above problem. We consider limiting, 
or completely eliminating, the number of tuning pa- 
rameters using the following strategy: Preliminary 
sensitivity analysis is used to identify those param- 
eters to which the results of the algorithm are most 
sensitive. A compound measure of sensitivity is cho- 
sen as the expected risk function, computed empiri- 
cally over a set of training images. The parameters 
to which the algorithm is least sensitive are "frozen" 
to their best values (off-line parameter optimiza- 
tion). We provide "on-line" training tools for the 
remaining parameters upon which the performance 
depends the most. For context-based image under- 
standing systems, the availability of a site model is 
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a powerful asset for designing automatic (on-line) 
parameter calibration tools. For on-line parameter 
calibration, we exploit control patches present in the 
site model, which represent fixed areas of a given site 
and are used for automatic parameter tuning. This 
approach is explained in detail in Section 4. The ap- 
proaches used for parameter training and optimiza- 
tion are set in a classic hypothesis-testing framework 
using Bayesian and Neyman-Pearson strategies. 

A related issue is the assessment of the sensitivity of 
the algorithms to non-image-dependent parameters, 
for example, to model or template parameters. This 
problem is important for site-model-based exploita- 
tion; some results are reported in Section 6. 

2    Brief Outline of Algorithms 

Vehicle Detection and Counting 

The aim of this module [3] is to reliably detect and 
count vehicles in aerial images. An example of de- 
tection in and around an intersection is shown in 
Figure 1 and another example on a road is shown in 
Figure 2. 

Figure 1: Vehicle detection near an intersection. 

The vehicle detection process consists of two stages, 
an edge detection stage and a testing stage. The 
edge detection stage uses the Canny edge operator 
[2]. This stage involves specification of two thresh- 
olds, referred to as the high and low thresholds, and 
a mask size for convolving the image with the Canny 
operator.   The testing phase operates on the edge 

data generated from the edge detection phase. A 
generalized Hough transform of the image is calcu- 
lated using the known shape and size (user-specified) 
of the sample vehicle provided, and a vote for pos- 
sible centers of vehicles is thus calculated for each 
pixel in the image. A hypothesis is made for a vehi- 
cle at each such candidate center, and the edge map 
is examined. The quality of the match between the 
edge map and the candidate vehicle outline is judged 
using a threshold referred to as the overlap thresh- 
old. If the degree of overlap exceeds the threshold, 
the presence of a vehicle is declared. This is followed 
by a suite of filters to check consistency. Thus, the 
overall vehicle detection process involves the specifi- 
cation of four parameters—the Canny mask size, low 
threshold, high threshold, and overlap threshold— 
and the model vehicle. 

Formation Detection 

The purpose of this module [3] is to detect vehicle 
formations in images. The formation detection pro- 
cess uses spectral analysis; spectral compliance win- 
dows are inferred from model information to search 
for impulsive components representing periodic ob- 
ject configurations such as convoys on roads or ve- 
hicles in parking lots. We have designed a detec- 
tion rule on the observation space O which consists 
of the absolute spectrum magnitude associated with 
the impulsive component and its value relative to 
the median spectrum magnitude. The rule tests the 
dominant spectral component within a compliance 
window at the base and corresponding harmonic fre- 
quencies and takes into account the normalized spec- 
trum magnitude Ka associated with the maximum 
peak at /* within a compliance window and the ratio 
of the spectrum magnitude to the median A'med of 
this magnitude computed over the compliance win- 
dow, denoted by Kr- Thus, the parameters to be 
optimized are Ka and AV- 

3    Detection and Training 

On-line parameter training and off-line parameter 
optimization are set in a hypothesis-testing frame- 
work. Let Ho and Hi correspond to the two hy- 
potheses (absent/present). 

Hi : P(Y|i) = PiiY) 

The acceptance and rejection regions are designed 
over some observation space O. The observation 
vector Y in the case of the vehicle detector algo- 
rithm is simply the overlap value. In the case of the 
formation detection algorithm, it is composed of the 
two spectral measures described in Section 2. 

A decision rule d is simply given by d{Y) = I-n{Y), 
with J-ji the indicator function on the acceptance re- 
gion TZ. The acceptance region admits a parametric 
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Figure 2: Vehicle detection on a road. 

form 

71 = 7^v = {Y such that 6(Y; V) > 0} 

where the form of the critical/acceptance regions can 
be inferred from the distributions satisfied by the 
observation vector under either hypothesis. The de- 
sign of tlae detection rule is set up according to the 
following two strategies: 

• (A) Bayesian strategy: 
Find V* = aTgmin{E{R{d)}). This strat- 
egy consists of minimizing the expected risk 
a.vgmin{E{R{d)}) [9] where the cost factors Cja 
and Cnd are chosen to balance the cost associ- 

ated with a false alarm and a non-detection: 

E{Rid)} = CndPoi'Jlv)iro + C}aPi{nv')^i 

where Po{R) and Pi{TZv'') are the false alarm 
and non-detection probabilities, and TT,; are the 
priors. 

• (B) Neyman-Pearson strategy: 
Find V* = argmax(Pi(_R)) subject to Po(^) < 
a. 

4    Vehicle Detector Optimization 

Off-line Parameter Training 
The relative impact of the parameters involved was 
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studied by carrying out experiments on images with 
known ground truths. Specifically, the empirical ex- 
pected risk E{R{d)} including both false alarm and 
non-detection rates was computed for the Canny 
mask size, the Canny thresholds and the overlap 
threshold. The results for the Canny mask size, the 
two Canny thresholds and the overlap threshold are 
shown in Figures 3, 4 and 5 respectively. 
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Figure 3: Vehicle detection: expected risk as a func- 
tion of Canny mask size. 
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Figure 5: Vehicle detection: Expected risk as a func- 
tion of overlap threshold. 

is equivalent to a minimum probability error rule. 
The empirical value of E{R{d)} is computed over 
the range of Canny parameters as a function of the 
Canny thresholds and mask size. The Canny pa- 
rameters are set off-line to the values minimizing the 
expected risk. These values were found to be 5 for 
the mask size and (200,400) for the minimum and 
maximum thresholds. 

On-line Parameter Calibration 

Figure 4: Vehicle detection: expected risk as a 
function of Canny thresholds evaluated over the Ft. 
Hood and Denver training sets. 

From this empirical risk it was inferred that the vari- 
ation in detection performance was smaller for the 
Canny parameters when they varied within their op- 
erational limits, while the performance varied sig- 
nificantly with the overlap threshold. Thus, for the 
former parameters it is sufficient to derive optimal 
estimates (off-line optimization), while for the lat- 
ter, we need to consider a training tool (on-line op- 
timization). For off-line Canny parameter optimiza- 
tion we use strategy (A) with the expected risk com- 
puted over the training set. We choose Cnd = 0.5 
and Cfa = 0.5 and we assume equal priors, which 

For the on-line overlap threshold training, we use 
strategies derived from (B). We include site-specific 
features called "control patches" in the model of each 
site, which are used for automatic calibration. Em- 
pirical detection and false alarm probabilities are 
derived from these predetermined control patches. 
For each newly acquired image, the overlap thresh- 
old is automatically computed from the empirical 
detection and false alarm probabilities derived from 
the control patches as described later. Denote by 
Pl(7^v) = r{Pi{TZv'')) the empirical ROC curve de- 
rived by varying the overlap threshold V; then we 
want to find V* satisfying V* = argmax(Pi(72.v)) 
subject to 

• PoiTZv) < a 

. ^ lp=P.(7^.=)> /? 

The threshold is initialized to a high value (typically 
0.9) and progressively reduced (typically in steps of 
0.1) until one or both of the above constraints are 
violated. The first condition ensures that the false 
alarm rate will be bounded, and the second condi- 
tion ensures that the slope of the ROC curve for the 
given value of V is not too small, i.e. that an increase 
in false alarm probability can be traded for a signif- 
icant increase in detection probability, maximizing 
detection and thus establishing an upper bound on 
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the threshold. When a new image is acquired, the 
overlap threshold is automatically "calibrated" us- 
ing control patches as explained above. 

One issue remains to be addressed for implementa- 
tion, namely, selection of control patches. In site- 
model-based image exploitation of aerial imagery, 
control patches with their associated ground truth 
can be specified once by representing them as spe- 
cific features of the site (in terms of position, orien- 
tation, etc.). This way, whenever a new aerial image 
of the site needs to be subjected to any of the above 
algorithms, the control patches will be mapped to 
portions of the image, as part of the registration 
process (where the image is registered with the site 
model). The above is possible when we can identify 
control patches in the parking lot that are known 
to be always empty (such as passageways, parking 
lot exits, etc.), or always full (areas located near en- 
trances). Identifying the empty control patches is 
easier than identifying patches with a fixed number 
of vehicles in them. This makes it easier to modify 
the empty control patch calibration module to work 
in batch mode. However, in this case, we would be 
solving a slightly different problem, because in the 
case of the empty patch, there exists no concept of 
an ROC curve as there is no Pj. In this case, the 
problem becomes that of finding 

V* = min(V) subject to Po{TZv) < a' 

In our case we use a' = 0. The threshold is initial- 
ized at a low value (typically 0.10) and progressively 
increased (typically in steps of 0.10) until there is no 
false alarm. Thus, this is a way of estimating a lower 
bound on the optimal threshold. This could prove 
very useful in cases where there is a lot of clutter in 
the image. The lower bound effectively cuts down 
the false alarm rate. 

Fi, l{ .1, li   ( )i,r ir, First Image. 

Figures 6 and 7 show such a case where the learn- 
ing module has been used to compute, in batch, the 
optimal threshold for detection in two different im- 
ages (note the illumination variation), but over the 

Figure 7: Batch Optimization. Second Image. 

Figure 8: Non-Batch Optimization. 

same parking lot. The shaded region represents an 
"empty control patch" for which the ground truth is 
simply the fact that there are no vehicles inside the 
region. The control patch, being a feature set associ- 
ated with the site model, is independent of the image 
and after the image is registered, it gets mapped to 
the image coordinate system. The non-shaded out- 
line represents the actual parking lot. The results 
were obtained for two different images after the over- 
lap threshold was bounded froni below by means of 
the control patch. In both cases, the empty patch 
calibration overlap threshold was found to be 0.40. 
These results correspond to a [Pi, PQ] of [0.86, 0.00] 
and [0.92, 0.00] respectively when run with the cal- 
ibrated threshold. Consider also the case where it 
is not possible to identify non-empty patches with 
known ground truths. In this case, an interactive 
method could be used, where the image analyst in- 
spects and validates the control patches over a sub- 
set of the images to be processed before initiating a 
batch procedure. Figure 8 shows such a case, where 
the image analyst delineates two patches to estimate 
the optimal overlap threshold to be used in future 
runs. The original problem was solved on the non- 
empty patch, for a = 0.10 and /? = 0.40, and the 
modified problem was solved for the empty patch 
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with a' = 0.00. In this particular example, the 
empty control patch established a lower bound of 
0.40 while the non-empty control patch established 
an upper bound of 0.4. A compatible value of 0.4 
was thus used for the final run on the actual parking 
lot. The [Pi, Po] values were found to be [0.85,0.03]. 

5 Convoy Detector Optimization 

In the case of the convoy detector, the components 
of Y, the 2D observation vector, are the logarithms 
of the parameters Ka and Kr that were described in 
Section 2, i.e.Y = (ln(A'a),ln(AV)) = {La,Lr). Let 
Ho and Hi correspond to the two hypotheses, with 
Ho the hypothesis that no peak is present; the deci- 
sion rule is simply d{La,Lr) = lRy{La,Lr). We use 
a Bayesian strategy (A) for deriving the acceptance 
region from a training set of images. The acceptance 
region boundary is parameterized by vector V and 
chosen as 

R= Ry = {(La,Ir),such tha.tb{La,Lr;V) > 0} 

Assume that the joint conditional probability dis- 
tributions on Y = {La,Lr) are Gaussian, i.e. 
Hi : P(Y\i) ~ Ar(mi,Si),i = 0,1; then the log- 
likelihood ratio function is a quadratic function in Y 
[6], I.e. (Y-miyEr^(Y-mi)-(Y-mo)*So"'(Y- 
mo)- We assume dissimilar covariances for which 
the boundary equation 6(.,.;) = 0 is a conic sec- 
tion. The acceptance region is determined by find- 
ing y* which minimizes the expected value of the 
conditional risk computed over the training set, i.e. 
V* = ciTgmm{E{Rv{d)}). As an example, ten im- 
ages from a particular site were chosen as a training 
set, and 6(.,.;) was assumed to be an elliptic bound- 
ary. The parameters of this elliptic boundary were 
optimized on the set of control images. The expected 
value E{R{d)}, computed over the training set, is a 
noisy function of V, in part due to the modest size 
of the training set. V* is determined by using the 
Nelder-Mead Simplex algorithm [8]. This function is 
non-convex, and therefore the simplex algorithm is 
not guaranteed to converge. Furthermore, the min- 
imum is not unique. The resulting boundary for 
Cnd = 0.55 and Cja — 0.45 is shown in Figure 9. 

In this example, the compound detection perfor- 
mance yields a false alarm probability of 0.11 with 
a non-detection probability of 0.08. 

6 Model Parameter Misspecification 

We also characterized the sensitivity of parking lot 
occupancy detection to misspecification of the model 
parameters. The 3D dimensions of the vehicle were 
varied, and the detection and false alarm probabil- 
ities were computed on the set of test images. The 

o        :   o 
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Figure 9: Decision region obtained from training im- 
ages. Active parking lots are indicated by 'o's and 
inactive by '-f's in the {Lr, La) plane. 

resulting probabilities are displayed as functions of 
these dimensions in Figure 10 for the detection of 
active parking lots. In Figure 10, the upper surface 
represents the probability of detection as a function 
of the 3D width W and length L. The lower surface 
represents the false alarm probability. Situations 
where the width is greater than the length consti- 
tute a misspecification by 7r/2 of the actual vehicle 
orientation. In this figure we see that the resulting 
performance is not too sensitive to reasonable vari- 
ations in size. 

I>etectiati Pn)bahiliiy 

Palsi!;Aliirni Probiibility 

Figure 10: Sensitivity of the detection of active park- 
ing lots to misspecification of vehicle dimensions. 

The situation is different for convoy detection, as 
seen from the simulation results in Figure 11. In this 
case, as the values deviate from their optimal spec- 
ifications (the middle of the grid), performance de- 
grades. As W and L increase, the false alarm proba- 
bility decreases along with the detection probability. 
This highlights the importance of context as well as 
the adequate specification of model parameters for 
this particular application. 
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Deletliim ProbabUity 

Alarm ^liibahility 

Figure 11:  Sensitivity of convoy detection to mis- 
specification of vehicle dimensions. 

7.   Conclusion 

We have addressed the problem of automatic tuning 
of parameters for image understanding algorithms 
with specific reference to local vehicle detection and 
global vehicle configuration detection algorithms in 
AIU tasks. We proposed different optimality cri- 
teria and optimization approaches, depending upon 
the relative impact of the parameters on the per- 
formance of the detection algorithms, the relative 
impact being inferred from runs on a set of test im- 
ages. Naturally, it should be ensured that the num- 
ber of test images is large enough to be statistically 
comprehensive. This would further justify freezing 
parameters of lesser significance to their off-line best 
values. Also, in the present scheme, the sensitivity 
to tuning and model parameters is evaluated empir- 
ically. This study can be complemented by a more 
in-depth analytical study of these algorithms' sensi- 
tivity, as is done in [?] where each step of the algo- 
rithm can be described analytically and a first-order 
sensitivity analysis can be carried out. In the present 
study, empirical distributions are used. Instead, the 
moments can be estimated and simple hypothesis- 
testing techniques can be used to verify the consis- 
tency of the observed data with the assumed dis- 
tribution and estimated moments. Finally, on-line 
parameter optimization techniques have been intro- 
duced by use of the notion of control patches, which 
is very useful and practicable in the context of site- 
model-based image exploitation and merits further 
investigation. 
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Abstract 
We describe a system for converting RADIUS site 
models into a Web-accessible form. Once con- 
verted, the site models can be downloaded and 
viewed with standard, off-the-shelf Web browsers. 
Site models themselves are represented in the Vir- 
tual Reality Modeling Language (VRML). Each 
feature in the site model is cross-linked to a Web 
page that describes that feature in more detail, in- 
cluding image chips and collateral information. A 
demonstration of work described in this paper is 
accessible via the URL http: / /www. ai . sri . 
com/"connolly/pathfinder. 

1    Introduction 

The explosive growth of the World Wide Web 
(WWW) in just three years has transformed it 
into a widely accessible medium for disseminat- 
ing documents, sound, images, and recently, three- 
dimensional models. This growth has also led to the 
development of a wide variety of tools for viewing 
and manipulating Web-accessible information. As a 
result, the Web is an attractive means of providing 
site model information. 

This paper describes a system for converting RA- 
DIUS site models into a Web-accessible form. Af- 
ter conversion, site models can be downloaded and 

*This work was sponsored by SRI International. The views 
and conclusions contained in this document are those of the 
author and should not be interpreted as representing the official 
policies, either expressed or implied, of the Defense Advanced 
Research Projects Agency, the United States Government, or 
SRI International. 

viewed with standard, off-the-shelf Web browsers. 
Site models themselves are represented in the Vir- 
tual Reality Modeling Language (VRML). Each 
cultural feature in the site model is cross-linked to a 
Web page that describes that feature in more detail, 
including image chips and collateral information. 

1.1    RADIUS Site Models 

As part of the RADIUS program, SRI has devel- 
oped and assembled a suite of manual and semi- 
automatic tools for site-model construction that 
work within the RADIUS Common Development 
Environment (RCDE) [Heller and Quam, 1997, 
Heller et ai, 1996]. Manual techniques are those 
in which the 3-D model of a feature is projected 
into one or more images and the operator adjusts 
the model to align it with was is seen in the im- 
ages. Semi-automatic techniques are those in which 
an operator provides an initial rough estimate of a 
feature's position, size and topology and the system 
then refines or extends the model of the object using 
information extracted from the image(s). 

Figure 1 shows a portion of a typical RADIUS site 
model. The majority of the features modeled fall 
under three broad categories: 

• Buildings and other structures such as bridges, 
and petroleum and water storage tanks. 

• Lines of Communication such as roads, rail- 
road tracks, and other linear features such as 
rivers and streams. 

• Functional Areas such as parking lots, site 
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perimeters, rail transfer points and other area 
features such as forested areas. 

Figure 2 shows a typical construction sequence for a 
building using the Model-Based Optimization sys- 
tem [Fua, 1996]. Similar techniques are available 
for extraction of linear and area features. 

1.2 The Virtual Reality Modeling 
Language 

1.3 What is VRML? 

The VRML Frequently Asked Questions (FAQ) ' 
list says: 

VRML stands for Virtual Reality Model- 
ing Language. It is usually pronounced 
"V-R-M-L," but its friends pronounce it 
"vermel." The goal of VRML is to create 
the infrastructure and conventions of cy- 
berspace, a multi user space of many vir- 
tual worlds on the Net. 

VRML 1.0 is a subset of the Inventor File 
Format (ASCII) with some additions to 
allow linking out to the Web and includ- 
ing other URLs. The linking out fea- 
ture (WWWAnchor) provides the same 
feature that HREF anchors provide in 
HTML. Another critical feature was the 
LOD (level of detail) which allows the 
right amount of data for an object based 
on how prominent it is in the scene, or the 
rendering speed of the browsing machine. 

Our current interest in VRML is a bit more prag- 
matic. While it is clearly not a replacement for 
richer scene description data models, such as the 
Synthetic Environment Data Representation and In- 
terchange Specification (SEDRIS) [The SEDRIS 
Team, 1996] now being developed by the Defense 
Modeling and Simulation Office (DMSO), it is a 
simple and low-cost method to export geometric 
site-model data from the RCDE in a form that is 
suitable for dissemination via the WWW and usable 
with a wide variety of freely-available browsers and 
rendering tools. 

1.3.1 History 

The development of VRML grew out of a discussion 
among several attendees of the first annual Worid 
Wide Web Conference in 1994. VRML was seen as 
a three-dimensional extension of HTML. As with 
most Web-related projects, the development of a 
VRML specification and prototype was rapid. A 
draft specification was released in fall of 1994. The 
format chosen for VRML was Silicon Graphics' 
ASCII Open Inventor format. A specification for 
VRML 1.0 was finalized and released on May 26, 
1995 [Pesce, 1995]. Not surprisingly, most of the 
initial work on VRML took place at Silicon Graph- 
ics. Over the next two to three years, between 20 
and 30 VRML 1.0 browsers were developed for ex- 
changing geometry over the Web. 

1.3.2 Current status 

By August of 1996, a specification for VRML 2.0 
was released [Bell et al., 1996]. While VRML 1.0 
is capable of representing static geometry, VRML 
2.0 was aimed at augmenting geometry with time- 
varying behavior. Because of its increased complex- 
ity, only 4 browsers are known to exist for VRML 
2.0, as of this writing. 

The structure of a VRML scene description con- 
sists of an identifier string, to distinguish VRML 
1.0 from VRML 2.0 descriptions, followed by a 
sequence of Node specifications. Each node rep- 
resents a geometric feature or an attribute of that 
feature. For example, there are Cube, Sphere, 
Cylinder, and Cone nodes for representing those 
shapes. In addition, point sets can be specified. 
Faces (IndexedFaceSet nodes) are described as 
lists of points that form polygons. Material proper- 
ties, certain transformations, viewpoints, and light- 
ing properties can also be specified. 

1.3.3 Strong Points 

An important advantage to using VRML 1.0 for 
disseminating site models is that many VRML 1.0 
browsers have been developed across a wide variety 
of platforms. Although the VRML 1.0 specification 
has minor ambiguities, browsers exhibit generally 
uniform behavior, that is, VRML models will have 
the same or similar appearance across browsers. As 

'http://vag.vrml.org/VRML_FAQ.html 
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Figure 1: A portion of a typical RADIUS site model, projected onto an image of the site. The site model 
mainly consists of buildings, linear and area features. 

a result, VRML 1.0 has become a satisfactory, if im- 
perfect, standard for exchanging geometry via the 
Web. VRML LO also allows an association be- 
tween objects and Web URLs. As with hypertext 
Web pages, mouse clicks on an object can be used 
to retrieve and display Web pages that are associated 
with the selected object. 

1.3.4   Weak Points 

The main deficiency of VRML for our application 
is that there is no provision for georeferencing the 
data in the models. The VRML spec includes an 
Info node, which is intend to be used for comments. 

We press this into service to store the site-model's 
LVCS-to-geocentric-transform, to allow the recov- 
ery of geopositioning information and translation 
into standard cartographic coordinate systems. 

Unfortunately, VRML 2.0 removes some features 
that were found to be useful in VRML 1.0. Trans- 
formations have been restricted rather than gener- 
alized: 4 X 4-matrix transformations are permitted 
in VRML 1.0, but not in VRML 2.0. Moreover, in 
VRML 2.0, transformations cannot be sequentially 
specified and composed; they must be nested recur- 
sively, resulting in a bulkier representation for site 
models. As of this writing, there are no VRML 2.0 
browsers that implement the complete specification. 
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The original images. 

Sketch roof-line (Add Vertex). 

"""SsJiaa   Done with roof-line (Drop). 

Correct elevation (MBO-Z-Search). 

Optimize Shape (MBO-Opt)... Done! 

Figure 2: The sequence of steps used to model a complex-shaped building with the extrusion primitive and 
the SRI-authored Model-Based Optimization system. This entire sequence typically takes less 
than one minute of elapsed time. 
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This is in part due to the introduction of behaviors 
and scripting into VRML 2.0, which greatly com- 
pHcates the semantics of the language. The VRML 
2.0 standards process also appears to be dominated 
by commercial interests. As a result, VRML 2.0 is 
targeted mainly toward low-bandwidth home users 
browsing the Internet. The scientific visualization 
community appears to have had little influence in 
specifying the VRML 2.0 standard. 

2   WWW Site Visualization Tool 

2.1 The Translator 

The translator is implemented in approximately 
3000 lines of Common Lisp that runs in the RCDE 
and operates on site-models that have been loaded 
into the system. Besides making the code somewhat 
simpler, this allows us to translate models regardless 
of whether they were loaded from RCDE feature- 
set files, the RADIUS Testbed System database, or 
created in the current session. The translation pro- 
cess in implemented as a single pass over the ob- 
jects in the site-model. Only those objects which are 
"present" in the selected view are translated. This 
allows the RCDE's feature set mechanism and asso- 
ciated menus to be used to select the set of objects 
to be translated. 

Every object in an RCDE site-model has a object-to- 
world-transform which is used to transform the co- 
ordinates of the object's vertices to the site's local- 
vertical-coordinate-system (LVCS). This transform 
is translated into a VRML transform node. One 
complication is that VRML uses a right-hand coor- 
dinate system in which the y-axis is up whereas the 
convention used by RCDE is that z-axis is up with 
the X-axis pointing east. 

In addition, the any face of an RCDE object may 
have a texture map associated with it. The transla- 
tor automatically creates the texture images and cal- 
culates the texture coordinates for inclusion in the 
VRML node describing the object. These texture 
maps can be either "inlined" in the VRML file or 
can be written into separate files that are referenced 
via a URL from the VRML file. 

3-D objects that have a direct representation in 
VRML, such as cubes, cylinders, and spheres 
are simply translated into the corresponding node 

type. Other, more complicated objects, such as 
houses and complex buildings, are represented in 
the RCDE with a face-edge-vertex (f-e-v) datastruc- 
ture, called the planar-solid class. This class of 
object is specialized by introducing parameterized 
constraints among the vertices and faces. The pa- 
rameterized representation is used for adjusting the 
object and the f-e-v representation is use for draw- 
ing the object. Because of the availability of the f- 
e-v representation a single method suffices to trans- 
late all classes of compact 3-D objects into VRML 
indexed-face-sets. 

Roads and fences are represented by ribbon-curve 
objects in RCDE, which are comprised of a se- 
quence of vertices that trace the centerline of the 
object and a width (or height for fences) at each 
vertex. VRML does not have a corresponding node- 
type, so ribbons are triangulated and then translated 
into VRML indexed-face-sets. 

The RCDE represents terrain as regular quad-mesh 
or tri-mesh objects. Since the faces in a quad-mesh 
object are not necessarily planar, we use tri-mesh 
object for terrain and translate these to indexed- 
face-sets. 

If a sun-direction vector is present on the selected 
view, it is translated into a VRML DirectionalLight 
node and added to the scene file. 

2.2    HTML Generation 

For each feature in the VRML representation, a 
URL is created containing an HTML page with col- 
lateral information for that feature. This page also 
contains image chips displaying the feature as it ap- 
pears in all available images associated with the site. 
Image chips are generated by first collecting those 
site images within which the feature is visible. The 
extent of the feature in each image can then be de- 
termined by using the feature's bounding box, and 
transforming this (via the world-to-image transfor- 
mation) into the corresponding image coordinates. 
The chip is created by windowing into the corre- 
sponding image, and converting this window into 
a GIF file for use in the HTML page. The feature 
attributes can be used to populate this page with ap- 
propriate text. The URL containing this page is then 
attached to the VRML representation by creating a 
WWWAnchor node linking the feature to its own 
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Web page. 

3 Example 

Figures 3 through 5 show an example result. The 
initial page introduces the tool and lists the avail- 
able site-models (Fig. 3a). The user has selected the 
"Lockheed-Martin Corp., Denver" site-model and 
is shown a page containing a synoptic view of the 
site and several alternative versions of the models 
(Fig. 3b). These have been generated to accommo- 
date different network bandwidths and browser ca- 
pabilities, ranging from small models that contain 
only the modeled objects, to fully texture-mapped 
models with high-resolution DTED. After selecting 
the version "with texture and terrain," the VRML 
browser (in this case SGI's WebSpace) is started and 
the 3-D model is displayed (Fig. 4). At this point the 
user can "fly around" and inspect the model from 
any viewpoint. As the mouse is placed on the indi- 
vidual objects, they are highlighted and their names 
appears in a information window at the bottom of 
the browser. Clicking on any of the objects, causes 
the HTML browser to retrieve the page of attributes, 
metadata, and image chips for the selected object 
(Figs. 5 a&b). The "Modifications" and "Com- 
ments" fields on these pages, allow the user to enter 
data which is sent back to the server and ultimately 
incorporated into the site-model. 

4 Related Work 

Terra Vision II is the primary application of the re- 
cently started MAGIC-II project. It is an extended 
version of the TerraVision terrain visualization ap- 
plication ^ that was created for the original MAGIC 
project^. 

TerraVision was designed to visualize a single rect- 
angular geographic area represented by elevation 
and ortho-rectified image data at multiple levels of 
detail. These data, typically larger than 1 G-Byte 
in size, are distributed across a high-speed network. 
TerraVision accesses the data in real time from the 
network as the user moves across the terrain, thus 
giving the illusion that all of the data is stored lo- 
cally.   This approach allows users access to very 

^http : //www.ai . sri .com/~inagic/ 
terravis ion.html 

^http://www.magic.net/ 

large amounts of data without the need to copy, 
store, and maintain the data locally. 

TerraVision was inflexible because it was difficult to 
create a dataset of a very large area where different 
areas would have data at different resolutions. It was 
also impossible to use multiple types of images that 
could be fused together under user control. 

To overcome this inflexibility, TerraVision II is de- 
signed to use composite datasets consisting of many 
image pyramids, each of which can be created and 
stored independently at different sites. The "glue" 
that holds them together are VRML files. In a sense, 
TerraVision II will be an enhanced VRML browser 
that will be able to handle very large, network- 
based, multi-resolution datasets. However, it will 
have additional capabilities for merging different 
image types (under user control) and it will produce 
seamless renderings of scenes with multiple levels 
of detail. We expect that an important source of data 
for TerraVision II will be RADIUS site-models pro- 
duced by the VRML production system described 
here. 

5    Conclusions 

Even though we have struggled with a number of 
deficiencies, ambiguities, and errors in the VRML 
specification and browsers, and are, in general, un- 
happy with the standards process and the direction 
in which VRML is evolving, we have still found 
it and the freely-avaiable browsers to be a use- 
ful mechanism for visualizing RADIUS site-models 
and illustrating possible methods for disseminating 
geospatial information on the WWW. Readers are 
encouraged to form their own opinions by experi- 
menting with the example discussed in this paper. 
It is accessible via the URL http: //www. ai . 
sri.com/"connolly/pathfinder. 
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Figure 4: A texture-mapped, 3-D rendering of the site-model created from the VRML description of the 
site and displayed by SGFs WebSpace. 
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Figure 5: The a sample of the Web pages that are hyperiinked to every cultural feature in the site model. 
The text and image chips are generated automatically from the attributes, metadata, and images 
stored with the site-model in the RCDE. 
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Abstract 
A novel approach to grouping symmetrical pla- 
nar curves under a projective transform is de- 
scribed. Symmetric curves are important as a 
generic model for object recognition. Often it 
is desirable to represent an object by a generic 
description rather than an accurate geometric 
model, for example when describing a general 
class of objects by the properties of the class. 
Symmetry is a well defined generic represen- 
tation. It is intuitively easy to understand, is 
recurrent in real world objects, and provides 
strong image constraints. We describe a geo- 
metric construction which reduces the complex- 
ity of recovering a projective transform between 
images of non-trivial planar curve sections when 
correspondence for two lines is given. This en- 
ables detection and grouping of planar symmet- 
rical curves in perspective images. 

1    Symmetry as a Generic Model 

Generic models are vital to the future of object 
recognition. Techniques which rely on accurate, 
three dimensional, geometric models of the ob- 
jects to be recognized are difficult to adapt to 
the rapid pace of change in the real world. Of- 

*This work was supported by DARPA contract 
F33615-94-C-1021, monitored by Wright Patterson Air- 
force Base, Dayton, OH. The views and conclusions 
contained in this document are those of the authors 
and should not be interpreted as representing the offi- 
cial policies, either expressed or implied, of the Defense 
Advanced Research Projects Agency, the United States 
Government, or General Electric. 

ten such models are not available, or are uneco- 
nomical to produce, but the imagery consumer 
would still like to be shown all images contain- 
ing "an aircraft". Symmetry is a well defined, 
intuitively accessible generic model. It is per- 
vasive in imagery because a symmetrical object 
is both statically and dynamically more stable. 
Statically stable objects such as chairs and ta- 
bles are good examples, and many structures, 
such as arches and domes, exhibit strong sym- 
metry. Dynamically stable objects such as air- 
craft, cars, birds, etc, are also symmetrical. It is 
also economical to repeat structures in order to 
minimize the number of required component de- 
signs and manufactured parts, leading to sym- 
metry in images. Thus it is efficient to represent 
objects by their symmetries, and the detection 
of these symmetries in an image is an important 
step towards generic object recognition. 

An object recognition system must group im- 
age features according to the underlying scene 
structure in order to recognize them as an ob- 
ject. Symmetry is a key scene structure, and 
is reflected in the scene projection. The de- 
tection of a symmetry is a strong cue to fea- 
ture grouping, either within a single object, or 
across a spatial group of related objects. Fig- 
ure 1 shows several images of objects and scenes 
which exhibit symmetry. Often several forms 
of symmetry are found in a single image, and 
if the context of the scene is sufficiently con- 
strained a priori, then these symmetries may be 
enough to support reconstruction. For example, 
Ulupinar and Nevatia [Ulupinar and Nevatia, 
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1992] define three kinds of 3-D symmetry: par- 
allel symmetry; line-convergent symmetry and 
skew symmetry. They use the constraints from 
these symmetries for 3-D reconstruction from 2- 
D curves. Even if insufficient constraint is avail- 
able to allow reconstruction, it may be possible 
to discriminate between a number of possible 
states using symmetry. An example of discrim- 
ination is continuously monitoring a region in 
which many types of aircraft are parked. The 
classes of aircraft are unknown a priori, but the 
planar bilateral symmetry of the wings on the 
aircraft is sufficient to determine whether the 
region is occupied. 

Figure 1: Examples of symmetry, sometimes 
approximate, seen in diverse images 

Methods for determining curve correspondence 
have been proposed based on the Generalized 
Hough Transform [Ballard, 1981], which re- 
sults in an intensive search through a multi- 
dimensional parameter space, and on differ- 
ential [Cham and Cipolla, 1995b] and semi- 
differential invariants [Van Gool et ai, 1992]. 
Cham and Cipolla [Cham and Cipolla, 1995a] 
have investigated the detection of affine sym- 
metries and the establishment of curve corre- 
spondences. In particular they show how ge- 
ometric saliency of symmetries can be used to 
characterize the discriminatory power of pairs 
of symmetrically grouped curves. 

2    Grouping a Pair of Planar Curves 

Figure 2 shows the general planar symmetry 
considered in this paper. The two images C 
and C" of planar curves C and C are related 
by a 3 X 3 projectivity T. Given two curves in 
the image, it is this projectivity T which must 
be recovered. The constraint that two curves 
are related by a projectivity is obviously only 
a strong constraint if the curves are sufficiently 
complex. For example, all pairs of conies are 
related by a projectivity, so all conies will ap- 
pear symmetric in this manner. For curves more 
complex than a conic, however, a projectivity 
relation between curve pairs is a strong cue for 
grouping. 

Figure 2: The planar symmetry considered for 
grouping. Here planar curves C and 
C' are related by a projection T, 
and both are viewed as images C 
and C under projection t. The 
transform T from C to C" is a 3 x 3 
projectivity. 

2.1    The Correspondence Problem 

One of the central problems in curve grouping 
is the correspondence problem.   Curves C and 

596 



C' are not recovered from the image with the 
same parameterization, so the point on C" cor- 
responding to a given point on C is unknown. 
Certain special points on curves are known to 
be invariant under projection, such as points of 
inflection and bitangent lines. Thus if a point 
on C is an inflection, then it must correspond 
to an inflection on C". But the correspondence 
other than between such special points is not 
known. For example, if a pair of curves is recov- 
ered from an image, the ends of one curve might 
be occluded, so it is certainly not the case that 
the ends of each curve correspond. If the curves 
are Unes, this is the well known aperture prob- 
lem. Under a Euclidean transform for any curve 
other than a line or a circle, the correspondences 
may be recovered by flnding the unique trans- 
form. Similarly under a projective transform, 
the correspondences of a pair of curves more 
complex than conic should be recoverable. 

Figure 3: A pencil of lines defined by the tan- 
gents at two inflection points, l\ and 
/2, to the curve C. The coordi- 
nates of a line within this pencil, 
q = (Q;,/3), are defined in the ba- 
sis defined by the two tangent lines. 
Thus any point p on the curve C is 
assigned a coordinate q based on the 
line in the pencil passing through p. 

2.2    Rational Parameterization 

Consider two inflection points ii and 12 on C. 
Construct the tangent lines h and I2 at these 
points. Assuming these lines are distinct, they 
define a basis for a pencil of lines P passing 
through their intersection, and any line / in P 
may be written as a linear combination of the 
two basis lines: 

l^ali+ /3I2 
hi hi 
in h2 
hz   hz 

a 

The basis lines have coordinates (1,0) and (0,1) 
respectively within this pencil. Now take any 
other point p on the curve C, and construct the 
line in P which passes through p. This line, and 
therefore the point p, will have a coordinate q 
(a, (9) in the pencil P. Writing h 
and I2 = (/2i/22^23)*) we have 

^11^12/13)*) 

a 
13 

l\p 
(1) 

Since the lines are expressed in homogeneous 
coordinates, q - (a,/?) are also homogenous, 
so any multiple of q will be the same line in 
the pencil. We will refer to this as the pencil 
space P{h,l2)- The construction of this pencil 
is illustrated in Figure 3. 

Now consider the ratio a//3. The construction 
described assigns a value a//3 to each point on 
the curve. This is not necessarily a parameteri- 
zation: if multiple points on C lie on the same 
line of the pencil then they will share the same 
a/p. A curve is of genus zero if a rational pa- 
rameterization of the curve exists. For example, 
all conies may be rationally parameterized, and 
so are of genus zero. However, for the purpose 
of this study it is not necessary for the curve to 
be parameterized by a/^. 

2.3    Matching Curves in Pencil Space 

Let us return the to example of two curves, C 
and C" related by a perspectivity T. For an 
arbitrary parameterization of C, point p{s) on 
C corresponds with point p'{s) on C", and using 
homogeneous coordinates we have 

p'{s) = XpTp{s). 

Here Xp represents the scaling ambiguity of ho- 
mogeneous coordinates. The inflection point 
tangents on C will also be transformed by the 
same projectivity: 

l[    =    XiT'Hi 

A   - X2T-H2 
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where T~* is used to denote the transpose of 
the inverse of T. Thus if the correspondence 
of the inflection points is assumed, we can set 
up a pencil space for each curve P{h,l2) and 
P{1[,1'2). Now p{s) and p'{s) have coordinates 
g{s) = (a(s),/3(s)) and q'{s) = (a'(s),/3'(s)), 
given by equation 1: 

a{s) 

a'{s) 
(3'{s) 

l{p{s) ' 
l\p{s) 

I'lp'is) 
I'ip'is) 

We can solve these equations to give the relation 
between the curves in the pencil spaces. 

a'{s) AiAp 0 
0      A2Ap 

a{s) 
(2) 

a(s) «'(s) 
PCs) P'(s) 

P(s) 

\ p \ 

v- 
V 

\ 
J \ 

\ ^-— -""'^   / 
\ / 

■^ 

So the pencil space curves q{s) and ^'(s) are 
related by an anisotropic scaling. Indeed, since 
the pencil spaces are homogeneous, there is only 
one degree of freedom in equation 2. This is 
far simpler to solve than the original, eight de- 
gree of freedom problem. Figure 4 illustrates 
this matching process for a curve which has 
been scaled and reflected. This result is closely 
related to the semi-diS'erential invariants pro- 
posed by Van Gool et al. [Van Gool et al, 1992, 
Van Gool et a/., 1991] in which a projectively 
invariant parameterization of curves, known as 
Arc Length Space is constructed using a mixture 
of reference points and curve derivatives. 

2.4    Computing Correspondence 
from Pencil Space 

In the pencil space representation, all that 
is required is to find a scaling A such 
that {Xa{s),f3{s)) is a uniform scaling of 
(a'(s),/3'(s)). Points which are in correspon- 
dence can then be found by taking the intersec- 
tion of both curves with rays through the ori- 
gin. However, these rays will in general inter- 
sect each curve multiple times, unless the curve 
is genus zero. These multiple intersections with 
the curve are equivalent to multiple points on 
the curve with the same rational parameteriza- 
tion. Furthermore only part of one curve may 
be visible, or the curves may be occluded. Thus 
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Figure 4: For two curves with a pair of cor- 
responding inflection points idendi- 
fied, matching proceeds by construc- 
tion of the pencil space represen- 
tation of each curve, in which the 
two curves will be related by an 
anisotropic scaling. 

the calculation of A should be robust to extra 
or missing curve portions. 

One approach to the problem is to match the 
curves using a Hausdorff distance [Huttenlocher 
et al, 1993], solving for both scaling factors 
rather than just a single one. This will guaran- 
tee the correct assignment of correspondences 
over the curve pairs. Another approach is to 
minimize the minimum angle between tangents 
to the curves along rays from the origin. Specif- 
ically, for each point q{s), construct the ray 
through the origin, and intersect that ray with 
the second curve, resulting in n points q'{ti),i = 
1.. .n. Compare the tangent orientation at q{s) 
with the tangent orientation at q'{ti), and pick 
the closest pair. Calculate the total angular dis- 
tance between tangents over all q{s), and simi- 
larly the reverse distance from q' to q. Minimize 
this distance over A, a multiple of one coordinate 
of one curve. 

2.5    Verifying the Symmetry 

Once the correspondences have been found, the 
corresponding curve points on C and C" can 
be used to solve for the complete perspectiv- 
ity T. This can then be used, with a Borgefors 



matcher [Borgefors, 1986] to find other curves 
which support the same symmetry transform. 
However, the two curves which have been cor- 
responded might not form a well conditioned 
basis for the projectivity. For example, if the 
curves are from a bilateral symmetry and are 
both approximately perpendicular to the axis of 
symmetry, then the transform found will not be 
reliable except in the immediate vicinity of the 
original curves. Multiple corresponded curves 
might be combined to solve for the transform 
in such a case, or an iterative process might be 
used to incrementally include new points into 
the transform calculation. This problem is be- 
yond the scope of this paper. 

3    Experimental Results 

We have tested this method of curve matching 
on a number of images. These images were ini- 
tially segmented, and then the two contours to 
be matched were selected by hand. B-spline 
curves were fitted to the curve segments [Van- 
roose et al, 1995, Dierckx, 1993], and these were 
used to detect inflection points. Two appropri- 
ate inflection points were then selected by hand 
on both curves. The pencil space representa- 
tion of the two curves was then constructed, and 
the scaling factors automatically determined to 
match the two curves. 

Figure 5, shows the first example, a simple pla- 
nar shape, but with significant perspective dis- 
tortion. The inflection points are used to con- 
struct the pencil space representations in Fig- 
ure 6, which are matched by the anisotropic 
scaling. The correspondences thus found are 
shown on the original curves in Figure 7. 

Whilst the location of the recovered inflection 
point on the curve is not robust, the tangent at 
the inflection point is a well known, since the 
curve has zero curvature at the inflection point. 
Thus the tangents at inflection points are a good 
basis for forming the pencil of lines. 

However, the two line correspondences in the 
image pairs need not be confined to be tangents 
at infiection points. Many objects are composed 
of straight lines, and these lines can be detected 
in the segmentation and similarly used as the 

t 
•.■.-%L 

--■%■> 

.■ ■■.-'3 

•v:i-.^:-;.-..:. .J5? 

Figure 5: The original image is shown in a). 
In b) the image has been segmented, 
B-splines fitted to the curves, and 
the inflection points and their tan- 
gents extracted. The four tangents 
shown in white are used to parame- 
terize the two halves of the shape in 
black. 
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Figure 6: The graph in a) is of a versus /3 
for the top curve. The graph in 
b) is of ol versus /3' for the bottom 
curve. In c) the anisotropic scaling 
of (a, ^) has been found to bring the 
twro curves into aUgnment. 
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Figure 7: The correspondence found in pencil 
space is then used to find the per- 
spectivity between the original im- 
age curves. Also shown in black are 
putative supporting edges, ie. they 
map onto other edges through the 
same transform. These would be ex- 
amined for consistency and might be 
used to grow the symmetrical group. 

bases of the pencils. Figure 8, shows an exam- 
ple of the use of image lines. Here there is only 
moderate perspective distortion, but the outline 
of the aircraft is not strictly planar. The lines 
shown are used to construct the pencil space 
representations in Figure 9, which show some 
deformation after matching because the origi- 
nal curves are not planar. A good scaling is 
found nevertheless, and the correspondences are 
shown on the original curves in Figure 10. 

As was discussed in Section 2.5, it is possible 
that the curve sections for which correspon- 
dence is recovered do not constrain the perspec- 
tivity sufficiently to give a good global trans- 
form. An example of this behaviour is shown 
in Figure 11. Here the front of a butterfly's 
wings are used in an attempt to group the com- 
plex curves of the wings into a single symmet- 
ric group. Again some inflection point corre- 
spondences are manually chosen, and used to 
construct the pencil space curves in Figure 12, 
which match rather well after scaling. The cor- 
respondences are shown on the original curves 
in Figure 13, but the transform is only valid 
for the region around those curves. Elsewhere, 
as is shown, the transform is far from correct. 
This transform is a bilateral symmetry, and 
thus is not well constrained by the curves which 
are close to colinear. To completely define the 
transform would require two such lines, which 
would meet at the vanishing point. 

Finally a control result is presented in Figure 14. 
Here the planar shape used in Figure 5 is mod- 
ified so that the only region of the shape which 
is symmetrical is the convexity bounded by the 
two inflection points used. The rest of the curve, 
whilst similar in shape, is no longer projec- 
tively symmetric. Figure 15 shows the pencil 
space curves for this case, and evidently the two 
curves are not related by an anisotropic scaling, 
except in the region of the symmetric convex- 
ity. Compare these curves to those shown in 
Figure 6. 
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Figure 8: The original image is shown in a). 
In b) the image has been segmented, 
and straight Hnes fitted to find the 
four Hnes shown in white. These 
Unes are used to parameterize the 
two halves of the aircraft in black. 
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Figure .9: The graph in a) is of a versus /3 
for the right hand side of the air- 
craft. The graph in b) is of a' ver- 
sus /3' for the left hand side of the 
aircraft. In c) the anisotropic scal- 
ing of {a, P) has been found to bring 
the two curves into alignment. 

4    Symmetry for Model Supported 
Exploitation 

Symmetry is a powerful tool for site monitor- 
ing, under the model supported exploitation 
paradigm [Bremner et al, 1996, Mundy and 
Vrobel, 1994, Mundy et al, 1993]. Often an 
image analyst is unable to give an exact geo- 
metric model of the event or object for which 
they are searching. In such cases a more generic 
vocabulary for describing the event is desirable. 
Symmetry is one example of the ways in which 
an object can be described without providing a 
CAD model. 

Consider the scenario where a new aircraft is 
known to be under development, and the an- 
alyst wishes to find images of the aircraft on 
the runway. A model of the aircraft is not 
known, indeed such a model may be the re- 
quired product, but it is almost certain to ex- 
hibit a strong bilateral symmetry. The analyst 
would then place a region of interest at the end 
of the runway at the site, and ask to be notified 
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Figure 10: The correspondence found in pen- 
cil space is shown by the lines in 
white. Also shown in white is 
the right hand side curve trans- 
formed by the recovered perspec- 
tivity, which lies close to the left 
hand side as expected. 

Figure 11: The original image is shown in 
a). In b) the image has been seg- 
mented, B-splines fitted, and in- 
flections foimd for the front of the 
wings. The inflections used are 
shown in white on the black curves. 
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Figure 12: The graph in a) is of a versus /? for 
the right hand curve. The graph in 
b) is of a' versus j3' for the left hand 
curve. In c) the anisotropic scaUng 
of (a, ;0) has been found to bring 
the two curves into alignment. 

Figure 13: The correspondence found in pen- 
cil space is shown by the lines be- 
tween the original curves in black. 
Also shown are some other edges 
from the left wing, and their pro- 
jection under the recovered trans- 
form. Clearly the transform is not 
correct globally, though it is cor- 
rect in the vicinity of the grouped 

.       |..   .».   ...-.■«,...-/j   ■-.-.!'> i 
-jr,   ■  _    ■■     ■-,*•   '■'•.■-•fS 

Figure 14: An asymmetric example is shown 
in a). In b) the image has been seg- 
mented, B-splines fitted, and in- 
flections found for the two curves. 
The inflections used are shown in 
white on the black curves. 

curves. 
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when an image is captured in which a bilaterally 
symmetric object is present in the region. The 
strength of the bilateral symmetry can be mea- 
sured by finding the percentage of edgels within 
the region which are explained by the symme- 
try. 
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Figure 15: The graph in a) is of a versus /3 for 
the top hand curve. The graph in 
b) is of a' versus /3' for the bottom 
hand curve. In c) an anisotropic 
scaling of {a,P) has been man- 
ually selected to bring the two 
symmetric portions of the curves 
into alignment, but the asymmet- 
ric portions are obviously not re- 
lated by an anisotropic scaling. 
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Abstract 

To enable the transition of exploitation im- 
age understanding (lU) technology into near- 
operational use in the intelligence community, 
user interfaces must be designed to allow simple, 
intuitive access to lU functionality and results. 
The complexity of lU systems, both in required 
inputs and processing, must be hidden fiom the 
user as much as possible to avoid heavy training 
costs. 

This paper describes some of the important user 
interface issues encountered when image under- 
standing algorithms are introduced to an im- 
agery analyst, and discusses some of the solu- 
tions that have evolved during the development 
of the RADIUS Testbed. Significant issues we 
have encountered are algorithm and parameter 
selection, algorithm execution, visual represen- 
tation of change, and display of historical re- 
sults. 

1    Introduction 

Research and Development for Image Under- 
standing Systems (RADIUS) is a research 
project, funded by ARPA and other government 
organizations, aimed at increasing the efficiency 
of image analysts (lA) by using lU technolo- 
gies[l]. RADIUS uses site models, a set of three 
dimensional wire frame objects which outline 
features of interest in a common geographic lo- 

cation. Rather than executing lU algorithms 
on entire images, RADIUS uses site models to 
narrow the focus of the lU algorithms to pixels 
located in a specific region of interest. 

The goal of the RADIUS user interface was 
to develop a consistent, concise, and intu- 
itive human-computer interface (HCI), given 
the comr)lexity and diversity of lU systems. 
This HC . design had to allow the lA to use 
lU exploitation algorithms without requiring 
knowledge of lU or the principals of individual 
algorithms. This goal was achieved by segment- 
ing the image understanding architecture into 
two elements; a general piece that is common 
to all algorithms and algorithm-specific compo- 
nents. These two pieces are mirrored in the RA- 
DIUS user interface. 

1.1     Feature Profiles 

A feulurt profile can be defined as a collection of 
criteria used to monitor an item of intelligence 
interest liirough image understanding. Devel- 
oped M part of the Exploitation lU Framework 
[3,4 oj fo] the IfADIUS program, feature pro- 
files are the cornerstone for all exploitation al- 
gorithm execution in the RADIUS testbed. 

Each profile has a number of associated ele- 
ments, kept general enough so that they may 
be used with any algorithm. These elements 
include a name, associated feature of interest, 
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such as a building, road, or parking lot, a re- 
quired confidence level, algorithm sensitivity 
level, and a brief description. 

In addition, every feature profile is associated 
with a specific algorithm, which is assigned by 
the lA at the time of creation. The RADIUS 
Testbed System (RTS) contains a variety of 
lU algorithms, each varying in performance re- 

quirements and capabilities. 

As an example, an lA may wish to monitor 
a weapons factory for possible bomb damage. 
The feature profile in this scenario would con- 
tain a building/structure presence algorithm 
and the feature of interest (in this case, the 
weapons factory). Additional information could 

also be added to this feature profile, such as a 
required confidence level, sensitivity level, and 

a short description. 

1.2    Algorithm and Parameter 
Selection 

When the lA discovers a new structure or region 
of interest that he would like to monitor auto- 
matically, he must begin by creating the pro- 
file. Since profiles contain many complicated 
elements, some of which directly aftect an lU 
algorithm's performance, the user interface is 
designed in a way that would characterize the 
components of the profile effectively. 

Under the guidance of the National Exploita- 
tion Laboratory (NEL) HCI Document[2], the 
profile creation menu was designed in a top- 
down fashion. This was done to allow readabil- 
ity for an analyst who may not be familiar with 
the workstation. An Instructions line guides the 
user as to what the next step will be in profile 
creation, and there is a Suggest line available to 
give the user hints about the various applicable 
menu choices. Further documentation is also 
available when holding the menu cursor above 
any of the widget fields[6]. 

Profile creation includes individual algorithm 
selection. Though the lA may know the region 
he is interested in running lU on, he may not 
be familiar enough with the specific lU technolo- 

gies to know which algorithm to choose. This, in 
particular, presents a formidable problem, since 
picking an lU algorithm in the wrong situation 
may not produce the desired result. 

To make this process easier for the lA, a 
one line, 130 character documentation string is 
available for each individual algorithm. This 
documentation string is not meant to detail the 
inner workings of the lU. Instead, it provides 
a brief understanding of each algorithm's effec- 
tiveness. The RTS User Manual can be con- 
sulted if a more detailed explanation of the im- 
age understanding technologies are required. 

One of the challenges in developing the HCI for 

profile creation was the ability to handle a mul- 
titude of algorithm specific components without 
further complicating the user interface. Rather 
than adding these components to the profile 
creation menu, a more efficient solution is to 
keep as many elements as possible in a common 
structure, then branch into algorithm specific 
parameter menus as necessary. 

1.3    Profile Execution 

The lA can execute lU on incoming imagery 
from the profile main menu. This menu con- 
tains all of the profiles owned by the current 
user, along with a status for each profile. The 
status of a profile determines whether it will be 
executed during the execution stage. Profiles 
with a status of ON are considered to be active. 
Profile execution consists of executing multiple 
profiles on multiple imagery in one session. An 
example of the profile main menu can be seen 
in Figure 1. 

In designing the user interface for the profile ex- 
ecution stage, there are some important factors 
that must to be considered. First, the lA needs 
to have an easy way to select a group of tar- 
get imagery. This imagery, however, must also 
be consistent with each algorithm's individual 
constraints. 

This problem was solved by invoking an addi- 
tional menu whenever a profile execution oc- 
curs. This menu allows the user to select a sub- 
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Figure 1: A sample profile main menu containing multiple profiles. 

set of imagery by inputing a date range. An 
example of the Additional Constraints menu is 

shown in Figure 2. 

When the lA enters a date range, an automatic 
query is sent to the RTS Database[5]. This 
query not only retrieves all imagery within the 
given date range, it also filters out imagery that 
does not match individual constraints of the 
algorithms involved in execution. One exam- 
ple might be an algorithm that is only effective 
when run on a given sensor (EO imagery, for 
example). Furthermore, incoming imagery may 
not contain the target structure or region of a 
profile. Images not containing the object of in- 
terest are discarded automatically. 

1.4     Conditions Affecting Algorithm 
Execution 

In addition to algorithm constraints, there are 
other imagery conditions that may inhibit al- 
gorithm execution. Three main concerns were 
identified and accounted for during the design 

of the profiles system. 

In order for an algorithm to execute to its fullest 
potential, a clear line of visibility must be avail- 
able in the given image.    In some cases, the 
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Figure 2: Sample additional constraints menu. 

viewpoint to the lA's region of interest may be 
obstructed by another object. Before profile ex- 
ecution occurs, the lA has the option of check- 
ing visibility conditions automatically, so that 
algorithms will only be executed on areas with 
a defined viewpoint of the entire object. 

Even if there is a clear line of visibility to a tar- 
get object, shadowing conditions may also in- 
hibit some algorithm executions. The lA has 
the option to run an automatic shadow check- 
ing algorithm on each image that lU will be run 
on. If the object of interest is shadowed in a 
given image, the profile system will not execute 
any algorithms on that object in that particu- 
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Figure 3: A typical quick look frame, prepared for the image analyst. 

lar image. Both the shadow checking and the 
visibility checking algorithms were written by 
General Electric CRD. 

Finally, another frequent problem affecting al- 
gorithm execution is cloud conditions. In aerial 
imagery, cloud conditions are a chronic problem. 
In a real-time scenario, an lA will not have time 
to review each image before execution is done. 
Instead, a two part cloud detection system was 
designed as part of the profiles system to pre- 
vent algorithm executions on imagery where the 
target regiorl is cloud covered. 

2    Visual Representation Of 
Algorithm Results 

Once profile execution is complete, the lA must 
have an effective way of viewing the results. In 
the RADIUS testbed, every algorithm generates 

two important results. The first result an algo- 
rithm computes is a numeric change level, rep- 
resenting the amount of change found in a ge- 
ometric object or region. This value is relative 
to the geometric model itself, or a previous im- 
age. The second result is the algorithm's con- 
fidence level. This number, scaled between 0.0 
and 1.0, represents an algorithm's confidence in 
the results it has produced. Using these two fac- 
tors, the RTS is able to make a boolean decision 
about whether change has occurred in a region. 

2.1    Vievi^ing Results 

Once execution has completed and results are 
generated, visual representation of these results 
can be difficult. Given that each algorithm is 
responsible for producing its own change and 
confidence levels, consistency is a serious prob- 
lem. 
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Figure 4: Sample profile results menu. 

Rather than limiting our choices, the RTS has 
been implemented so that results are presented 
to the user in a variety of ways. The first way 
is known as quick look[4]. 

2.1.1 The Quick Look Display 

In the intelligence community, a typical lA may 
have to examine a large amount of different im- 
agery in a very short time frame. In the quick 
look paradigm, an lA is able to quickly scan an 
image previously processed by lU, and deter- 
mine whether or not change has occured in his 
region of interest. 

This is done by representing each structure 
or geometric region through a simple color 
scheme; red represents change, green represents 
no change, and light blue represents an ambigu- 
ous result. Through quick look, an lA can iden- 
tify trouble regions in an image very quickly, 
saving him time and frustration. Figure 3 shows 
a sample quick look image. This image was 
the result of a series of building validation algo- 
rithms. Each wire frame outline in a quick look 
image represents a profile result. In this exam- 
ple, one building was flagged as changed, while 
no change was found in the four other struc- 
tures. 

2.1.2 Analyzing Algorithm Results 

While the image based quick look system is 
available for fast, boolean results, many times 

it becomes necessary to analyze results in more 
depth. This can be done by using the profile 
results menu, as shown in Figure 4. 

The profile results menu displays detailed infor- 
mation about each individual result. The list of 
results is pre-sorted by priority level, which was 
set during the profile creation phase. The lA 
may also sort the results on a variety of other 
values. 

Each result is displayed in the results menu 
with corresponding values for the image iden- 
tifier, amount of change, confidence level, prior- 
ity, count (if applicable), and change boolean. 
There is also an "Unable to process" field, which 
would only be populated if the result was unable 
to run (in cases such as cloud cover or shadow- 
ing conditions). 

2.1.3    Display of Historical Results 

In order for an lA to accurately evaluate a re- 
gion of interest, it may become necessary to 
view the results of previous executions on the 
same region. Through the RTS Database[5], 
historical results can be accessed and assessed. 
These historical results can be viewed in com- 
bination with current data to give the lA his- 
torical trends. Through the RTS, the lA may 
graph these trends using either a bar graph or 
a line graph. An example of the historical re- 
sults menu is shown in Figure 5. The line graph 
in this figure represents the amount of change 
the lU found on a storage warehouse feature, 
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Figure 5: Sample profile results menu, showing histogram information. 

graphed chronologically. 

2.2    Interpretation of Change 

The biggest dilemma in displaying profile re- 
sults to the user is the question of how to vi- 
sually represent change. When considering rep- 
resentation of change, one must also take the 
algorithm's confidence level into consideration. 
An algorithm that returns a high level of change 
with a low level of confidence may not be valu- 

able to the lA. 

This problem is compounded by the fact that 
each individual algorithm is responsible for gen- 
erating its own confidence level. Some algo- 
rithms grade themselves harshly, while others 
are very liberal. 

In the RTS, it was determined that an lA should 
have the ability to pre-set a minimum confi- 
dence level for each profile during the profile cre- 
ation phase. Approaching the problem in this 
manner solves two problems. 

First, results that fall below the confidence ex- 
pectations of the lA are each flagged as an am- 
higuous result . This gives the lA the flexibility 
to investigate the result as he deems appropri- 
ate. 

Secondly, the ability to set a minimum confi- 
dence level on a per algorithm basis allows the 
lA to evaluate the confidence level of each pro- 
file on a per algorithm basis. Algorithms that 
are known for being liberal in their confidence 
level grading can be pre-set to a higher confi- 
dence level for more rigorous screening. Algo- 
rithms that fail to meet expectations with re- 
gard to confidence level are flagged in light blue 
in the quick look display. 

Finally, an lA may also set a sensitivity level for 
a feature profile. This value represents the level 
of change deemed to be significant, allowing pre- 
algorithm tailoring and giving the lA control of 
the significance of flagged results. 
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3    Conclusions References 

A significant challenge on RADIUS was to de- 
velop a consistent, friendly interface to lU sys- 
tems that were inherently complex. To achieve 

this goal, feedback was received from a vari- 
ety of sources. Lockheed Martin received input 
from our sponsor, the programming staff, and 
most importantly, image analysts, themselves. 

In creating a user friendly interface, it was de- 
cided that a common interface was the best way 
to achieve familiarity. In pushing toward this 
goal, we have designed and implemented a com- 
mon lU framework that rarely diverges to algo- 

rithm specific elements. 

The RTS profiles system also uses a top-down 
design, and avoids putting too many buttons 
on a single menu. Multiple buttons and wid- 
gets on menus confuse and frustrate the user, re- 
ducing his efficiency. Alternatively, a top-down 
menu approach allows the user to proceed down 
a menu from beginning to end. Menu buttons 
are kept at a minimum, to reduce menu clutter- 
ing. 

Finally, the quick look user interface system al- 
lows image analysts to see lU algorithm results 
in a quick and efficient manner. This is perhaps 
the RTS profiles system's greatest achievement 
in increasing an image analyst's efficiency and 
ability to do his everyday job. 
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Abstract 

In this paper we introduce a framework 
for correspondence-less planar image align- 
ment using global geometric descriptors 
of image primitives. The alignment is 
achieved by appropriately parametrizing 
the required transformation between im- 
ages and estimating these parameters. The 
parameters are estimated by comparing 
the aggregate descriptors of the geomet- 
ric properties of primitives in the two im- 
ages. This comparison is carried out in 
an estimation-theoretic framework. We 
define the concepts of parameter observ- 
ability and separability which are used to 
guide the choice of geometric descriptors. 
The method proposed in this paper has a 
wide range of applications including multi- 
sensor image registration, mosaicking and 
pose estimation. Examples of experiments 
on real data are provided. 

1    Introduction 

The alignment of two images amounts to placing the 
images in a common frame of reference. The require- 
ment of alignment arises in a wide range of applica- 
tions including multi-sensor data fusion, change de- 
tection, pose recovery and object recognition. For 
many such image understanding applications analy- 
sis is possible only if the image data are co-aligned, 
or "registered", with respect to a common coordi- 
nate system. 

Most methods of alignment (also referred to as reg- 
istration or positioning) are characterized by their 
choice of a feature space and the similarity metric 
used to determine the geometric transformation re- 
quired for alignment. This is typically achieved by 
modeling the geometric transformation between the 
two images and estimating the transformation using 

information common to both images. The estimated 
transformation is then used to bring one image into 
alignment with the other. Image alignment has been 
widely investigated and a vast amount of literature 
is available. A good survey can be found in [Brown 
92]. 
Typically, the transformation is computed using ei- 
ther a feature-matching technique [Li et al. 95] or a 
search strategy [Viola and Wells 95; Fua and Leclerc 
94]. Feature-based methods traditionally rely on 
establishing a feature correspondence between the 
two images. Such correspondence-based methods 
first employ feature-matching techniques to deter- 
mine corresponding feature pairs from the two im- 
ages and then compute the geometric transformation 
relating them, typically using a least-squares ap- 
proach. Their primary advantage is that the trans- 
formation parameters can be computed in a single 
step and are accurate if the feature matching is reli- 
able. Their drawback is that they require a heuris- 
tic method of feature matching that is specific to 
the domain of the problem. The problem is further 
compounded in the multi-sensor scenario where the 
common or "mutual" information may manifest it- 
self in a diff'erent manner for each image since dif- 
ferent sensors record different physical phenomena in 
the scene. For instance, an infra-red sensor responds 
to the temperature distribution of the scene, whereas 
a radar responds to material properties such as di- 
electric constant, electrical conductivity, etc. Fea- 
ture matching is also computationally expensive due 
to the well-known correspondence 'problem (given N 
features in each image, the number of possible one- 
to-one feature mappings is TV^!, out of which only one 
is correct). Heuristics can be employed to reduce 
the number of potential mappings, but the problem 
still remains intractable, unless the two images are 
already approximately aligned or the number of fea- 
tures is small. 

Search strategies are difficult to characterize, suffer 
from the problems of local minima and require good 
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initial guesses. While there has been some work 
on alignment without correspondence, it either deals 
with alignment of a single object (e.g. [Kumar and 
Goldgof 96]), needs good initial guesses (e.g. [Fua 
and Leclerc 94]) or recovers only translation [Basu 
and Aloimonos 90]. 

However, since the underlying scene giving rise to 
the shared information is the same, certain geo- 
metric properties are preserved across multi-sensor 
data. Although the corresponding pixels may have 
different values, similarity and dissimilarity of pixel 
groups or regions is usually preserved. Regions are 
either homogeneous or can be easily distinguished 
in either image. Also man-made objects in a scene 
such as buildings and roads in aerial imagery and 
implants, prostheses, metallic probes, etc. in medi- 
cal imagery give rise to features that are likely to be 
preserved in multi-sensor images. 

The methodology proposed in this paper alleviates 
these limitations by making fewer implicit assump- 
tions. Also, the use of global distributions of geomet- 
ric properties makes this method more robust with 
regard to problems of occlusion, clutter and errors 
in low-level processing. Since the geometric prop- 
erties of image primitives like points, lines, curves, 
etc. remain relatively stable, they are often suffi- 
cient to determine the transformation between the 
images. In the remainder of this paper we shall as- 
sume that an image consists of a collection of such 
primitives. In Section 3, we describe how alignment 
can be achieved by relating the global distributions 
of specific geometric properties of the two images. 
This is done without explicit feature matching or 
searching over a multi-dimensional parameter space. 
Instead, we relate the geometric properties of one 
image to those of the other via the transformation 
parameters. This allows us to build global distribu- 
tions of the geometric properties which can then be 
used to align the two images. 

The remainder of this paper is organized as follows. 
Section 2 defines the problem of image alignment 
and the solution framework is described in Section 3. 
In Section 4 we show the solutions for specific trans- 
formation models. In Section 5 we present some 
results and finally we discuss issues related to our 
method in Section 6. 

2    Problem Definition 

The scene being imaged is considered to be embed- 
ded in a plane (denoted by Q) and the image is as- 
sumed to be generated by viewing this scene using 
sensor fk- Let us denote 

where 7j denotes the Hh image of a scene Q using the 

kth sensor and Pi is the relative sensor orientation. 
The images can be modeled as follows: 

Consider a pair of images I and / obtained by imag- 
ing the scene fi.   If fii and ^2 are portions of the 
scenes being imaged, we have 

/ = ri(fii), Qi Cfi 

where 

fii nQ2 7^ 

Without loss of generality, we can designate / as 
the "base frame" (i.e. frame of reference). Thus the 
problem of image alignment can be stated as follows: 

Given images I and I of Q,, compute the composite 
transformation T =T\ o T2'   such that 

r:T2(fiinQ2)^Ti(fiinQ2). 

In practice, the form of T is chosen based on expe- 
rience and knowledge of sensor geometries and the 
nature of the scene. 

3    Geometric Framework 

As mentioned in Section 1, the primitives in different 
images can be of various types, such as points, lines, 
edges, curves, regions, etc.* We assume the images 
to be composed of collections of geometric primitives 
p of a given type k. Therefore 

= U {pf ^} 
Henceforth we shall drop the superscript k for con- 
venience. Every primitive has geometric properties 
associated with it. Typical properties are position, 
slope, curvature, length, area, etc. We define the 
following in order to study the relationship between 
primitive properties and transformation parameters. 

Definition 1 {D, D) is an operator pair such that 

where p,p are image primitives in images 1,1 re- 
spectively and g(T) is a function of the transforma- 

tion T. 

If the transformation T is characterized by n param- 
eters 01,02, • • -,«„, then the function g{.) is also a 
function of these n parameters. If the function g{T) 

*The types of primitives present are typically deter- 
mined by the nature of the scene being imaged. For 
example, lines would be predominant in an urban or in- 
dustrial scene whereas curves would be predominant in 
medical images or natural scenes. 
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is of a known form and can be recovered from the op- 
erator pair {D, D), then g(T) is said to be observable. 
Hence to be able to compute the transformation 

we need n operator pairs that make 0,1 ,^2, 

observable either the parameters {ai,a2, ■ ■ ■, a„} or 

{91J92,- '' tOn} which are n independent functions 
of {ai,a2, • • -,«„} such that T = Tg^^g^^...^g^. 

Image 1 

^ 

Slope angle distribution 

-100 0 100 
Angle (In degrses) 

Slope angle distribution 

-100 0 100 
Angle (in degrees) 

Figure 1: Parameter observation through distribu- 
tions. Image 2 is a Euclidean transformed version of 
Image 1. 

Estimated rotation angie 

-150 -100 -50 50 100 150 

Figure 2: The peak is the estimated angle of rotation 
in degrees. 

As stated above, we can relate the geometric prop- 
erties of image primitives in the two images and 
thereby recover the transformation between them. 
Consider a primitive p in image I and its corre- 
sponding primitive p in image /. The geometric 
properties of p and p are related to each other 
through the transformation T. For example, in 
Fig. 1 we have an image and its Euclidean trans- 
formed version. The slope angles at any correspond- 
ing point pair (p,p), as defined above, would be 
related through the rotation angle 6. As can be ob- 
served in Fig. 1, the two distributions can be used to 
recover the rotation angle 6 (see Fig. 2) by simply 
computing the shift between the slope angle distri- 

butions of the two images. It may be noted that in 
such a scenario we do not require any knowledge of 
matches of features or primitives. Instead the dis- 
tributions are computed in an independent fashion 
using each image. Such a notion of parameter esti- 
mation by comparing global distributions of geomet- 
ric properties can be extended to other parameters 
of the transformation. To formalize this notion we 
now need to define the concept of a descriptor set 
and its corresponding probability function. 

As before, (p,p) denote corresponding primitives in 
the two images I and I respectively. 

Definition 2 M{I) = {L»(p)|Vpe7} and Mil) = 
{D(p)|Vpe/} are defined to be the descriptor sets of 
images I and I respectively. V{^A) and V{M) de- 
note the probability measures of the descriptor sets 
M and M respectively. 

The Maximum Likelihood Estimator (MLE) for the 
parameter g{T) can be stated as follows ; 

Given an image pair I and /, and an operator pair 
{D{'p),b{Y>\g{T))), the Maximum Likelihood Esti- 
mator (MLE) for g{T) is 

arg  mm\\V{M)-V{M\g{T))\\^ (1) 

where V and V are the observed probability mea- 
sures of A^ and M respectively and || . ||^ is the Ln 
norm for some n > 0. The probability distribution 
function (pdf) of the observation noise is assumed 
to be monotonically decreasing with a mode at zero. 

In cases when the parametrization is of a form such 
that the descriptors are linearly related, the observed 
parameter is said to be separable. For example, un- 
der the Euclidean subgroup of transformations, if 
the parameter to be estimated is the rotation angle 
(denoted by A^), then as described above the oper- 
ator pair is defined to be the slope angles of points 
on lines or curves, i.e. {D,D) = {9,6). Here the 
relationship can be simply expressed as 

This separability allows the use of fast methods like 
cross-correlation to compute the observed parameter 
M. 

Often it is easier to impose an ordering on the com- 
putation of the parameters which simplifies subse- 
quent computational stages. For example, under 
similarity, it is easier to compensate for scaling and 
rotation before computing translation. It must be 
noted that the operators have to be chosen in a man- 
ner that is independent of the parameters of T not 
accounted for by g{T). For example, to compute 
scale under a similarity transformation, we can use 
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the radius of curvature as an operator, since it is 
independent of the rotation and translation param- 
eters (Subsection 4.2). However, such a separation 
of the parameters may not always be possible (e.g., 
under the afhne group of transformations). In that 
case, the transformation has to be reparametrized in 
such a way that we can independently estimate the 

new parameters. 

An important point to note is that the proposed 
method is not a stochastic minimization technique. 
As will be shown in the following section, the trans- 
formation can be reparametrized such that g{T) has 
a finite range, and since all descriptor measures are 
finite, the distribution functions have finite support. 
This in turn implies a fixed amount of computation 

at each stage of estimation. 

The geometric properties used to compute the pa- 
rameters depend on the types of image primitives. 
For continuous curves we use differential properties, 
whereas for discrete points and lines the correspond- 
ing geometric descriptors are discrete in nature. In 
the sections that follow we shall give examples of the 
use of both discrete and differential-geometric prop- 
erties to recover the parameters under observation. 

4    Transformation Models 

Throughout this section we shall denote the points 
in the first image by p = {x,yf and those in the 
second image by p = {x,yf ■ In the following sub- 
sections, we shall develop solutions for some trans- 
formation models. It may be noted that the points 
are associated with specific image primitives like im- 
age points, lines, curves, etc. The transformation 
model is 

p   =   Tp   +   t (2) 

where t = {t^,tyY is the 2-D translation vector and 
the matrix T is a 2 x 2 invertible matrix. Henceforth, 
matrix T will be referred to as the transformation 
matrix. Using curves as primitives will be referred 
to as the differential case and using points and lines 
will be referred to as the discrete case. 

4.1    Euclidean 

A simple 2-D transformational subgroup is the Eu- 
clidean model consisting of a rotation {6) and two 
translational parameters {tx,ty). Here we have 

cos a      sm f 
— sin 6    cos 9 (3) 

In the differential case, to compute rotation we 
choose the operators (£>(?) ,-D(p)) to be the slope 
angles of points of the curves in the two images. For 
the example shown in Fig. 1, the rotation value can 

be computed using the MLE defined above. In the 
discrete case the rotation parameter is observable 
through the slope angles of lines. It may be noted 
that in this case, the function g{T) takes on the sim- 
ple form g{T) = 9. Having compensated for the 
rotation between the images, we can compute the 
^-direction translation t^ between the two images 
using D(p) = x(p) and £>(p) = a;(p), where a;(p) 
is the x-coordinate of point p. The j/-component of 
translation can be computed in a similar fashion. 

4.2 Similarity 

To compute the similarity transformation, we need 
to compute an additional scale parameter s. Recall- 
ing that the radius of curvature [R) of a point on 
a curve is directly proportional to the scaling pa- 

rameter, we have R{v) = sR{p). From this we can 
deduce that £>(p) = ln(E(p)) and D{p) = \n{R{p)) 

in the differential case. In the discrete case we can 
use the distance (d) between a pair of points instead 
of the radius of curvature, in which case d = sd. 
Hence we have the simple additive relationship 

Dip) = D{p) + \nis) 

It may also be noted that we can compute the scal- 
ing and rotation parameters of the transformation 
independently. 

4.3 Quasi-afRne 

We now look at the case of a quasi-affine transfor- 
mation which we define as 

P   = 
Sx     0 
0     s. y 

cos 0      sin 6 
— sin 6    cos 0 

p   +   t 

(4) 

In this case, the curvature and slope angles 
are no longer independent. However we can 
reparametrize (4) as 

y\S3;Sy 
cos f 

— sin ( 
sin( 
cos ( 

(5) 

where p^ = ^. 
To compute the determinant of the transformation 
(|T| = |sa;S^|) in the differential case, let us assume 
that the curves are parametrized according to their 
arc-length representations [Bruckstein et al. 93]. 
Let us denote by s and s the arc-length indices of 
the curves in images / and I respectively. We de- 
fine the 2 X 2 matrices P and P as P = [p(s),p(s)] 
and P = [p(s),p(s)] for point pairs (p,p), where 
the dots denote derivatives with respect to the arc- 
length parametrization of the curve. 
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From the definition of the transformation, we get 

P = TP =^ In \P\ = In \s^sy | + In |P| 

Therefore we use D{p) = ln|[p,p]| and D{p) — 
ln|[p, p]| to compute the determinant of the trans- 
formation T. It is important to observe that in the 
above analysis, we do not actually need to compute 
an "arc-length" reparametrization of the curves that 
is invariant to the transformation. It suffices to com- 
pute the descriptors for a sufficiently dense set of 
points on the curves. This can be achieved by us- 
ing local fitting of curves ([Bruckstein et al. 93], 
for example). By scaling the curves we get the new 
relationship 

P    0 

0    } 

cos 0     sin 9 
— sin 6    cos 9 (6) 

The rotation angle 9 can be computed in a manner 
invariant to the ratio of the scales p^. To do this we 
use the relationship 

:.■_     sin(2^) ,.,      .o, ,„., , . 
xy = —^(r - X ) + cos{29)xy (7) 

The two sides of (7) can be equated to -D(p) and 
D{p,9) and 9 can be solved for. 

The parameter p, now satisfies the relationship 

\P' 
cos(^)a;+sin(^)T/   | 

— ^m{d)x'\-cos{9)y I 

which implies that 

/n|?| = 2/n|/9|-|-/n| cos(g)x-t-sin(9)y   i 
— sin{d)x+(zos{9)y 1 

(8) 

(9) 

Thus we can also solve for the parameter p and hence 
we can recover the transformation matrix T. 

In the discrete case we similarly note that using a 
pairs of lines as the primitives, the rotation angle 
{9) is observable but not separable. Consider a unit 
vector V at an angle </>, given by 

COS( 

sine 

Under the transformation it becomes 

0 cos f 
— sin( 

sin^ 
cos 6 

(l/p)cos(<^-f-e) 
psm{4> -\- 9) 

Let m = tani^ be the slope of v.   By dividing the 
^/-component of v by its ^-component, we get 

tan^ = p^tan((f) + 9) (10) 

In order to observe 9, we need to eliminate p from 
the above equation. This can be achieved by taking 
the ratio of two line slopes. Let lines with slope 
angles (f> and 4> be transformed into lines with slope 
angles 4> and V'.Then 

tan^ _ tan((/> -f- 9) 

tan ip      tan(t/' -|- 9) (11) 

Thus given line pairs from each image, the only un- 
known in (11) is the rotation angle 9. After some 
simple manipulations, we obtain the following ex- 
pression for 9: 

9 = (l/2)sin"^(/fcsin(9!. - V)) - (pf^ - ip/2 

inhere 

k = 
tan (p + tan ijj 

tan <f> — tan tp 

After observing 9, image / can be rotated accord 
ingly, and (10) simplifies to 

p^ tan (f> ta.n(f) (12) 

Using (12), p can be observed in a separable fashion. 

Finally it may be noted that the scaling and transla- 
tion between the two images can be determined for 
the differential and discrete cases as in the case of 
the similarity transformation. 

4.4    AfRne 

In the more general case we have an affine transfor- 
mation between two images which can be described 
by the equation 

a    b 
c    d 

(13) 

where the transformation matrix T is a non-singular 
2x2 matrix. The computation of the four indepen- 
dent parameters of the transformation matrix T can 
be accomplished in the differential case in the fol- 
lowing manner. 

The value of \T\ can be computed in a manner iden- 
tical to that in the previous section. Thereafter, we 
need three more independent equations to solve for 
the transformation. 

We can derive the simple relationship 

X       ax + by 

X      ax + by 

By a simple reparametrization of the parameters 
(a, 6) = \/a'^ + 62(sin(<^), cos(</i)) in the above equa- 
tion, we get 

X      sm{(j))x + cos{(p)y 
x      sm{(l))x + cos(0)2/ 

(14) 
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Figure 3: On the left are some frames from a sequence of images. The mosaic of these images is shown 

the right. 

on 

from which we can solve for the ratio 0/6 using the 
left-hand side of (14) for ^(p) and the right-hand 

side for D{p,g(T)). 

By similar analysis, we can recover the ratio c/d us- 
ing the relationship for y/y. Finally, since we now 
know the ratios a/b and c/d we can observe that 

h\ fi + y 
d) ^x + y 

from which the ratio b/d can be computed in 
a separable fashion. It may be noted that the 
reparametrization of (a, 6) and (c, d) results in a fi- 
nite range of possible estimate values of the new pa- 
rameters (i.e., the range of (j) is [-TT, TT]). 

For the discrete case we adopt the following method- 
ology. Using the QR transformation from Hnear al- 
gebra, the transformation can be written in terms of 
six parameters (rotation 9, translation t^, ty, scale 

ratio p = ,/^, scale A = \/\sxSy\ and skew of): 

p   =A 
1/p   0 
a     p 

■ cos 9      sin 6 
— sin 9    cos 9 

p   +   t 

(15) 
Proceeding as in the previous case, it can be shown 
that the rotation angle is observable using triplets 
of lines as primitives. If a primitive pair consists of 
lines at slope angles {(l>,'>p,)^) and {^,ip,\), we can 
show that the rotation angle that is consistent with 
the feature pair is given by 

9 = tan 
— cos \ + k cos ip 

sin A — A; sin ip 

where 
(tan 4> — tan i>) sin((;i — A) 

(tan ^-tan A) sm{(j) - ip) 

Once rotation is compensated for, the scale ratio is 
separably observable using line pairs as features, ac- 

cording to 

tan ^ — tan i/J = p^{ta.n (f> — tan i>) 

After compensating for the scale ratio, the skew is 
separably observable from line slopes, according to 

tan <j> = tan <f) + a 

The scale and translation are determined as in the 
previous cases. 

5    Results 

In this section we present the results we have ob- 
tained on several sets of images. The use of both 
discrete and differential-geometric properties is il- 
lustrated in this section. The choice of image prim- 
itive depends on the type of images being aligned. 
In practice, urban areas have mostly straight lines 
and hardly any curves. In such cases it is difficult 
to compute the differential properties whereas dis- 
crete properties can be easily extracted. The con- 
verse applies for natural scenes where straight edges 
are seldom available. The left half of Fig. 3 shows 
some of the frames from a sequence of images. The 
right half of the same figure shows a mosaic gener- 
ated using the sequence. As can be observed there 
is little or no overlap between images that are well 
separated in the sequence. However, since there is 
overlap between adjacent frames, we can register all 
the images to a common frame of reference, thereby 
generating a panoramic view of the scene. 

Fig. 4 shows two aerial images of a scene obtained 
by using sensors that operate in diff'erent ranges of 
the electro-magnetic spectrum. The image on the 
left was obtained by the MODIS Airborne Simulator 
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Figure 4: Aerial images obtained using different sensors.  Tfie image on the left is an MAS image and the 
one on the right is a TM image. 

i^iS^^ib^-^''' 

Figure 5; Overlayed aerial images: The TM image 
of Fig. 4 is overlayed on the MAS image of the same 
figure. 

'**^ 
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tl»*^ 
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Figure 6: Alignment of a set of aerial images using 
a similarity model. 

(MAS) and the corresponding image on the right is 
one of the bands of the Thematic Mapper (TM). 
Fig. 5 shows the TM image overlayed on the MAS 
image. A quasi-affine model was used for computing 
the transformation between the two images. 

Fig. 6 shows the registration of images of the Mojave 
desert obtained from a balloon flying over the region. 
Adjacent pairs of images were registered and the im- 
ages were aligned in a common reference frame. In 
this case the similarity model was sufficiently accu- 
rate. The registered image set shows the correct 
alignment of features like roads, rock outcrops, etc. 
in spite of the presence of non-overlapping structure 
in the image pairs. 

As a final example of the differential case, we show 
the registration of two MRI images (Fig. 7). The 
image on the left in Fig. 7 is a proton density MRI 
image and the one in the middle is the corresponding 
T2-weighted image with an arbitrary alignment. In 
the image on the right we show the alignment using 
an affine model of one pair of the contours from the 
two different modalities. 

We illustrate the performance of the discrete method 
on a multi-sensor data set, containing a SAR-visual 
image pair (Fig. 8) with viewpoint and photometric 
differences. The final result after applying all the 
stages of transformation is shown by overlaying the 
contours of the visual scene on the SAR image. 

All the above examples demonstrate the effective- 
ness of image alignment using our method. 

6    Discussion 

A significant advantage of our methodology is its ap- 
plicability to a wide variety of scenarios. This is pos- 
sible since we use the same distributional framework 
of geometric properties to estimate all the parame- 
ters. Moreover the use of a distributional approach 
provides robustness with respect to errors in low- 
level processing. This results in a graceful degrada- 
tion in parameter estimation with increased occlu- 
sion, which is desirable. In fact, with enough domi- 
nant structure in the images, we have observed very 
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ALIGNED MRI CONTOURS 

Figure 7: MRI image registration : The image on the left is a proton density image, the one in the middle 
is T2-weighted, and the image on the right shows the registration of a single contour of the two modalities. 

Figure 8: The leftmost and center images are SAR and visual images, respectively.   The rightmost figure 
shows the registration achieved, by overlaying the visual contours on the SAR image. 

little degradation in performance in the presence of 
occlusion. 

Since we use one-dimensional comparisions as our 
means of parameter estimation, our method is sig- 
nificantly faster than voting schemes that are multi- 
dimensional, such as the Hough transform, etc. 
Also, unlike the Hough scheme, we do not "hypoth- 
esize" any matching pairs; instead, all computations 
are carried out independently on individual images. 
Such a separation of information is very useful since 
it allows us to use better comparisions as compared 
with the "blind" methods of multi-dimensional vot- 
ing schemes. For example, once we have determined 
the appropriate rotation for a similarity model, the 
fact that we have compensated for the rotation can 
be exploited during the computation of the scale. 
Thus the comparision metric can be modified in such 
a way that we do not "hypothesize" pairings of prim- 
itives that have vastly difi'erent slope values. Such a 
progressive filtering of the possible combinations has 
proven to be very useful in scenarios with significant 
amounts of non-overlap. This has resulted in more 
robust estimation of the relevant transformation pa- 
rameters. 

Interestingly, a straightforward comparison of the 
functional similarity of distributions can determine 

the extent of image overlap. Also, while the true 
MLE is unique, in practice multiple hypotheses 
(peaks) arise due to the presence of clutter. Such 
a scenario often occurs when dealing with urban 
scenes which often contain rectangular structures 
(buildings, etc.) that give rise to spurious peaks 
that are 90 degrees away from the true rotation max- 
ima. Under such circumstances, disambiguation of 
the hypotheses can be achieved by using a measure 
of quality that is independent of the parameter being 
estimated. Another method is to use a tree descent 
strategy that combines the information extracted at 
different stages to disambiguate between multiple 
hypotheses. 

Finally, it may be noted that in certain degenerate 
situations the true MLE may not be visible.^ Under 
such situations the "flatness" of the descriptor dis- 
tributions indicates the non-existence of a solution 
since all hypotheses are equally likely. 

As our examples illustrate, the theoretical frame- 
work we have developed performs well for real im- 
ages. Moderate amounts of clutter and occlusion do 
not affect the geometric properties of the primitives 

'For illustrative purposes, consider the rotation of a 
circle. The distributions of slope angles are uniform, 
indicating the non-existence of a unique MLE. 
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that are common to both images. Hence the descrip- 
tor distributions do effectively "capture" the infor- 
mation relevant to parameter estimation. The same 
applies for images vi^ith small amounts of overlap. 
Under such circumstances we have noted that an it- 
erative refinement of the transformation estimate is 
useful. The estimates are used to "window" the im- 
ages so as to increase the fraction of overlap and the 
parameters are estimated again. In many cases the 
solutions converge in a few iterations. This is gen- 
erally true unless the distributions are "extremely" 
corrupted due to the presence of clutter and non- 
overlapping components. 

A limitation of our method is the requirement of a 
planar scene, an assumption which would be violated 
in the presence of large perspective effects due to 
three-dimensional structure. We need to investigate 
the extension of our method to the non-planar case. 
However, if the perspective effects are tolerable, our 
approach can be used to get an initial alignment. 

7    Conclusion 

In this paper we have described a framework for 
alignment of images without the explicit use of cor- 
respondence. We have demonstrated the effective- 
ness of using a distributional description of geomet- 
ric properties of images in achieving alignment. We 
argue that while feature correspondence is gener- 
ally intractable for many situations, especially multi- 
sensor image pairs, our method can very effectively 
handle such scenarios due to the use of image prop- 
erties that are relatively invariant to changes due to 
multiple sensors, change in illumination direction, 
etc. Also a sequential estimation of one-dimensional 
parameters results in faster and more robust estima- 
tion compared to multi-dimensional voting schemes. 
We are currently investigating methods of extend- 
ing the domain of applicability of our method and 
of further refining the estimation process. 
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Abstract 
We present a method for finding the pose of an 
object in the world by registering a 3D model 
of the object to multiple images of the object 
taken from different positions by maximization 
of mutual information. Using multiple views of 
the object enables the registration process to 
converge on the three dimensional pose much 
more accurately than is possible from using just 
a single view. Since this method uses mutual 
information, the model of the object need only 
contain information about the shape of the ob- 
ject and need not know any details about other 
surface properties. Furthermore, this method is 
robust with respect to variations of illumination 
in the images. The method does not attempt to 
find any correspondences between pixels in the 
images, so the images of the object can be ob- 
tained from drastically different views and un- 
der different lighting conditions. 

1    Introduction 

Accurately computing the alignment of a 3D 
model of an object to an image of the object 
is an important problem in many computer vi- 
sion applications. Many images of the same ob- 
ject can look very different, depending on object 
pose, fighting conditions, and other objects in 
the image. Therefore, the problem of computing 
the registration is a challenging one. One of the 
advantages of a mutual information approach 
to registration is that it is robust to many of 
the unknowns that can occur in an image, in- 

cluding fighting conditions and occlusions [Vi- 
ola and Wells, 1995]. Viola and Wells used this 
approach to compute a very accurate registra- 
tion of a 3D model of an object to that object's 
position in the image plane. However, given 
that only one image was used to register the 
object, the registration found was not very ac- 
curate along the direction of the optical axis. 
Their error for registrations of a plastic skull 
were mostly under 2mm in the x and y dimen- 
sion, but ranged from 5mm to almost 15mm 
in the z dimension [Viola and Wells, 1995]. A 
change in an object's x and y position is very 
noticeable in an image, while a shift in model 
position along the optical axis is difficult to see. 

However, many applications require more than 
just an accurate registration in the image frame; 
an accurate 3D pose of the object is often 
needed. For example, a surgeon might want to 
register a patient's head to his or her internal 
CT/MR scan in order to very accurately posi- 
tion the patient for radiation therapy. During 
neurosurgery, the surgeon might want to point 
a trackable probe at some position inside the 
brain, and have the system display the 3D po- 
sition of the probe in the CT/MR scan. Clearly, 
in these applications, being accurate in two di- 
mensions is not enough. The motivation be- 
hind performing a mutual information registra- 
tion using multiple views is to take advantage 
of the robustness in illumination variation and 
occlusion that mutual information offers, while 
also being able to accurately compute the pose 
of an object in three dimensions. 

625 



Figure 1: The first figure shows the initial random ahgnment of a test registration. The top two images show 

the views from the two cameras with randomly selected model points overlaid in red. The bottom two 

images show the model transformed by the pose and then projected into both image planes. The error 

associated with the initial pose is 50.8mm. The second figure shows the result of using both views to 

register the model. The error in this final pose is 3.1mm. 

2    Previous Work 

Much work has been done on the problem of reg- 
istering a 3D model of an object to the world po- 
sition of that object. Stereo methods of registra- 
tion have the potential to improve the alignment 
along the optical axis, since depth information 
can be computed. However, stereo is susceptible 
to difficulty in finding correspondences between 
pixels in the images. 

The difficulty in feature-based image registra- 
tion hes in the problem of extracting common 
features between the model and the image. For 
example, edges extracted from an image can be 
due to albedo change, surface normal change, or 
illumination change (i.e. shadowing). The only 
types of edges that could be extracted from our 
shape model are edges due to change in surface 
normal. However, many objects have varying 
albedo and also shadow themselves, which will 
lead to many spurious edges in the image. 

Fiducial registration involves manually picking 
corresponding points from the 3D model and 
the object. Accurately locaHzing these points is 
often difficult. For neurosurgical applications, 
Peters [Peters et al, 1996] reports fiducial ac- 
curacy about an order magnitude worse than 
frame-based methods of registration, mainly 
due to the difficulty in accurately localizing the 
fiducial markers in both the internal scan and 
also on the patient. 

3    Mutual Information Registration 

In this section we review the basic method of 
alignment by maximization of mutual informa- 
tion, which has been described previously, [Vi- 
ola and Wells, 1995] [Viola, 1995] [Wells et al., 
1995]. 

We seek an estimate of the transformation T 
that aligns the model u and image v by maxi- 
mizing their mutual information over the trans- 
formations T, 

f = aTgma.xI{u{x), v{T{x)))    . 

Here a; is a random variable that ranges over 
visible surface patches in the model. 

Mutual information is defined in terms of en- 
tropy in the following way: 

Iiu{x), v{T{x))) = (1) 

H{uix)) + H{v{T{x))) - H{u{x), v{T{x))) 

. H{-) is the entropy of a random variable, and 
is defined as H(x) = - Jp{x)hip{x)dx. The 
joint entropy of two random variables x and y 
is H{x, y) = - Jp{x, y) \npix, y)dxdy . Entropy 
can be interpreted as a measure of uncertainty, 
variability, or complexity. 

Information has three components. The first 
term on the right in Equation 1 is the entropy in 
the model. It is not a function of T. The second 
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Figure 2: The first figure shows the result of just using the first image to register, and the second figure shows 

the result of only using the second image to register. Notice that in both cases, the registration is good 

in the image plane of the view that was used but is off in the other view. 

term is the entropy of the part of the image into 
which the model projects. It encourages trans- 
formations that project u into complex parts 
of V. The third term, the (negative) joint en- 
tropy of u and v, takes on large values if u and 
V are functionally related. It encourages trans- 
formations where u explains v well. Together 
the last two terms identify transformations that 
find complexity and explain it well. This is the 
essence of mutual information. 

In [Viola and Wells, 1995] and [Viola, 1995] a 
stochastic gradient descent method was used to 
seek local maxima of the mutual information 
criterion, and [Wells et ai, 1995] described a 
gradient method that uses histograms to ap- 
proximate entropies and their derivatives. The 
latter method was used in the work reported 
here. 

4    Multiple View Registration 

The goal of the multiple view 2D-3D mutual 
information registration approach is to find the 
pose of the model that best describes all the im- 
ages of the object. The algorithm is very similar 
to that which is described in [Viola and Wells, 
1995]. To apply the mutual information regis- 
tration technique to multiple views, we perform 
a single-view registration "step" for each view 
in turn. 

The algorithm requires a point/normal model 
M of the object, and n images of that object 

{/i,...,/„}. Additionally, the relative poses 
(positions and orientations) of the n cameras 
must be known. Let Tj G {Ti,...,T„} be the 
transformation that takes a point in world coor- 
dinates into Camera j's coordinates. (Assume, 
for simplicity, that Ti is the identity, so world 
coordinates are the same as Camera 1 coordi- 
nates.) Finally, the algorithm requires an ini- 
tial pose FQ from which to perform the gradient 
ascent. 

At each iteration, for each view, the algorithm 
updates the pose in the direction of the gradient 
of mutual information for that view. 

P^Po 
For each iteration i, (i = 1,2,...) 

For each view j, (j = 1,..., n) 
Define: 

Pj <- PM 
Mj ^ TjPj 

Compute: 
APj ^VMI{Mj,Ij) 

Let: 
D = translaUon{Pj) 
R = quaternionjrotation{Pj) 
d = X(i X translation{APj) 
r = scale-rotation 

[quaternionjrotation{A.Pj), A^) 
Update: 

P'^{-) ^ r{R{-)) + D + d 

P^T. -ip, 
3 

The functions translation{P) and quaternion- 
-rotation{P) extract the translational and rota- 
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tional components of the pose P respectively. A 
rotation r can be represented as a rotation angle 
6 about some unit vector v {so r = {0,v)). The 
function scale jrotation scales the rotation angle 

6 such that scalejrotation{{9, u), Xr) = {KO, v). 
Note that in the first update step, P- is set to 
the result of composing Pj with a scaled APj 

5    Results 

In this section, we present the results of run- 
ning multiple registration experiments using 
two views of a model car. A 3D point-normal 
model of the car was derived from a computed 

tomography (CT) scan. Two cameras were 
placed approximately 1.5m apart aimed at the 
model car that is 0.5m in length and positioned 
about 1.0m away from the two cameras. The 
images of the car taken from the two cameras 
are shown in figures 1. A "correct" pose was 
determined by manually aligning the 3D model 
in both image frames. This pose will be used 
as the ground truth for the registration experi- 

ments. 

In order to evaluate a pose that is returned by 
the registration algorithm, it is necessary to de- 
fine a distance or error metric for poses. The 
error metric we used is defined as follows: 

EsD {P\P*,M)=maJc\\Pq-P*q\\ 
qeM 

The error in pose, given the "correct" pose P* 
and the model M, is the maximum distance 
between corresponding model points under the 
two transformations. 

5.1    Results on One Example Trial 

Starting with a initial random pose with an er- 
ror of 50.8mm, after 200 iterations of the algo- 
rithm, using both views, the final pose error is 
3.1mm. Figure 1 shows the initial pose and the 
final pose. As a comparative measure, the al- 
gorithm was run twice more, once using only 
the first view, and a second time using only 
the second view, again for 200 iterations start- 
ing from the same initial pose. The pose errors 
for these single-view registrations were 17.3mm 
and 26.8mm respectively. Figure 2 shows the 
results of these registrations.   Notice that for 

both registrations, the algorithm did a good job 
of locking down the registration in the x and y 
direction of the view it processed, but did not 
register the model very accurately in the z di- 
rection, or the direction of the optical axis. In 
both cases, this error in registration is notice- 
able in the other view of the car that was not 

used in the registration. 

5.2    Results Over Many Trials 

The two-view mutual information registration 

algorithm was run on the same car images (in 
figure 1) with 400 random starting model poses. 

Each random initial pose was with in ±15mm 
and ±10° in each dimension of the "right" pose. 
For each random pose, the algorithm was run 
for 200 iterations, once using only the first view, 
once using only the second view, and once using 
both views. The graph in Figure 3 shows the re- 
sults from these 400 trials, sorted by error. As 
seen in the graph, the two view registration pro- 
cess aligned the model within 3.5mm of the cor- 
rect pose slightly over 80% of the time. When 
the algorithm had only one view to work with, 
the registration error was significantly greater, 
and from the graph, it is even difficult to see 
when it converged near the correct solution and 
when it found an incorrect pose. 

However, one of the first observations and the 
main motivation for using multiple views was 
that a single view has very limited depth infor- 
mation, and any registration algorithm would 
have difficulty accurately registering an object 
along the optical axis. Thus, comparing the 
single-view and two-view algorithms in this way 
— by using three dimensional distance — is not 
really a fair comparison. Therefore, we define 
the following two dimensional error metric: 

E2D[P\P\M) = m^^\\Fp{Pq)-Fp{P*q)\\ 

where Fp takes a point in the 3Z> coordinates 
of a camera and projects it into 2D image co- 
ordinates. E2D, unlike EZD, only considers the 
error in the image plane, and ignores any error 
along the optical axis. Thus, E2D would seem 
to be a more "fair" error measurement to use 
when comparing a multiple-view registration to 
a single-view registration. 
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Figure 3: The first graph illustrates the 3D error in pose after 200 iterations over the 400 registrations with 

random initial poses. The second graph illustrates the 2D pose error. In this graph, any error along 

the optical axis is ignored. 

Figure 3 shows the results of the 400 trials using 
the two dimensional error metric. Notice that 
now it is much more obvious when the single- 
view algorithm converged near the correct so- 
lution. However, the two-view approach still 
performs significantly better in a few different 
ways. First, the pose error of the two-view al- 
gorithm is still much less that of the single-view 
algorithm, usually by a factor of two. This im- 
plies that using two views not only improves 
the registration along the optical axis, but also 
yields a better registration in the image plane. 

In addition to returning more accurate registra- 
tions, the two-view method also seems to have 
a much larger region of convergence. Of the 
400 trials, the two-view approach registered well 
80% of the time, registered reasonably about 
15% of the time, and diverged the remaining 
5%. The single view method registered well 
only about 50% of the time, registered reason- 
ably about 25% of the time, and diverged about 
25% of the time. Thus, using two views seems to 
drastically improve the registration of the model 
to the position of the 3D object in the world. 

One disadvantage of using multiple views is that 
it can be slower by a factor of n for n views. 
Generally, though, the registration actually con- 
verges much faster (and is more likely to con- 
verge), so the slowdown may not be significant. 
Another disadvantage of using n views is that it 
requires the calibration of n cameras. In some 
applications, it might be difficult to precisely 

calibrate the n cameras. 
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Abstract 

This paper gives a widely applicable technique 
for solving many of the parameter estimation 
problems encountered in geometric computer 
vision. A commonly used approach in such pa- 
rameter minimization is to minimize an alge- 
braic error function instead of a possibly prefer- 
able geometric error function. It is claimed in 
this paper, however, that minimizing algebraic 
error will usually give excellent results, and in 
fact the main problem with most algorithms 
minimizing algebraic distance is that they do 
not take account of mathematical constraints 
that should be imposed on the quantity be- 
ing estimated. This paper gives an efficient 
method of minimizing algebraic distance while 
taking account of the constraints. This pro- 
vides new algorithms for the problems of resec- 
tioning a pinhole camera, computing the fun- 
damental matrix, and computing the tri-focal 
tensor. 

1    Introduction 

For many problems related to camera calibration and 
scene reconstruction, linear algorithms are known for 
solving for the entity required. In the sort of problem 
that will be addressed in this paper, a set of data (such 
as point correspondences) is used to construct a set of 
linear equations, and solution of these equations provides 
an estimate of the entity being computed. As examples 
of such problems we have : 

1. The DLT algorithm for computing a camera ma- 
trix given a set of points in space, and correspond- 
ing points in the image. Provided at least 6 corre- 
spondences are give (more precisely 5^ correspon- 
dences), one can solve for the camera matrix. 

*This work was sponsored by DARPA contract F33615- 
94-C-1549, monitored by Wright Patterson Airforce Base, 
Dayton, OH. The views and conclusions contained in this 
document are those of the authors and should not be inter- 
preted as representing the official policies, either expressed or 
implied, of the Defense Advanced Research Projects Agency, 
the United States Government, or General Electric. 

2. Computation of the Fundamental Matrix. From 8 
point correspondences Uj *->■ uj- between two im- 
ages one can construct the fundamental matrix us- 
ing equations u^^f Uj = 0. 

3. Computation of the trifocal tensor given a set of 
feature correspondences across three views. 

In these three examples, and many others, a linear 
algorithm exists. However, the linear algorithm will lead 
to a solution that does not satisfy certain constraints 
that the estimated quantity must satisfy. In the cases 
considered here, the constraints are 

1. The skew parameter of a camera matrix estimated 
using the DLT method will not generally be zero. 
This constraint, meaning the pixels are rectangular, 
should be enforced in cases where it is known to 
hold. 

2. The fundamamental matrix must satisfy a con- 
straint det F = 0. 

3. The trifocal tensor must satisfy 8 non-linear con- 
straints. The form of these constraints is not easily 
determined, but it is essential to constrain the ten- 
sor to correspond to a valid set of camera matrices. 

These constraints are not in general linear constraints, 
and in general, it will be necessary to resort to iterative 
techniques to enforce them. Since iterative techniques 
are slow and potentially unstable, it is important to use 
them sparingly. Further, the smaller the dimension of 
the minimization problem, the faster and generally more 
stable the solution will be. In this paper an iterative al- 
gorithm is used to solve the three problems posed above. 
In each case the algorithms are based on a common tech- 
nique of data reduction, whereby the input data is con- 
densed into a reduced measurement matrix. The size of 
the iteration problem is then independent on the size of 
the input set. In the case of estimation of the funda- 
mental matrix, only three homogeneous parameters are 
used to parametrize the minimization problem, whereas 
for the trifocal tensor, just six parameters are used. 

The problem of camera calibration solved using the 
DLT algorithm will be treated first. It will be used to 
illustrate the techniques that apply to the other prob- 
lems. 
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2    Computing the Camera Matrix 

We consider a set of point correspondences Xj <-+ Uj be- 
tween 3D points Xi and image points u,. Our problem 
is to compute a 3 x 4 matrix P such that Px; = u, for 
each i. 

2.1     The Direct Linear Transformation (DLT) 
algorithm 

We begin with a simple linear algorithm for determin- 
ing P given a set of 3D to 2D point correspondences, 
x, <->■ Uj. The correspondence is given by the equation 
u, = Pxi. Note that this is an equation involving homo- 
geneous vectors, thus Uj and Pxi may differ by a non- 
zero scale factor. One may, however write the equation 
in terms of the vector cross product as Ui x Pxj = 0. 

If the i-th row of the matrix P is denoted by p'' ^, then 
we may write Px; = (p^'^Xi,p^"^Xi,p^"^Xi)"'". Writing 
Uj = {ui,Vi,Wiy, The cross product may then be given 
explicitly as 

Ui  X PXi 

ViP^'^Xi - WiP^"'"xi 

Wip^'^'xi -UiP^'^'xi 

UiP^'^Xi - ViP^'^Xi 

Since p'^^x; = Xi'^p'' for j = 1,.. .,3, this gives a set 
of three equations, in the entries of P, which may be 
written in the form 

0 
WiXj""^ 

-ViXi 

-WiXi 

0 
0 

0 (1) 

Note that (p\p^,P^)^ which appears in (1) is a 12- 
vector made up of the entries of the matrix P. Although 
there are three equations, only two of them are hnearly 
independent. Thus each point correspondence gives two 
equations in the entries of P. One may choose to omit 
the third equation, or else include all three equations, 
which may sometimes give a better conditioned set of 
equations. In future, we will assume that only the first 
two equations are used, namely 

0 _ 
WiX, 

-WiXi 

0 
ViXi 

(2) 

Solving the Equations. The equations (2) may be 
denoted by Mj-p = 0. where the vector p is a 12-vector, 
corresponding to the 12 entries of P. The set of all equa- 
tions derived from several point correspondences may be 
written Mp = 0 where M is the matrix of equation coef- 
ficients. This matrix M will be called the measurement 
matrix. The obvious solution p = 0 is of no interest to 
us, so we seek a non-zero solution p. 

2.2     Scaling 
One of the most important things to do in implement- 
ing an algorithm of this sort is to prenormalize the data. 
This type of data normalization was discussed in the pa- 
per [2]. Without this normalization, all these algorithms 
are guaranteed to perform extremely poorly. 

Data normalization is designed to improve the condi- 
tioning of the measurement matrix M. The appropriate 

scaling is to translate all data points so that their cen- 
troid is at the origin. Then the data should be scaled so 
that the average distance of any data point from the ori- 
gin is equal to \/2 for image points and \/3 for 3D points. 
The algorithms are then carried out with the normalized 
data, and final transformations are applied to the result 
to compensate for the normalizing transforms. 

2.3    Algebraic Error 
In the presence of noise, one can not expect to obtain an 
exact solution to an overconstrained set of equations of 
the form Mp = 0 such as those that arise in the DLT 
method. 

The DLT algorithm instead finds the unit-norm vector 
p that minimizes ||Mp||. The vector e = Mp is the error 
vector and it is this error vector that is minimized. The 
solution is the unit singular vector corresponding to the 
smallest singular value of M. 

Define a vector (uj, i),-, Wj)""" = u,- = Px. Using this 
notation, we may write 

MiP = €i 
ViWi - WiVi 

Wiiti — UiWi 
0 (3) 

This vector is the algebraic error vector associated 
with the point correspondence Ui <->■ x, and the cam- 
era mapping P. Thus, 

d^l^{\ii,Uif = {viWi - WiVif + {wiiii - UiWif  .    (4) 

Given several point correspondences, the quantity e = 
Mp is the algebraic error vector for the complete set, 
and one sees that 

^rf^lg(u,,uO' = l|Mp|P = ||e|P (5) 
i 

The main lesson that we want to keep from this dis- 
cussion is : 
Proposition!. Given any set of 3D to image correspon- 
dences Uj <-^ Xi, let M he the measurement matrix as in 
(2). For any camera matrix P the vector Mp is the al- 
gebraic error vector, where p is the vector of entries of 
P. 

2.4    Geometric Distance 
Under the assumption that measurement error is con- 
fined to image measurements, and an assumption of a 
gaussian error model for the measurement of 2D image 
coordinates, the optimal estimate for the camera matrix 
P is the one that minimizes the error function 

]d{ui,Ui)^ E' (6) 

where d(-, •) represents Euclidean distance in the image. 
The quantity rf(ui, u,) is known as the geometric distance 
between u; and u,. Thus the error to be minimized is the 
sum of squares of geometric distances between measured 
and projected points. 

For points Uj- = {ui,Vi,Wiy and u; = iui,ii,Wi)   , 
the geometric distance is 

1    In 

d{ui,Ui)    =    {{ui/wi - iii/wif -f- {vi/wi - Ui/wif) 

-    c^alg("''"')/'^*"'i ^^ 
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Thus, geometric distance is related to, but not quite the 
same as algebraic distance. Nevertheless, it will turn 
out that minimizing algebraic distance gives very good 
results in general. 

2.5    The Reduced Measurement Matrix 

Let Uj <-^ Xj be a set of correspondences, and let M be 
the corresponding measurement matrix. Let P be any 
camera matrix, and let p be the vector containing its 
entries. The algebraic error vector corresponding to P 
is Mp, and its norm satisfies ||Mp|p = p^M"''Mp. 

In general, the matrix M may have a very large num- 
ber of rows. It is possible to replace M by a square 
matrix M such that ||Mp|| = ||Mp|| for any vector p. 
Such a matrix M is called a reduced measurement ma- 
trix. One way to do this is using the Singular Value 
Decomposition (SVD). Let M = UDV'^ be the SVD of 
M, and define M = DV'^. Then 

M'^M = {VDU^){UDV'^) = iVD){DV^) = M^ M 

as required. Another way of obtaining M is to use the 
QR decomposition M = QM, where Q has orthogonal 
columns and M is upper-triangular and square. This 
shows the following result. 

Theorem 2. Let u; <-> Xj he a set of n world to image 
correspondences. Let M be the measurement matrix de- 
rived from the point correspondences. Let M be a reduced 
measurement matrix. Then, for any 3D to 2D projective 
transform P and corresponding 3-vector p, one has 

Y,d^lg{ui,P^i? = \\Mp\\ 

In this way, all the information we need to keep about 
the set of matched points u; <-+ Xj is contained in the 
single 12x12 matrix M. If we wish to minimize algebraic 
error as P varies over some restricted set of transforms, 
then this is equivalent to minimizing the norm of the 
12-vector ||Mp||. 

2.6     Restricted Camiera Mappings 

The camera mapping expressed by a general 3D projec- 
tive transformation is in some respects too general. A 
non-singular 3x4 matrix P with center at a finite point 
may be decomposed as P = K[R \ —Rt] where R is a 
3x3 rotation matrix and 

K 
s 

Oiv 

Wo 

1 
(8) 

The non-zero entries of K are geometrically meaning- 
ful quantities, the internal calibration parameters of P. 
A common assumption is that s = 0, while for a true 
pinhole camera, a^ = ccy. 

Given a set of world to image correspondences, one 
may wish to find a matrix P that minimizes algebraic 
error, subject to a set of constraints on P. Usually, this 
will require an iterative solution. For instance, suppose 
we wish to enforce the constraints s = 0 and a^ = civ 

One can parametrize the camera matrix using the re- 
maining 9 parameters {pu,Pv, cc plus 6 parameters rep- 
resenting the orientation R and location t of the camera). 
Let this set of parameters be denoted collectively by q. 
Then, one has a map p = ff(q), where p is as before the 
vector of entries of the matrix P. According to Theorem 
2, minimizing algebraic error over all point matches is 
equivalent to minimizing ||M5(q)||. Note that the map- 
ping q 1-+ Mg[q) is a mapping from R^ to R^^. This 
is a simple parameter-minimization problem that may 
be solved using the Levenberg-Marquardt method. The 
important point to note is the following : 

Given a set of n world-to-image correspon- 
dences, Xj <->■ Uj, the problem of finding a con- 
strained camera matrix P that minimizes the 
sum of algebraic distances X^j c'alg^"''■^^')^ 
reduces to the minimization of a function R^ —> 
i?^^, independent of the number n of correspon- 
dences. 

If this problem is solved using the Levenberg- 
Marquardt (LM) method, then an initial estimate of the 
parameters may be obtained by decomposing a camera 
matrix P found using the DLT algorithm. A central 
step in the LM method is the computation of the deriva- 
tive matrix (Jacobian matrix) of the function being min- 
imized, in this case Mg{q). Note that dMg/dq = 
Mdg/dq. Thus, computation of the Jacobian reduces 
to computation of the Jacobian matrix of g, and subse- 
quent multiplication by M. 

Minimization of ||M£f(q)|| takes place over all values 
of the parameters q. Note, however, that if P = K[R \ 
—Rt] with K as in (8) then P satisfies the condition 
f31 + P32 + Ps = 1' since these entries are the same as 
the last row of the rotation matrix R. Thus, minimizing 
Mg{q) will lead to a matrix P satisfying the constraints 
s = 0 and ku = ky and scaled such that ^31+^32+^1 = 1, 
and which in addition minimizes the algebraic error for 
all point correspondences. 

3    Computation of the Fundamental 
Matrix 

We now turn to the computation of the Fundamental 
Matrix. It will turn out that very similar methods apply 
to its computation as were used in the DLT algorithm. 

Given a set of correspondences Uj •f-^ uj- between two 
images, the fundamental matrix is defined by the rela- 
tion u'i^Fui = 0 for all i. In the presence of noise, this 
relation will not hold precisely, and so one seeks a least- 
squares solution. Note that the equation u'^Fui = 0 
is linear in the entries of F. From 8 or more point 
matches, one may solve for the entries of F by find- 
ing the least-squares solution to a set of linear equations 
([2]). Let the set of equations be denoted by Mf = 0. 
The vector Mf has components equal to u'^Fui, and 
||Mf|p =: X^j-(uJ-Fue)^. Thus, in this case, as before 
with the DLT algorithm , Mf represents the algebraic 
error vector. Matrix F is found my minimizing ||Mf|| 
subject to ||f|| = 1. 

The fundamental matrix F must, however satisfy a 
constraint det F = 0, and this constraint will not gen- 
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erally be satisfied by the matrix F found by this linear 
algorithm. One would therefore like to minimize the al- 
gebraic error ||Mf|| over all vectors f corresponding to 
singular matrices F. 

In [2], the matrix F was taken to be the closest singu- 
lar matrix to F under Frobenius norm, where F is the 
linear solution. This is not an especially good way of 
proceeding, since it weights errors in each of the entries 
of F equally. A preferable method is to proceed as with 
the DLT. One parametrizes the matrix f by a set of pa- 
rameters q in a way so as to ensure it is singular. Then 
letting / = Sf(q), one uses an iterative algorithm to min- 
imize ||M£f(q)||. This is the general scheme which will 
be followed, but there are details to be filled out, and a 
new twist will arise, which allows a parametrization with 
only three parameters. 

3.1     Parametrization of the Fundamental 
Matrix 

Consider the fundamental matrix F, which can be writ- 
ten as a product F = Q[e]x where Q is a non-singular 
matrix, and e is the epipole in the first image. 

Suppose we wish to compute the fundamental matrix 
F of the form F = Q[e]x that minimizes the algebraic 
error ||Mf|| subject to the condition ||f || = 1. The vector 
f is the 9-vector containing the entries of F. It has been 
seen that the 8-point algorithm finds such an f, without 
the condition that F = Q[e]x- We now wish to enforce 
that condition. 

Let us assume for now that the epipole e is known. 
Later we will let e vary, but for now it is fixed. The 
equation F = Q[e]x can be written in terms of the vec- 
tors f and q comprising the entries of F and Q as an 
equation i = Eq where £■ is a 9 x 9 matrix. Supposing 
that f and q contain the entries of the corresponding 
matrices in row-major order, then it can be verified that 
E has the form 

E = 
[e]> 

[e]> 
[e]x 

(9) 

Now, our minimization problem is : minimize HME'qH 
subject to the condition ||£'q|| = 1.^ This problem is 
solved as follows. Let the Singular Value Decomposition 
of E he E = UDV^. It is easily seen that the matrix E 
has rank 6, since each of the diagonal blocks has rank 2. 
It follows that D has 6 non-zero diagonal entries. Let U' 
be the 9 X 6 matrix consisting of the first 6 columns of [/, 
and let V consist of the first 6 columns of V and let D' be 
the top-left 6x6 minor of D, containing the non-zero di- 
agonal entries. The minimization problem them becomes 
: minimize WMU'D'V^qW subject to WU'D'V^qW = 1. 
This last condition is equivalent to ||D'V"'"^q|| = 1, since 
U' has orthogonal columns. Now writing q' = D'V'^q, 
the problem becomes : minimize ||MC/'q'|| subject to 
llq'll = 1, which is our standard minimization problem. 

4t does not do to minimize ||M£q|| subject to the condi- 
tion ||q|| = 1, since a solution to this occurs when q is a unit 
vector in the right null-space oi E. In this case, Eq = 0, and 
hence ||M£q|| = 0. 

The solution q' is the singular vector corresponding to 
the smallest singular value of MU'. Subsequently, we 
can compute f = Eq = U'D'V^q = U'q', and the 
algebraic error is Mf = MU'q'. 

The complete algorithm is : 
Algorithm 

1. Given the epipole e, find the fundamental matrix F 
of the form F = Q[e]x that minimizes the algebraic error 
I |Mf 11 subject to ||f||= 1. 
Solution : 

1. Compute the SVD E - UDV'^, where E is given 
in (9). 

2. Let U' be the matrix comprising the first 6 columns 
oiU 

3. Find the unit vector q' that minimizes ||Mf/'q'||. 

4. The required matrix F corresponds to the vector 
f = U'q', and the minimum algebraic error is Mf. 

3.2    Iterative Estimation 
The algorithm of the last section gives a way of comput- 
ing an algebraic error vector Mf given a value for the 
epipole e. This mapping e H^- Mf is a map from E?toR?. 
Note that the value of Mf is unaffected by scaling e. 
Starting from a value of e derived as the generator of 
the right null-space of an initial estimate of F, one may 
iterate to find the final F that minimizes algebraic er- 
ror. The initial estimate of F may be obtained from the 
8-point algorithm, or any other simple algorithm. 

Note the advantage of this method of computing F 
is that the iterative part of the algorithm consists of 
a very small parameter minimzation problem, involving 
the estimation of only three parameters. Despite this, 
the algorithm finds the fundamental matrix that min- 
imizes the algebraic error for all matched points. The 
matched points themselves do not come into the final 
iterative estimation. 

Simplifying the computation Because of the simple 
form of the matrix E, it is easy to compute its SVD 
without having to resort to a full SVD algorithm. This 
may be important in the iterative algorithm to achieve 
maximum speed, since this SVD is computed repeatedly 
during the minimization. As seen in (9),the matrix E 
has a diagonal block structure consisting of three blocks 
[e] X. The SVD consequently has a corresponding block- 
structure. Specifically, if [e]x = UDV', then the SVD 
oiE = diag([e]x, [e]x, Nx) is E = UDV^ where U = 
diag(C/, U, U), and similarly for D and V. 

The SVD of [e] x itself can be computed easily as fol- 
lows. Suppose that U is an orthogonal matrix such that 
ef7 = (0, 0,1). Such a matrix (7 is a Householder trans- 
formation and is easily computed ([l]). Then one sees 
that [e]x = ±UZU^ = ±t/diag(l, 1, 0)ZU^ = ±UDV^ 
where 

Z = 
0 -1 
1 0 
0     0 

z = 

This is easily verified by observing that both [e]x and 
±UZU'^  are skew-symmetric matrices with the same 
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null-space, generated by e in each case. We are inter- 
ested in U' consisting of the first two columns of U. 
Turning now to the SVD of £■ = diag([e]x, [e]x, [e]x), 
we see that U' = d\a.g{U',U',U'). If we partition 
the 9 X 9 matrix M into blocks M - [Mi, M2, M3] 
where each M,- has 3 columns, then one computes that 
MU' = [MiU',M2U',M3U']. Thus, the computation of 
MU' required in Algorithm 1 has two simple steps 

1. Compute the 3x3 Householder matrix U such that 
e^U = (0,0,1), and let U' comprise its first two 
columns. 

2. Set MU' ^ [MiU',M2U',M3U']. 

3.3     Experimental Evaluation of the Algorithm 

A set of experiments were carried out similar to those in 
[2]. One image from each pair of images used is shown in 
Fig 1. These images contain a wide variation of measure- 
ment noise and placement of the epipoles. For each pair 
of images, a number n of matched points were chosen 
and the fundamental matrix was computed. The funda- 
mental matrix computed was shown evaluated against 
the full set of all matched points, and the residual error 
was computed. This experiment was done 100 times for 
each value of n and each pair of images, and the average 
residual error was plotted against n. This gives an idea 
of how the different algorithms behave as the number of 
points is increased. 

The results of these experiments are shown and ex- 
plained in Fig 2. They show that minimizing algebraic 
error gives essentially indistinguishable results from min- 
imizing the geometric error, but both perform better 
than the linear normalized 8-point algorithm ([2]). 

4    Computation of the Trifocal Tensor 
The trifocal tensor ([5, 3]), relates the coordinates of 
points or lines seen in three views in a similar way to 
that in which the fundamental matrix relates points in 
two views. 

The basic formula relates a point u in one image and a 
pair of lines A' and A" in the other two images. Provided 
there is a point x in space that maps to u in the first 
image and a point on the lines A' and A" in the other 
two images, the following identity is satisfied : 

(10) 

Here we are using tensor notation, in which a repeated 
index appearing in covariant (lower) and contravariant 
(upper) positions implies summation over the range of 
indices ( namely, 1,..., 3). 

This equation may be used to generate equations given 
either point or line correspondences across three images. 
In the case of a line correspondence, A *-^ A' <-»■ A" 
one selects two points UQ and ui on the line A, and for 
each of these points one obtains an equation of the form 
(10). In the case of a point correspondence u «-)• u' «-+ 
u" one selects any lines A' and A" passing through u' 
and u" respectively. Then (10) provides one equation. 
Four equations are generated from a single 3-view point 
correspondence by choosing two lines through each of u' 
and u", each pair of lines giving rise to a single equation. 

«'A^A^7|* = 0 

The equations (10) give rise to a set of equations of 
the form Mt = 0 in the 27 entries of the trifocal tensor. 
From these equations, one may solve for the entries of the 
tensor. As before, for any tensor T- the value of Mt 
is the algebraic error vector associated with the input 
data. 

Consider the analogy with the 8-point algorithm for 
computing the fundamental matrix in the two-view case. 
The fundamental matrix has a constraint det F = 0 that 
is not in general precisely satisfied by the solution found 
from linear algorithm. In the case of the trifocal tensor, 
there are 27 entries in the tensor, but the camera geome- 
try that it encodes has only 18 degrees of freedom. This 
means that the trifocal tensor must satisfy 8 constraints, 
apart from scale ambiguity to make up the 27 degrees of 
freedom of a general 3x3x3 tensor. The exact form of 
these constraints is not known precisely. Nevertheless, 
they must be enforced in order that the trifocal tensor 
should be well behaved. It will now be shown how this 
can be done, while minimizing algebraic error. 

Formula for the Trifocal Tensor. We denote the 
three camera matrices P' and P" by aj and 6J respec- 
tively, instead of by p'j' and p"'. Thus, the three cam- 
era matrices P, P' and P" may be written in the form 
P=[J|0],P'=[aj]andP"=[6J]. 

In this notation, the formula for the entries of the 
trifocal tensor is : 

7?* = dhl aibf (11) 

Our task will be to compute a trifocal tensor T- of 
this form from a set of image correspondences. The ten- 
sor computed will minimize the algebraic error associ- 
ated with the input data. The algorithm is quite similar 
to the one given for computation of the fundamental ma- 
trix. Just as with the fundamental matrix, the first step 
is the computation of the epipoles. 

4.1     Retrieving the epipoles 

We consider the task of retrieving the epipoles from the 
trifocal tensor. If the first camera has matrix P = [I \ 
0], then the epipoles 621 and esi are the last columns 
a\ and b\ of the two camera matrices P' = [a'j] and 
P" = [b'j] respectively. These two epipoles may easily be 

computed from the tensor Tf according to the following 
proposition. 

Propositions. For each i = 1,..., 3, the matrix Tf is 
singular. Furthermore, the generators of the three left 
null-spaces have a common perpendicular, the epipole 
e2i. Similarly epipole esi is the common perpendicular 
of the right nuUspaces of the three matrices T^'. 

This proposition translates easily into an algorithm 
for computing the epipoles ([5, 3]). This algorithm may 
be applied to the tensor T- obtained from the linear 
algorithm to obtain a reasonable approximation for the 
epipoles. 
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Figure 1: The images used in the experiments 
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Figure 2: Results of the experimental evaluation of the algorithms. In each case, three methods of computing F were 
compared. In each graph, the top (soHd) line shows the results of the normalized 8-point algorithm. Also shown are 
the results of minimizing geometric error and algebraic error, using the algorithm of this paper. In most cases, the 
result of minimizing algebraic error is almost indistinguishable from minimizing geometric error. Both are noticeably 
better than the non-iterative 8-point algorithm, though that algorithm gives reasonable results. 
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4.2     Constrained Estimation of the Trifocal 
Tensor 

From the form (11) of the trifocal tensor, it may be seen 
that once the epipoles 821 = a\ and 631 = 64 are known, 
the trifocal tensor may be expressed linearly in terms of 
the remaining entries of the matrices a^ and bf. 

Assuming the epipoles a\ and 64 to be known, we 
may write t = Ha. where a is the vector of the re- 
maining entries oj and 6!-, t is the vector of entries of 
the trifocal tensor, and H is the linear relationship ex- 
pressed by (11). We wish to minimize the algebraic error 
||Mt|| = ||MiJa|| over all choices of a constrained such 
that ||a|| = 1. The solution is the eigenvector corre- 
sponding to the least eigenvalue of H'^^M'^MH. 

In solving this set of equations to find a it is ad- 
visable to restrict the dimensionality of the solutions 
set by applying the constraint that J2i °'\^) = 0 for 
each jf = 1,...,3. This constraint is discussed in [5, 
3]. Given that a\ is known, it is a linear constraint that 
may be expressed by a matrix equation Ca = 0. Thus, 
the minimization problem is to minimize ||M//a|| sub- 
ject to the ||a|| = 1 and the linear constraint Ca = 
0.    This may be done by the algorithm given in [5, 

Writing t = Ha where a is the solution vector, we see 
that t minimizes algebraic error ||Mt|| subject to the 
condition that Tf* is of the correct form (11), for the 
given choice of epipoles. 

Iterative Solution The two epipoles used to compute 
a correct constrained tensor Tf are computed using 
the estimate of Tf^ obtained from the hnear algorithm. 
Analogous to the case of the fundamental matrix, the 
mapping (e2i,e3i) i-+ MHa is a mapping R^ —>■ R?'^. 
An application of the Levenberg-Marquardt algorithm to 
optimize the choice of the epipoles will result in an opti- 
mal (in terms of algebraic error) estimate of the trifocal 
tensor. Note that the iteration problem is of modest size, 
since only 6 parameters, the homogeneous coordinates of 
the epipoles, are involved in the iteration problem. 

This contrasts with an iterative estimation of the op- 
timal trifocal tensor in terms of geometric error. This 
latter problem would require estimating the three cam- 
era paramters, plus the coordinates of all the points, a 
large estimation problem. 

5    Conclusion 

Experimental evidence backs up the assertion that min- 
imizing algebraic distance can usually give good results 
at a fraction of the computation cost associated with 
minimizing geometric distance. The great advantage of 
the method for minimizing algebraic error given in this 
paper is that even for problems that need an iterative 
solution the size of the iteration problem is very small. 
Consequently, the iteration is very rapid and there is re- 
duced risk of falling into a local minimum, or otherwise 
failing to converge. 

The method has been illustrated by applying it to 
three problems. For the computation of the fundamental 

matrix, iteration is over only three homogeneous param- 
eters. For the trifocal tensor, iteration is over 6 param- 
eters. This leads to more efficient methods than have 
been previously known. 

The general technique is applicable to problems other 
than those treated here. It may be applied in a straight- 
forward manner to estimation of projective transforma- 
tions between 2 or 3-dimensional point sets. In these 
problems, iteration is necessary if one restricts the class 
of available transformations to a subgroup of the projec- 
tive group, such as planar homologies (used in [6]), or 
conjugates of rotations ([4]). 
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Abstract 
This paper presents a method for aUgnment of im- 
ages acquired by sensor of different modahties. The 
paper has two main contributions: (i) It identifies 
an appropriate image representation for multi-sensor 
aUgnment, i.e., a representation which emphasizes 
the common information between the two multi- 
sensor images, suppresses the non-common informa- 
tion, and is adequate for coarse-to-fine processing, 
(ii) It presents a new alignment technique, which ap- 
plies global estimation to any choice of a local simi- 
larity measure. In particular, it is shown that when 
this registration technique is applied to the cho- 
sen image representation with a local-normalized- 
correlation similarity measure, it provides a new 
multi-sensor alignment algorithm which is robust to 
outliers, and applies to a wide variety of globally 
complex brightness transformations between the two 
images. 

Our proposed image representation does not rely on 
sparse image features (e.g., edge, contour, or point 
features). It is continuous and does not eliminate the 
detailed variations within local image regions. Our 
method naturally extends to coarse-to-fine process- 
ing, and applies even in situations when the multi- 
sensor signals are globally characterized by low sta- 
tistical correlation. 

1    Introduction 

In images acquired by sensors of different modali- 
ties, the relationship between the brightness values 
of corresponding pixels is usually complex and un- 
known: Visual features present in one sensor image 
may not appear in the other image, and vice versa; 
contrast reversal may occur between the two images 

*This work was supported by NASA-Ames Research Cen- 
ter under contract NAS2-14301 

in some image regions, while not in others; multiple 
brightness values in one image may map to a single 
brightness value in the other image, and vice versa. 
In other words, the two images are usually not cor- 
related in their entirety, i.e., they are not globally 
correlated (often, not even statistically correlated). 

There are two fundamental questions that a multi- 
sensor alignment algorithm should address: (i) 
What is a good image representation to work with 
(i.e., what representation will bring out the com- 
mon information between the two multi-sensor im- 
ages, while suppressing the non-common informa- 
tion)? (ii) What is an appropriate similarity mea- 
sure for matching the two images within the selected 
representation? 

Previous work on multi-sensor image alignment 
(e.g., [Dana and Anandan, 1993, Kumar et al., 1994, 
van den Elsen and Viergever, 1994, 
Li et al., 1995, Li and Zhou, 1995, 
Viola and Wells III, 1995]) can broadly be 
classified into two major classes of algorithms. 
These classes differ in the way they address the two 
abovementioned questions: 

1. Methods that use an invariant image rep- 
resentation. By invariant image representation 
we refer to a representation that is invariant to 
changes in brightness and contrast, as well as to 
contrast reversal. Some examples of invariant image 
representations are edge maps [Dana and Anandan, 
1993], oriented edge vector fields [Kumar et al., 
1994], contour features [Li et al., 1995], and feature 
points [Li and Zhou, 1995]. Such representations 
aim at increasing the visual similarity between of 
the two images. Once this is achieved, registration 
techniques that assume similar appearance (e.g., 
that are based on the brightness constancy assump- 
tion) can be applied. For example, the registration 
methods employed in [Dana and Anandan,   1993, 
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Kumar et al., 1994] are extensions of the direct 
gradient-based registration methods [Bergen et al, 
1992, Irani et al., 1994]). 

However, in the process of creating an invari- 
ant image representation, important image 
information is usually lost. For example, in 
[Dana and Anandan, 1993, Kumar et al., 1994, 
Li et al., 1995] there is a thresholding step. This 
step usually eliminates most of the detailed varia- 
tions within local regions of the images, leaving only 
a sparse set of highly significant image features. 
Moreover, the choice of threshold is very data and 
sensor dependent. 

2. Methods that use an invariant similarity 
measure to register the multi-sensor images, 
and therefore do not require an invariant image 
representation. 

An example of such a similarity measure is Mutual 
Information [Viola and Wells III, 1995], which is a 
measure of the statistical correlation between two 
images. The method suggested by [Viola and Wells 
III, 1995] is applied directly to the raw multi-sensor 
intensity images, and does not require an invariant 
image representation. This method assumes, how- 
ever, that the statistical correlation between the two 
images is global, an assumption which is often vio- 
lated (e.g., Figure 4). Moreover, the statistical corre- 
lation between raw multi-sensor images tends to de- 
crease with the reduction in spatial resolution (Sec- 
tion 2). Therefore, [Viola and Wells III, 1995] in its 
current form does not naturally extend to coarse-to- 
fine estimation, which is often used to handle large 
misalignments. These issues will be referred to in 
Section 2. 

In order to address the issues mentioned above, we 
have developed an approach which uses a locally in- 
variant similarity measure while globally constrain- 
ing the local matches. In particular, our approach to 
multi-sensor image alignment does no^ assume global 
correlation (regular or statistical) of the images, but 
only a local one. The underlying chosen image rep- 
resentation is continuous, and avoids thresholding 
and hence loss of image detail. The representa- 
tion is invariant to contrast reversal, provides ori- 
entational sensitivity, and is suitable for coarse-to- 
fine processing. The estimation process has a built- 
in outlier rejection mechanism, which is critical to 
multi-sensor alignment due to the plurality of non- 
common image features across the two images (as a 
matter of fact, in many situations there are more 
"outliers" than "inliers" in a multi-sensor image 
pair). The motion models used in this work were 2D 
parametric transformations. The algorithm, how- 
ever, can be extended to 3D motion models as well. 

The rest of the paper is organized as follows: Sec- 
tion 2 describes the chosen image representation. 
Section 3 describes the global alignment method 
with a local similarity measure. Section 4 presents 
results of applying our algorithm to IR/EO image 
pairs. 

2    The Image Representation 
The underlying assumption of multi-resolution 
alignment is that the corresponding signals at all 
resolution levels contain enough correlated structure 
to allow stable matching. This assumption is gen- 
erally true when an image pair is obtained by the 
same sensor, or by two different cameras of same 
modality. However, in multi-sensor image pairs (i.e., 
image pairs taken by sensors of different modalities), 
the signals are correlated primarily in high resolution 
levels, while correlation between the signals tends to 
degrade substantially with the reduction in spatial 
resolution. This is because high resolution images 
capture high spatial frequency information, which 
corresponds to physical structure of the scene that is 
common to the two images. Low resolution images, 
on the other hand, depend heavily on illumination 
and on the photometric and physical imaging prop- 
erties of the sensors (which are characterized by low 
frequency information), and these are substantially 
different in two multi-modality images. 

To capture the common scene detail information 
while suppressing the non-common illumination and 
sensor-dependent properties, the images are trans- 
formed into high-pass energy images (e.g., see [Hurt, 
1988]). An example of such an energy image is a 
Laplacian-energy image, which is formed by first 
high-pass filtering the image with a Laplacian fil- 
ter, then squaring it. This facilitates coarse-to-fine 
search based on signal details. In [Burt, 1988] the 
Laplacian-energy image is used for effectively detect- 
ing small (high-resolution) temporal changes already 
at low resolution levels. 

High-pass energy image representations are useful 
for multi-sensor alignment, because: 
(i) The creation of such energy images does not in- 
volve any thresholding, and therefore preserves all 
image detail. This is in contrast to "invariant" 
representations (e.g., edge maps [Dana and Anan- 
dan, 1993], edge vectors [Kumar et al, 1994], con- 
tours [Li et al., 1995], point features [Li and Zhou, 
1995]), which eliminate most of the detailed varia- 
tions within local image regions, 
(ii) The image information which is eliminated in the 
creation of the high-pass energy images is exactly 
that which is not common to the two multi-sensor 
images.    In particular:    (a)  the sensor-dependent 
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low-resolution information is eliminated, and (b) 
contrast-reversal which may occur between the sen- 
sors (e.g., Fig. 3) is removed by the squaring oper- 
ation. In other words, the energy image representa- 
tion is invariant to contrast reversal. 
(iii) As mentioned in [Burt, 1988], a pyramid data 
structure of the high-pass energy image projects high 
resolution signal information into low resolution lev- 
els. In our case, this facilitates coarse-to-fine align- 
ment based on correlated scene details, as opposed 
to using pyramids of the raw multi-sensor images 
(which contain uncorrelated sensor information at 
low spatial resolutions). 

However, the Laplacian, being a rotationally invari- 
ant operator, does not preserve directional informa- 
tion. This leads to potential false correspondences of 
patterns that are oriented along different directions 
in the Laplacian energy images. The energy-image 
representation that we use is based on directional- 
derivative filters rather than a Laplacian filter. On 
top of the abovementioned advantages of high-pass 
energy images, the directional-derivative-energy also 
preserve directional information, and thereby avoid 
this problem. This further enhances the robustness 
of the registration algorithm against the numerous 
outliers so common in a multi-sensor image pair. 

The directional derivative filter is applied to the raw 
image in four directions (horizontal, vertical, and the 
two diagonals). Then, each of the four generated 
derivative images is squared. (Since the squaring 
operation doubles the frequency band, the raw image 
is filtered with a Gaussian prior to the derivative 
filtering, to avoid aliasing effects). 

The alignment algorithm (Section 3) is applied si- 
multaneously to all 4 corresponding multi-sensor 
pairs of directional-derivative-energy images, seek- 
ing a single parametric transformation p, which si- 
multaneously brings all pairs into alignment (see Sec- 
tion 3). 

Fig. 1 shows an example of the four directional- 
derivative-energy pairs constructed from a multi- 
sensor image pair. Fig. 2 shows the Gaussian pyra- 
mid constructed for one of the four multi-sensor pairs 
of directional-derivative-energy images. 

3    The Alignment Algorithm 

To align the multi-band energy image representa- 
tion (Section 2), our alignment algorithm uses a local 
correlation-based similarity measure, without assum- 
ing global correlation (regular or statistical) between 
the images. We have applied the algorithm with 
a normalized-correlation-based local similarity mea- 
sure for reasons explained below. However, it can be 

similarly applied with a local statistical-correlation- 
based similarity measure (e.g., based on Mutual In- 
formation), or any other appropriate local measure. 

The global parametric estimation is applied directly 
to the collection of all local correlation surfaces, 
while avoiding an independent local search for peaks 
in the individual surfaces. Global alignment has 
the advantage of directly estimating the global para- 
metric transformation, without first committing to 
any particular matches locally. In other words, lo- 
cal matching is constrained by global alignment. 
Such a scheme is useful in any alignment algorithm, 
but is particularly critical in multi-sensor align- 
ment, due to the plurality of outliers across sensors 
and hence the unreliability of local matches. Al- 
though global alignment has been previously used 
for image alignment (e.g., [Bergen et ai, 1992, 
Irani et al., 1994]), they have relied on "brightness 
constancy", which is severely violated in a multi- 
sensor image pair (as well as in their energy images). 
In this work, we have generalized global alignment 
to use any local similarity measure (e.g., normal- 
ized correlation) which is suitable for multi-sensor 
energy-image alignment. This is done via global 
regression applied directly to the local similarity- 
measure surfaces (e.g., correlation surfaces), as de- 
scribed in Section 3.1. 

Global alignment is particularly critical when us- 
ing the directional-derivative images: no prior lo- 
cal estimation process can produce meaningful local 
matches on a directional-derivative image pair, as 
these images lack information in the direction per- 
pendicular to the directional derivative (the "aper- 
ture problem"). The simultaneous and global regis- 
tration of all (four) directional pairs, however, pro- 
vides full directional information. 

Motion Models: When the scene can be approx- 
imated by a planar surface, or when the baseline 
between the two sensors is small relative to their 
distance from the scene, then the displacement field 
between the two images can be modeled in terms of 
a single 2D parametric transformation (see [Bergen 
et ai, 1992] for a taxonomy of motion models). 

We have focused our attention on alignment using 
a 2D parametric transformation, although our ap- 
proach generalizes to 3D models as well. Specifi- 
cally, we focus on parametric transformations which 
are linear in their unknown parameters {pi}. For 
such transformations, the motion vector u{x,y) = 
{u(x,y),v{x,y))'^ can be expressed as: 

i{x,y;p} =X{x,y) ■ p, (1) 

where X{x,y) is a matrix which depends only on 
the pixel coordinates {x,y), and p= (pi,...,p„)^ is 
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Figure 1: The four directional-derivative-energy image pairs. Left column: EO. Right column: IR. 
(a) The raw multi-sensor image pair, (b) horizontal derivative energy, (c) vertical derivative 
energy,   (d,e) energies of diagonal derivatives. 
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Figure 2:   The Gaussian pyramid constructed for one of the four pairs of directional-derivative-energy 
images (Fig. l.d):   (a) EO.   (b) IR. 

the parameter vector.   For example, for an affine 
transformation: 

u{x,y;p} 
v{x,y;p) 

Pi + P2X + Pay 
PA + P5X + p&y 

(2) 

therefore, in this case: p = {pi,P2,P3,P4,P5,P6)'^ 
and 

1    a;    y   0    0    0 
0    0    0    1x2/ X 

and for a quadratic transformation: 

u{x,y;p) 
v{x,y;p) 

Pi + P2X + PzV + Pix + p&xy 
P4 + P5X + Pay + P7xy + psx'' 

therefore: p= {pi,P2,P3,P4,P5,P6,P7,P8)'^ and 

X = 
1    a;    y    0    0    0    x^ xy 
0    0    0    1    x    y    xy    y'' 

The Normalized-Correlation as a Local 
Similarity Measure: Normalized-correlation of 
two signals is invariant to local changes in mean 
and contrast. In other words, when the two signals 
are linearly related, their normalized-correlation is 
1. When the linear relationship does not hold, but 
the two signals contain similar spatial variations 
(as measured in the form of local fluctuations), the 
normalized-correlation will still give a value close to 
unity. 

In general, however, the global relationship between 
two multi-sensor images is complex, and therefore 

the two signals are not globally correlated (even af- 
ter computing the energy images). Statistical cor- 
relation is a better global measure than regular or 
normalized correlation, but may still not be a strong 
enough global similarity measure, because multiple 
brightness values in one image may map to a sin- 
gle brightness value in the other image, and vice 
versa. Locally, however, within small image patches 
which contain corresponding image features, statis- 
tical correlation is high. Normalized-correlation is 
a linear approximation of the statistical correlation 
of two signals in a small window, and is cheaper to 
compute. 

The energy images that we compute tend to high- 
light the local variations that correspond to local 
structure in the scene. These images are invari- 
ant to contrast reversal, but vary in mean and con- 
trast. When the relationship between correspond- 
ing patches deviates from linear, the normalized- 
correlation (applied over local windows) is less than 
1, but is still high for the correct displacement. For 
other displacements the normalized-correlation will 
be low, especially for highly textured image patches. 
Therefore, the local normalized-correlation surface 
of such patches will be concave with a prominent 
peak at the correct displacement. For correspond- 
ing image patches that contain mutually exclusive 
image features (i.e., image features which appear 
in only one of the 2 multi-sensor images - a thing 
which occurs frequently), the local correlation sur- 
face will not have a concave shape with a promi- 
nent peak.    Therefore, the structure of the local- 
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normalized-correlation surfaces provides useful in- 
formation for alignment. The information from all of 
these local structures, however, should be simultane- 
ously used to determine the global alignment param- 
eters. This is essential to avoid the numerous poten- 
tial false matches in limited local analysis. This is 
achieved via global regression applied directly to the 
collection of local normalized-correlation surfaces, as 
described in Section 3.1. 

3.1    Global Alignment with Local 
Correlation 

Given two images, / and g, and their directional- 
derivative energy images, {/i}^=i and {gi]t=i-, find 
the parametric transformation p which maximizes 
the sum of all local normalized-correlation values. 
Let S\'^''''\u,v) denote a correlation surface corre- 
sponding to a pixel {x,y) in fi. For any shift {u,v) 

of Qi relative to fi, s\'^''"^ is defined as: 

def Sr''\u,v) "1' fi{x,y) ON gi{x + u,y + v) 

where ON denotes normalized correlation computed 
over a small window. Let u = {u{x,y;p},v{x,y;p)) 
denote the motion field described by the parametric 
transformation p. Then the parametric registration 
problem can be stated as follows: Find the para- 
metric transformation p that maximizes the global 
similarity-measure M{p): 

M{p}    =    S^,j,5]i5i {x,y) {u{x,y;p},v{x,y;p}) 

(3) =    ^.,yJ^iSl^''\uix,y;p)). 

To solve for p that maximizes M{p), we use New- 
ton's method [Luenberger, 1984], which iteratively 
fits quadratic approximations to the objective func- 
tion, and refines the peak location that maximizes 
these quadratic surfaces. In order to provide the con- 
text for our use of Newton's method for the maxi- 
mization problem at hand, we first briefly outline 
the steps of this method. 

Given the current estimate of the motion parameters 
Po, let 

-t -*T -* 
M{p) = M{pa) + {VpMipo)fSp + 5p HM{PO)5P 

(4) 
denote the quadratic approximation of M{p) around 
Po, where, S^, = p-po is the unknown refinement step 
of Po that we want to solve for, VpM denotes the gra- 
dient of M, and HM denotes the Hessian of M (i.e., 
the matrix of second derivatives), both computed 
around po- According to Newton's method [Luen- 
berger, 1984], the refinement Sp computed based on 
this approximation is: 

Sp   = -(^M(P7)))"'-VP-M(P7)) (5) 

To apply the Newton's refinement step to our prob- 
lem, we derived the expressions for V^M and HM 

in terms of the measurable image quantities, i.e., the 
collection of correlation surfaces {Sf''"'}: Using the 
chain-rule of difl'erentiation, we obtain 

VpM{p)    =    Sx.v.iVp-SiCu) = S,,^,i(X^ • V55i(«)) 

HM{P}   =   ^.,y,i{X'^-HsM-X) (6) 

where X is the matrix defined in Eq. (1), V^Si is 

the gradient of 5|^'^^(u), and Hs^ is the Hessian of 

In other words, the quadratic approximation of M 
around po is obtained by combining the quadratic 
approximations of each of the local correlation sur- 

faces {S'f''''^]x,y,i around the ^oca/displacement vec- 
tor uo = u{x,y;po), which is induced at pixel {x,y) 
by the parametric transformation po (estimated at 
the previous iteration). 

Substituting Eqs. (6) into Eq. (5) provides an ex- 
-t * 

pression for the refinement step Sp   in terms of the 

correlation surfaces {S^^'^ }: 

S"; = -(S,,,,i X^Hs,{uo)X)-' (S.,,,, X^VsSiiuo)) 
(7) 

Note that these steps do not make any assumptions 
about the local correlation surface, except that it 
is twice differentiable. Thus, any local similarity- 
measure can be substituted for correlation, and our 
method will still apply. 

The steps of the algorithm: To account 
for large misalignments between pairs of images, we 
perform multi-resolution coarse-to-fine estimation, 
e.g., as in [Bergen et al, 1992]. A Laplacian (or 
a Gaussian) pyramid is constructed for each of 
the energy images. Let fn and gn [i = 1,2,3,4) 
denote the directional-derivative energy images 
at resolution level I in the pyramids of /, and gi, 
respectively. Starting at the coarsest resolution 
level with po initially set to 0, the following steps 
are performed at each resolution level: 

1. For each pixel {x,y) at fn {i = 1,2,3,4), 
compute a local normalized-correlation surface 
around the displacement UQ (i.e., around the dis- 
placement estimated at the previous iteration). In 
practice, the correlation surface is estimated only 
for a small number of displacements u of gn within 
a radius d around UQ, i.e.: 

Sil"'''\u) = fiiix,y) ON gii{x + u,y + v) , 

Vu — {u,v) s.t. \\u- UQW ^ d 
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where the radius d is determined by the size of 
the masks used for discretely estimating the first 
and second order derivatives of Sif'^{u) at UQ. 

In our current implementation we used Beaudet's 
masks [Beaudet, 1978] to estimate the first and 
second order derivatives of the surfaces. We have 
experimented both with 3x3 masks (i.e., d = 1) 
and with 5x5 masks (i.e., d=2). 

2. Perform  the  regression  step  of Eq.   (7)   to 
-♦ * 

compute the parametric refinement 6p . 

-* * 
3. Update po:    Po   :=  Po + Sp ,  and go back 
to step 1. 

After repeating the above process for a few 
iterations (typically 4), the parameters ^ are propa- 
gated to the next resolution level, and the process 
is repeated at that resolution level. The process is 
stopped when the iterative process at the highest 
resolution level is completed. 

In practice, to improve performance, we add an 
image warping step before each iteration (as in 
[Bergen et al, 1992]). The inspection images {gj 
are warped towards the reference images {fi} 
according to the current estimated parametric 
transformation po. After warping the images, po is 
set to 0, and Sp is estimated between the pairs of 
references and warped inspection images. Warping 
compensates for the spatial distortions between the 
pairs of images (e.g., scale difference, rotations, etc), 
and hence improves the quality of the correlation. 

Outlier rejection: To further condition and 
robustify the regression step of Eq. (7), only pixels 
{x,y) for which the quadratic approximation of 

S^^ (u) around UQ is concave are used in the 
regression process. Other pixels are ignored. Since 
corresponding multi-sensor image patches which 
have mutually exclusive image features will not tend 
to have a concaved-shaped local correlation surfaces, 
they will be eliminated from the regression at this 
point. Moreover, the contribution of each pixel to 
the regression step is weighted by the determinant 
of it Hessian. This built-in outlier rejection mech- 
anism provides the algorithm with a strong locking 
property onto a dominant parametric motion, even 
in the presence of independent motions, noise, and 
exclusive features that appear in only one of the 
sensor-images (but not in the other). 

4    Experimental Results 

The alignment algorithm described in Section 3 was 
implemented and applied with an affine paramet- 

ric model (Eq. 2) to pairs of multi-sensor images. 
Fig. 3 shows result of alignment of two multi-sensor 
images (visible and IR) obtained by sensors mounted 
on an aircraft approaching landing. Note the signifi- 
cant difference in scale between the two images (due 
to significantly different internal sensor parameters). 
Also note that contrast reversal occurs in some parts 
of the images (e.g., runway markings), while not in 
others (e.g., runway boundaries). 

The algorithms has been applied successfully even 
in very challenging situations, such as the one shown 
in Fig 4. Note the significant difference in image 
content between the two sensor-images. Apart from 
having significantly different appearance, there are 
many non-common features (i.e., outliers) in the 
multi-sensor image pair, which can theoretically 
lead to false matches. These are overcome by the 
built-in outlier mechanism of our algorithm (see 
Section 3). 
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Figure 3:   Multi-sensor Alignment. 
(a) EO image. (b) IR image. (c) Composite display of the two multi-sensor images 
before alignment. Horizontal strips from the two images are spliced together. Note the 
significant misalignments between the images (e.g., the runway markings and the borders 
of the runway). (d) Composite (spliced) display of the two multi-sensor images after 

alignment. Note that all structures in the scene are aligned. 
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Figure 4:   Multi-sensor Alignment. 
(a) EO image. (b) IR image. (c) Composite (spliced) display before alignment, (d) 
Composite (spliced) display a/ter alignment. Note in particular the perfect alignment of the 
water-tank at the bottom left of the images, the building with the arched-doorway at the 
right, and the roads at the top left of the images. 
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Abstract 

This paper describes an implementation of the 
Cubic Rational Polynomial Camera model de- 
veloped as part of the FOCUS project. FO- 
CUS ([l]) is on ongoing "shared vision" IR&D 
project jointly sponsored by Lockheed Martin 
Missiles and Space (LMMSS/Sunnyvale) and 
General Electric CR&D. A cubic camera has 
the advantage that all cameras, such as pro- 
jective, affine and the linear pushbroom, which 
map the image points as rational polynomial 
functions (of degree no greater than 3) of the 
coordinates of a world point, can be treated as 
special cases of the cubic camera. This paper 
demonstrates that the cubic camera can very 
eifectively model even those cameras which ex- 
press the image points as complicated functions 
of world coordinates, such as radicals. In par- 
ticular, it is empirically demonstrated that a 
SAR sensor is very accurately approximated by 
a cubic camera, but not by any linear camera 
model. 
The paper also outlines an algorithm for es- 
timating the parameters of the cubic camera, 
given a set of image to world correspondences. 
The non-linear nature of this camera can make 
parameter estimation a very unstable process. 
The slightest noise in the coefficients of the 
nonlinear terms can lead to a completely un- 
realistic model of the camera. This paper dis- 
cusses some refinements such as avoiding de- 
generacies, data normalization, and regular- 
ization which are necessary for accurate esti- 
mation of the cubic camera parameters and 
minimization of noise in the coefficients of the 
higher degree terms. 

1    Introduction 

A basic requirement of the FOCUS ([l]) project is to be 
able to compute camera models and do model building 
using complex and general camera models. To this pur- 
pose, a Cubic Rational Polynomial camera model has 
been developed in FOCUS to aid in these tasks. Lock- 
heed Martin and GE initiated the FOCUS project in 
January 1996 using GE's TargetJr as the MSE/IU plat- 

form. Funding for FOCUS at GE CR&D is provided by 
the Lockheed Martin Corporation. We acknowledge that 
this work would not have been possible without Govern- 
rment sponsored camera modelling and lU technology 
during the past decade. 

A cubic camera models the coordinates of the image 
point as ratios of third degree polynomials in the coor- 
dinates of the world point. Given a set of image-world 
correspondences, the objective of the cubic camera esti- 
mation problem is to determine the set of coefficients 
(a total of 80) of the polynomials in the cubic cam- 
era model such that the error with which the camera 
maps the world points to the image points in this set of 
correspondences, is minimized. In this paper, we out- 
line an algorithm which solves the cubic camera estima- 
tion problem by applying a least squares minimization to 
make an initial guess of the camera model, and then iter- 
atively refining that guess and minimizing the error using 
a method based on Levenberg-Marquardt algorithm. 

Due to the existence of non-linear terms in the cam- 
era model, even a small noise in the coefficients of the 
higher degree terms can lead to a large amount of er- 
ror. A related problem is that of extrapolation. Since 
the solution of the camera model is not unique, there 
may exist models which produce a small error in the 
given set of correspondences, but assign such values to 
the coefficients of the higher degree terms which pro- 
duce a completely unrealistic mapping of points outside 
the given set of correspondences. This leads to complica- 
tions while extrapolating the model to points outside the 
given correspondence set. To overcome this such prob- 
lems which are unique to non-linear camera models, we 
use the techniques of Data Normalization and Regular- 
ization. Specifically, we demonstrate that constraining 
the coefficients of the nonlinear terms to be as small as 
possible, generates a more realistic camera model which 
extrapolates better on the points outside the data set. 

It is easy to see that all linear cameras such as the 
affine, perspective, and linear pushbroom cameras, can 
be viewed as special cases of the cubic camera. How- 
ever, it is not so straightforward to use the cubic camera 
estimation for this special cases. Some of the problems 
encountered are the same as before, namely those con- 
cerning the unstability of higher degree terms leading to 
over-parametrization, which basically estimates a non- 
linear approximation to a completely linear camera. We 
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demonstrate how the techniques such as regularization 
can also be exploited to overcome this problem, and get 
a more linear approximation in these special cases. 

Finally, we conjecture that rational polynomial cam- 
eras indeed provide a very accurate approximation of 
even the non-polynomial cameras. In particular, we con- 
sider the SAR sensor, which models the image point 
as complicated radical functions of the coordinates of 
the world point. We provide empirical evidence which 
demonstrates that the cubic camera provides an ex- 
tremely accurate approximation of this sensor, despite 
the fact that SAR is not a rational polynomial cam- 
era. The cubic-approximation of SAR is compared to 
the perspective and linear pushbroom approximations of 
the same. Our empirical results show that the cubic- 
approximation performs at least four orders of magni- 
tude better. 

2    The Cubic Camera Model 

The cubic Rational Polynomial (RP) camera provides 
an abstraction of many types of camera models. The 
essential aspect of a camera model is the manner in which 
it maps points in space to points in an image. In the 
case of the RP camera, this mapping can be expressed 
in terms of rational polynomial functions of the world- 
coordinates of the object point. 

Thus, the mapping defined by an RP camera is of the 
form 

U = N„{X)/D^{X)V = N,{X)/D^{K) (1) 

where x = {x,y,z,t)''^ is the homogeneous coordinate 
of a 3D point, (u, vy is the corresponding image point, 
and Nu, Du, Ny and D-^ are homogeneous polynomials 
of degree n. 

A general homogeneous polynomial of degree  n in 

r variables contains ("+r^) = ^nul-^ *^™^- ^"^ 
the particular case of polynomials in the coordinates 
of X we have r = 4 and so the number of terms is 
n(n-M)(n-F2)/6. 

We will consider most particularly the case in which 
n = 3 and refer to this as the Cubic camera. Each of 
the polynomials 7V„(x), D„(x), A^t,(x) and i5^(x) has 
20 terms, and hence may be parametrized by 20 coeffi- 
cients. This amounts to a total of 80 parameters in all. 
It may be noted that in some descriptions of the Cubic 
camera, each of the coordinates x, y and z as well as the 
image coordinates u and v is subject to a scaling and 
offset, which adds an extra 10 parameters. However, 
these extra transformations may be incorporated into 
the rational cubic polynomial mappings, and are hence 
non-essential. They will be ignored in this exposition. 

The polynomials N^, Du, Ny and £>„ are homogeneous 
polynomials in the coordinates x, y, z and t of the 3D 
points. This means that each of the terms has the same 
degree, in this case 3. This is done so that the map- 
ping is not dependent on the particular representation 
of the point x as a homogeneous vector. It is possible 
to dehomogenize the polynomials by setting t = 1. In 
this case the terms of the polynomials will have different 
degrees, and we can talk of constant, linear, quadratic, 
cubic terms. Whenever we talk of the degree of a term 

of a polynomial, or of the corresponding coefficient, it is 
this dehomogenized degree that will be meant. 

3    Special Cases of the Cubic Camera 

Many of the common cameras may be considered as spe- 
cial cases of the Cubic camera. 

Projective Camera. The projective camera is de- 
fined by a mapping {wu,wv,w)''' = Px where P is a 
3x4 matrix, u and v are the image coordinates, and w 
is an unknown scale. This may also be written as 

u    — 

V     = 

P3^X 

P2"^X 

P3^X 

Thus, we see that this is a special case of the RP cam- 
era in which Af„(x), L»„(x), Nv{x) and D^x) are linear 
functions and Du = Dy. 

Linear Pushbroom Camera. The linear pushbroom 
camera described in [S] is an example of an RP camera. 
The linear pushbroom camera is an approximation of the 
camera model represented by a SPOT satellite pushb- 
room sensor. The defining equation is (u,wv,wy = 
P{x, y, z, ly where as before, P is a 3 x 4 matrix, u and 
V are the image coordinates, and w is an unknown scale. 
In terms of a homogeneous object point x = (x,y,z,t) , 
this may be written as 

pi"'"x 
u =   

t 
P2^X 

V = —Y" 
P3    X 

where x = (a;, j/, 2, l)""". In this case, it is equivalent 
to an RP camera with A^„(x), Nv{x) and Dv(x) hnear 
functions, and Du{x) = t. 

Affine Camera. The affine camera is a special case of 
the projective camera in which the camera matrix has 
a special form in which the last row is (0,0,0,1). This 
may be modelled as a Cubic camera for which 

Pi^x 

P2^X 

SAR images. SAR sensors may be approximated with 
the Cubic camera with excellent accuracy. This was 
demonstrated by testing the Cubic model against some 
synthetic correspondence data constructed as follows. 
Consider a SAR sensor moving in the x axial direction 
at an altitude of 3000m above a nominal ground plane 
and imaging a section of the ground at distances be- 
tween 5000 and 7000 metres to the side of the flight 
path. Points were chosen over a 2000m x 2000m swath 
of ground at altitudes between -500m and 500m, and 
their corresponding image coordinates were computed, 
assuming a Im pixel, thus creating a 2000 x 2000 pixel 
image. Thus, the u coordinate in the image of a point 
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Cubic model LP model Perspective model 

Figure 1: Fitting error for synthetic SAR data using Cubic, Perspective and Linear Pushbroom models. The graphs 
show the error for points in the plane 2 = 0, but for fitting, data points at aliitdues between -500m and 500m were 
used. The average error for Perspective and LP sensors was approximately 6 pixels, with a maximum of JO pixels. 
The error achieved with the Cubic camera was only 0.02 pixels. 

X = {x, y, z)^ in space was equal to the x coordinate of 
the point, and the v coordinate was equal to the radial 
distance of the point from the line of flight. In symbols 

u 

V y/y^ + {z- 3000)2 

This data was then fitted with a Cubic camera, a Per- 
spective camera and a Linear Pushbroom camera model 
and the residual reprojection error was recorded. The 
results are shown in Fig 1. 

4    Solving for the Cubic Camera 

We now consider the basic photogrammetry problem of 
parameter estimation for the Cubic camera. We as- 
sume given a set of image to world correspondences 
Mirightarrowx.i. The task is to compute the parame- 
ters of the Cubic RP camera, namely the coefficients of 
the polynomials A^u(x), £'„(x), -/V^(x) and I>^(x). Two 
methods will be used to do this. 

1. A linear method based on linear least-squares mini- 
mization. This method is based on the DLT method 
([?]) for estimating the parameters of a projective 
camera. 

2. An iterative method based using the Levenberg- 
Marquardt method ([6]). The linear method was 
used to provide an initial estimate of camera param- 
eters, which is refined by iteration. This method was 
implemented using a general-purpose camera solv- 
ing program Carmen ([4]). Little more will be said 
in this report concerning the iterative method. 

4.1     Linear Estimation of the Cubic Camera 
ModeL 

From the equations 

=    7V„(x)/I?„(x) 
=    iV,(x)/L»„(x) 

defining the cubic camera model, one may obtain by 
cross multiplication a pair of equations 

«£l„(x)-iV„(x)    =    0 
v£>,(x)-iV,(x)    =    0 (2) 

Although these equations are non-linear in x, they are 
linear in the coefficients of the polynomials. Since each 
such correspondence gives a pair of equations, and there 
are a total of 80 unknown parameters, a total of at least 
40 correspondences are required to solve for the polyno- 
mial coefficients. With more than 40 points one has an 
over-determined system of equations which will be solved 
by least-squares techniques. The total set of equations 
are of the form ^p = 0, where p is the set of parame- 
ters. We are not interested in the trivial solution p = 0. 
Since the polynomials are homogeneous, their quotient 
7Vu(x)/£)u(x) (and the same thing for v) is independent 
of scale. We find the parameter vector p that minimizes 
II^PII subject to ||p|| = 1. The solution is the singular 
vector corresponding to the smallest singular value of A 

my 
This is the barest outline of the method. More will be 

said later about important implementation details and 
refinements to this algorithm. 

4.2    Degeneracy of the Cubic Model 
We would like to be able to treat cameras such as the 
projective and linear pushbroom cameras as special cases 
of the Cubic camera and use the same parametriza- 
tion method for all. Care must be taken in doing this, 
however because of over-parametrization of the camera 
model. Consider for instance a set of world to image 
correspondences Uirightarrowxi corresponding to a pro- 
jective camera. In the absence of noise, there will exist 
linear polynomials Nu{x), Ny{x.) and D{x) such that 
Ui = Nn{xi)/D{xi) and Vi = Ny{xi)/D{xi). Unfortu- 
nately, these are not the only polynomials which give rise 
to the correct image points. In particular, one may mul- 
tiply numerator and denominator by an arbitrary poly- 
nomial and obtain the same mapping.   In symbols the 
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value of 
A{xi)Nu{xi) 

' A{xi)D{xi) 
is constant for all polynomials A{xi). Since Nuix,) and 
D{xi) have degree 1 for a perspective camera, ^(x,) may 
be an arbitrary degree 2 homogeneous polynomial. Such 
a polynomial has C| = 10 degrees of freedom. Since 
the numerator and denominator of Vj = Aft,(x,)/£)(xj) 
may independently be multiplied by a polynomial 5(x), 
there exists a 20-parameter family of cubic polynomials 
defining a projective camera mapping. In this case, the 
matrix A in the set of equations Ap = 0 will have dimin- 
ished rank. In fact A has 80 columns, but its rank will 
be at most 60 because of the 20-parameter family of so- 
lutions. The solution of Ap = 0 will not be well defined, 
and there is no reason to expect the linear solution to be 
selected, if one is chosen arbitrarily. 

In the presence of a degree of noise in the measure- 
ments of image points, or 3D points, the matched points 
Uirightarrowxi will not correspond precisely with a true 
perspective model. The cubic model will attempt to cor- 
rect for this by the introduction of spurious higher-order 
terms. This will cause the model to match the data more 
precisely on the measured data. However, it can lead to 
large errors in other parts of the scene, far from measured 
control points. In brief, in the presence of instabilities of 
this nature, one can not extrapolate reliably beyond the 
measured data. This point will be illustrated later on in 
this paper. 

4.3     Data Normalization 
It has been pointed out by several authors, for instance 
the present authors ([3]) that prenormalization of the 
input data is essential for obtaining a good result from 
linear algorithms of this kind which do not minmize ge- 
ometrically meaningful quantity. Before running the lin- 
ear algorithm to compute the camera parameters, it is 
absolutely essential to normalize the data. The general 
method involves three steps. 

1. Choose transforms Tu and Tx of the image and 
object points such that Uj i-^^ u^ = ^uUj and 
Xi H-»-x< = TxXj. 

2. Solve to find a parametrized Cubic RP camera 
model, represented by a map P' (in general, non- 
linear), that provides a best possible solution to the 
set of equations u'- = P'xJ. This is done using the 
linear algorithm described above. 

3. Replace P' by P = TuP'Tx^ This mapping will 
satisfy Pxi = T-'P'T^Xi = T-'P'x', = Tu^u< = 
Uj as required. Note that composition of mappings 
and not matrix multiplication is implied by this jux- 
taposition TuP'T^^, since P' is not linear. 

The recommended normalizing transforms Tu and Tx 
are both of the same type : translation of the data to 
place its centroid at the origin, and scaling so that the 
average point is a distance v^ from the origin in the 
case of Tu, which is a 2D transformation, and ^/3 in the 
case of Tx, which is a 3D transformation. The reasons 
for this choice of scaling are given in [3]. The main pur- 
pose of data normalization is to improve the conditioning 

of the problem. To see why this would otherwise be a 
problem, consider a 3D object point with coordinates 
{x, y, z,ty = (500, 500, 500,1)"'" in some coordinate sys- 
tem mapping to an image point (u, n)^ = (500, 500). In 
writing the set of equations (2), the entry corresponding 
to the term x^ oi N^ will be 500^, whereas the entry cor- 
responding to term t^ of Du will be 1. This wide range 
of entries in matrix A means that A will be poorly condi- 
tioned, and the solution very unstable in the presence of 
noise. The normalization transformations are designed 
to give each entry in A an equal weight. 

In doing this, it is important that if P' is a cubic RP 
mapping, then so is P = T{^^P'Tx- This will be true for 
any linear transformation Tx, but interestingly enough, 
not for any Tu. This is easily seen as follows. First, 
suppose that Pl,{x) = Nl{x)/D[,(x) where both N(, and 
£)(, have degree n. (For the Cubic camera, n = 3.) Then, 
P:,TX{X) = iV^(Tx(x))/D;,(Tx(x)), and both numerator 
and denominator are degree n polynomials in x, since 
Tx(x) is linear. 

On the other hand, consider TP'{x) where T is any 
affine transformation. The u coordinate in the image is 
given by u = T{u',v') = au' + pv' +'y. The v coordinate 
is expressed similarly. In this case, we have 

TP'(x) = aS^-f/?^^^ + T '^^""^     ^ip/(x)+^i);(x)+^ 

aK (x) J; (x) -f PK i^)D'u(x) + iD'u i^)D'. (x) 
D'Jx)Di{x) 

Thus,   the  degree  of the  RP  transformation is in- 
creased. There are two evident exceptions to this : 

1. £)(, = £'(,. This is the case for a projective camera. 

2. /? = 0. This is the case in which the transforma- 
tion is a simple scaling and translation. This is the 
recommended sort of transformation. 

In this latter case, one has 

QJV^(X) + 7£);(X)D;(X) 
TP'{x) (3) 

4.4    Computing Composition of Mappings 

The composition of T-^^P'{x) is easily computed using 
(3). The computation of P'Tx is a little more compli- 
cated, however. This is a standard sort of algebraic ma- 
nipulation problem, but complicated if one does not do 
it the right way. A simple implementation is possible 
using tensors, as described now. 

A cubic homogeneous polnomial A'^(x) may be writ- 
ten in terms of a symmetric tensor Nijk defined such 
that if X has components x\ then A''(x) = Nijkx'x^x''. 
Here, the superscripts represent indices, not powers, and 
a repeated index in the upper and lower positions im- 
plies summation. This may be more familiar in the de- 
gree 2 case, where a quadratic form may be written as 
x"'"ylx = AijX^xL 

Now, if we apply a linear transformation such that 
x' = Tix'P, then it follows that A^(x) = Nijk^'x^x'' = 

Nl^^x'Px'tx'-' where Nl^^^ is de- NijkT'T^T,^x'Px"'x'' -- 
fined oy 

N' = NijkT;TiTj^ (4) 
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Perspective model Cubic model : ^ = 0.1 Cubic model 10.0 

Figure 2: This shows the result of camera reseciioning using the Cubic camera model. Hand-picked correspondences 
between a site model and an image are used to compute the camera model. The site model is then projected into the 
image using the computed camera model. The three examples show a projective camera, and two parametrized cubic 
cameras computed with different settings of k, the constraint weight for high-order coefficients. In all cases, the site 
model is well aligned with the image within the image area. For the cubic camera, the agreement of the site model 
outside of the area where control points are chosen is not so good, though for larger value of k, the site model is 
projected reasonably well. 

This is the composition rule required to compute the 
composition PTx- 

4.5     Regularization 

It was shown in a previous section that in cases where a 
Cubic camera is well approximated by a projective cam- 
era, or some other linear camera, the computation of 
the camera model may be unstable. A way that we have 
found useful for dealing with this problem is regulariza- 
tion. In this method, a constraint is put on quadratic 
and cubic terms in N^, Ny, D^ and Dy constraining 
them to be close to zero. This constraint is weighted by a 
parameter k, where high values oik provide a strong con- 
straint on the values of the higher order terms. The re- 
quirements that these terms be small is balanced against 
the requirements imposed by the data. 

This has two effects : 

1. Low degree polynomials are favoured over high- 
degree polynomials. This has the effect of resolv- 
ing the ambiguity in the set of solutions. In the 
presence of only a low degree of noise, for instance, 
a perspective cameras will be modelled with linear 
(or near linear) rational polynomials. 

2. It is possible to solve for the camera parameters with 
fewer than the full number (40 in the Cubic camera 
case) of point correspondences. This is useful when 
it is difficult to find such a large number of control 
points. 

Figure 2 shows the effect of different values of k. 
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Abstract 
A new algorithm is presented which approximates 
the perceived visual similarity between images. The 
images are initially transformed into a feature space 
which captures visual structure, texture and color 
using a tree of filters. Similarity is then measured 
as the distance in this perceptual feature space. Us- 
ing this algorithm we have constructed an image 
database system, called Rosetta, which can perform 
example based retrieval on large image databases. A 
typical query consists of a small set of images which 
are representative of a broader class (e.g. images of 
automobiles or images of city skylines). From the 
example images a characteristic signature in feature 
space is computed and is compared to the features 
of each image in the database. The closest database 
images are returned. Performance in this area is 
notoriously difficult to quantify. We have acquired 
a set of 2900 images which have been divided into 
29 classes based on visual and semantic similarity. 
Using a small set of randomly selected images from 
each class as a query we can with high reliability re- 
turn other images from that class and reject images 
from other classes. 

1    Introduction 

There are many potential applications for a content 
based image database retrieval program. For exam- 
ple users may wish to search through all television 
news broadcasts from Moldova for images of military 
vehicles; or to search through the World Wide Web 
for images of the Eiffle tower. Today such queries 
must be performed manually. Though people can 
perform searches for complex or loosely defined im- 
ages - finding images involving political violence, 
or depicting "pride" - they typically must examine 

•Research supported in part by DARPA under ONR con- 
tract No. N00014-95-1-0600 and by the Office of Naval Re- 
search under contract No. N00014-96-1-0311. Portions of this 
work were done at the Microsoft Vision Technology group, 
Microsoft Inc. Redmond, Wa. 

each image in the database. The size of many image 
databases, however, have grown beyond the scope 
of manual searching. Clearly some scheme for auto- 
matically and efficiently searching very large image 
databases is necessary. Such a system must be able 
to measure and compare key visual components of 
natural images. 

A digitized image can be interpreted as a single very 
high dimensional point in pixel space. From this 
point of view, it is not unreasonable to consider the 
distance between images in pixel space as a measure 
of the visual similarity between images. Clearly if 
two images are very near in pixel space they look 
similar. Unfortunately images which are far apart 
in pixel space are often very similar in visual con- 
tent. What is needed is some sort of "Rosetta stone" 
which can translate images into another representa- 
tion which would allow us to interpret and compare 
them based on their content and visual structure. 

Many algorithms have been proposed for image 
database retrieval. For the most part these tech- 
niques compute a feature vector from an image 
which is made up of a handful of image measure- 
ments. Visual or semantic distance is then equated 
with feature distance. Examples include color his- 
tograms, texture histograms, shape boundary de- 
scriptors, eigenimages, and hybrid schemes [QBIC, , 
Niblack et al, 1993, Virage, , Kelly et al, 1995, 
Pentland et al, 1995, Picard and Kabir, 1993, 
Santini and Jain, 1996]. A query to such a sys- 
tem typically consists of specifying two types of pa- 
rameters: the target values of each of the measure- 
ments; and a set of weights, which determine the 
relative importance of deviations from the target in 
each measurement dimension. The features used by 
these systems each capture some non-specific prop- 
erty of images. As a result of their generality how- 
ever, many images which are actually very different 
in content, generate the same feature responses. In 
many images the critical structural properties that 
determine the content of the image cannot be dis- 
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criminated by these highly-general features. For ex- 
ample features based on color histograms would eas- 
ily confuse a photo of a stack of white papers with 
a photo taken outdoors in the snow. Recently a 
novel approach which does not use feature vectors 
has demonstrated very strong results [Lipson et al, 
1997]. Their system measures the global structure 
images and is relatively insensitive to local image 
texture. 

The goal of our approach is to pay attention both 
to local texture and global structure. We hypoth- 
esize that there is in fact no clear distinction be- 
tween local texture and global structure: that they 
are simply two ends of a continuum. Our algorithm 
represents images at many levels of resolution: mea- 
suring color, edge orientation, and other local prop- 
erties at each resolution. The visual properties cap- 
tured by these local operations changes at different 
scales. A horizontal color edge at a high resolution 
might be related to the leaves of a tree, while a hor- 
izontal color edge at a much lower resolution might 
be caused by a blue sky above a green field. This 
sort of multi-scale feature analysis is of critical im- 
portance. It has been used successfully in the con- 
text of object recognition [Rao and Ballard, 1995, 
Viola, 1996]. 

Our system differs from others because it detects 
not only first order relationships, such as the edges 
described above, but also measures how these first 
order relationships are related to one another. Thus 
by finding patterns between image regions with par- 
ticular local structural organization, more complex 
- and therefore more discriminating - features can 
be extracted. In essence the Roesetta system looks 
for textures of textures. For example, at the high- 
est level of resolution, vertical edge detectors will 
respond both to skyscrapers and picket fences. At 
this resolution the two images are not distinguished 
by the presence of vertical texture. If we examine 
the spatial organization of the vertical texture we 
find that picket fences yield horizontal bars of verti- 
cal energy. It is the non-linear conjunction of texture 
and spatial organization that allows our system to 
distinguish a variety of complex images. 

There are tens of potentially useful color and tex- 
ture features which occur in local regions of natural 
images. There are hundreds of conjunctive features 
that can be formed by computing a feature at one 
resolution and then measuring its structural orga- 
nization at another. This analysis can be repeated 
many times: in effect yielding measures of higher or- 
der textural organization. There are literally thou- 
sands of these multiply conjoined features. Taken 
together such a representation is called the charac- 
teristic signature of an image. 

No human being can be expected to determine de- 
sired values or weights for so many conjunctive fea- 
tures. Instead, a user retrieves images from the 
Rosetta system by presenting a set of example im- 
ages. The system computes the desired feature val- 
ues and weights from this set. Thus, this paradigm 
can be described as "query by image example." Vari- 
ations in the feature vectors of the query images are 
used to determine the relative importance of each 
image feature in the query. Those features which 
have consistent values across all the example images 
receive the largest weights. Weighting in this way 
causes those features which are consistent within 
a class to be most important in determining class 
membership. For example, in one query chromatic- 
content may be the primary measure, while in an- 
other, spatial-arrangement may be dominant. 

2    Computing the Characteristic Signature 

The "texture-of-texture" measurements used by the 
Rosetta system are based on the outputs of a tree of 
non-linear filtering operations. Each path through 
the tree creates a particular filter network, which 
responds to certain structural organization in the 
image. Measuring the appropriately weighted dif- 
ference between the signatures of images in the 
database and the set of query-images, produces a 
similarity measure which can be used to rank and 
sort the images in the database. 

The computation of the characteristic signature is 
straightforward. At the highest level of resolution 
the image is convolved with a set of local linear fea- 
tures. In our experiments there are 25 local fea- 
tures including oriented edges and bars. The re- 
sults of these convolutions are 25 feature response 
images. These images are then rectified by squar- 
ing, which extracts the feature energy in the image, 
and then downsampled by a factor of two. This con- 
volution, rectification and downsampling is then re- 
peated on each of these 25 half resolution images 
producing 525 quarter scale texture-of-texture en- 
ergy images. Repeating this procedure a third time 
yields 15,625 meta-texture feature images at eighth 
scale. The sum of the values in each of these images 
provides one element in the characteristic signature. 
This is done independently for each color channel in 
the input image, creating a signature which contains 
46,875 measurements. By exploiting the hierarchical 
construction of these measurements, the characteris- 
tic signature for an image can be computed in about 
a minute on a workstation. Once computed, this 
signature is saved and reused for subsequent queries 
made on the database. 

More formally the characteristic signature of an im- 
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age is given by: 

Si,j,k,c{I) =  2^ Eij^k{Ic) 
pixels 

(1) 

where / is the image, i, j and k index over the dif- 
ferent types of Hnear filters, and Ic are the different 
color channels of the image. The definition of E is: 

Ei{I)    =   2im®lf] (2) 

Eijil)    -   2i[iFj®Ei(I)f] (3) 

Ei,j,k{I)    =   2i[iFk®Eij{I)f].        (4) 

where Fj is the ith filter and 2 4- is the downsampling 
operation. 

3    Using Characteristic Signatures To Form 
Image Queries 

In our image query paradigm, we describe similarity 
in terms of the difference between a database-image 
and a group of example query-images. This is done 
by comparing the characteristic signature of each im- 
age in the database to the mean signature of the 
query-images. The relative importance of each ele- 
ment of the characteristic signature in determining 
similarity is proportional to the inverse variance of 
that element across the example-image group. This 
has the effect of normalizing the vector-space defined 
by the characteristic signatures, so that characteris- 
tic elements which are salient within the group of 
example-images contribute more to the overall sim- 
ilarity of an image. 

The similarity between an image and the group of 
query-images is the negative of the sum squared dif- 
ference between the average query-image signature 
and the database-image signature weighted by the 
variance of across the query-image signatures: 

L = EEEE 
Ji,j,k,c\iq)       ^i,j,k,c(-^test) 

Var[Sij^kAIq)] 

(5) 

4    Experiments 

An image database query system must retrieve im- 
ages which are similar to those for which the user 
is searching. Because the concept of similarity in 
the goal above is not well defined it is difficult to 
quantify query results. 

We used a database of 2900 images from 29 Corel 
Photo CD (collections 1000-2900.) Each CD con- 
tains 100 images which have been categorized by 
theme. Examples of these themes include "Sunsets 
& Sunrises," and "Mountains of America," as well 
as less specific collections such as "Spirit of Bud- 
dha," or "Christmas Collection," and classes which 
contain images which are very similar, i.e.  "Exotic 

Cars," and "Auto Racing." Each image has been 
placed exclusively into one category, however, some 
could reasonably belong in multiple categories. For 
example, consider categorizing an image depicting 
a sunrise over the Rockies, or a 1967 Porsche. Be- 
cause of this lack of mutual exclusion between true 
category membership, we would not expect any im- 
age query system - or human - to exactly select the 
same images for a category as did the original clas- 
sifier. 

Figures 1 and 2 show the results of typical user query 
on this system. The images in Figure 1 are the 
query-images submitted by the user. In Figure 2 are 
the thirty images found to be most similar; similar- 
ity decreases from upper left (most similar) to lower 
right. Though these examples provide an anecdotal 
indication that the system is generating similarity 
measures which roughly conform to human percep- 
tion, it is difficult to ascertain from them a quanti- 
tative evaluation of the system. To better measure 
the performance of the system two experiments on 
this database were performed. 

5    Experiment 1 

The images in each collection were selected because 
they were determined by a human observer to be 
representative examples of the theme of the collec- 
tion. Threfore it is a vaild experiment to take a 
few images from a category and use them to retrieve 
other images from that category. The ranking of the 
true images in that category provide a measure of 
success. 

The results of two queries are shown in the receiver 
operating characteristics curve in figure 3. 

ROC curves for 2 sample queries 

Figure 3: The ROC curve for two queries. 

For each query four images were randomly chosen 
from a single image collection. The similarity was 
then measured between this query set and all the 
images in the database. The number of images from 
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I Query Images 

Figure 1: A sample query intended to return images of cars. 

HH-lUllli^I'lii 

Figure 2: The response of the Rosetta system to the query in Figure 1. 

the target collection is plotted against the number 
of other images as a function of image similarity. 

The top (grey) curve was generated by a query for 
images from the "Sunsets k Sunrises" collection, 
which contains images which all share common vi- 
sual characteristics. Two of the images from this 
collection are shown in figure 4b. Though there is 
significant chromatic variation between the various 
images in this group they all share very similar struc- 
tural characteristics. 

The middle (black) curve in Figure 4b, shows a query 
from the "Christmas collection," whose images con- 
tain far more visual variety. Two typical images 
from this collection are shown in Figure 5b. Because 
of this increased variety one would anticipate poorer 
performance for such a query. However, performance 
is still significantly better than chance, which is indi- 
cated by the diagonal dashed line. This is due to the 
fact that though there is significant variety, many of 
the images do still contain similar structures. 

6    Experiment 2 

A second measure of the Rosetta system's perfor- 
mance is obtained by measuring how well the sys- 
tem can discriminate between two classes given a 

Figure 4: Example images from two categories in 
the database. 

few examples from each. 

Using examples from only the "Sunsets & Sunrises" 
collection, and attempting to classify images from 
both that collection and from the "Christmas Col- 
lection" the black curve in Figure 5 is obtained. On 
this plot, the number of correctly classified images 
(number of detections) is plotted against the num- 
ber incorrectly classified (false-alarms.) From this 
curve we can see, for example, that if searching for 
"Sunsets & Sunrises", about of 32 out of the top 50 
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responses would be correctly classified yielding an 
accuracy of only 64 percent. Chance, represented 
by the dashed line is 50 percent. If however, we 
present the Rosetta system with examples of each 
collection, the grey curve in Figure 5 is obtained. 
On this curve 43 out of the top 50 are correctly clas- 
sified, yielding 86 percent accuracy. Because of the 
large variation within the image collections, as dis- 
cussed above, performance drops off steadily as we 
consider retrieving successively larger portions of the 
target collection. 

ROC classifciation curves for 2 classes 

Figure 5: Using examples from multiple classes 
(grey curve) improves performance over examples 
from just one class (black curve.) 

7    Discussion 

We have presented a technique for approximating 
perceived visual similarity, by measuring the struc- 
tural content similarity between images. We have 
developed a system called Rosetta which transforms 
images into a very high dimensional "characteristic 
signature" space which captures the visual structure 
in the image. Using this represntation, the Rosetta 
system directly compares database-images to a set 
of query-images. 

Experiments indicate that the Rosetta system can 
retrieve images which share visual characteris- 
tics with the query-images, from a large non- 
homogeneous database. Because the characteristic 
signature space incorporates structural information, 
it can perform queries where simpler methods, such 
as color histogramming fail. Though the results of 
queries using the Rosetta system are encouraging, 
they are not perfect - as evidenced by the false 
alarms in Figure 2 - we believe that with additional 
research its performace will improve. 

In experiment 2 we demonstrated retrieval perfor- 
mance can be improved by modelling distracting im- 
ages as a spearate class. 
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Abstract 

In this paper we present a novel approach to 
the problem of navigating through a database 
of color images. We consider the images as 
points in a metric space in which we wish to 
move around so as to locate image neighbor- 
hoods of interest, based on color information. 
The data base images are mapped to distribu- 
tions in color space, these distributions are ap- 
propriately compressed, and then the distances 
between all pairs /, J of images are computed 
based on the work needed to rearrange the mass 
in the compressed distribution representing / 
to that of J. We also propose the use of multi- 
dimensional scaling (MDS) techniques to embed 
a group of images as points in a two- or three- 
dimensional Euclidean space so that their dis- 
tances are preserved as much as possible. Such 
geometric embeddings allow the user to perceive 
the dominant axes of variation in the displayed 
image group. In particular, displays of 2-d MDS 
embeddings can be used to organize and refine 
the results of a nearest-neighbor query in a per- 
ceptually intuitive way. By iterating this pro- 
cess, the user is able to quickly navigate to the 
portion of the image space of interest. 

1    Introduction 

Rummaging through a large catalog of pictures 
in search of a particular image is unrewarding 
and time-consuming. Image database retrieval 
research [Bach et al, 1996; Guibas and Tomasi, 
1996; Niblack et al, 1993; Pentland et al, 1996] 
attempts to automate parts of this task.   The 

*This work Wcis sponsored by the Defense Advanced 
Research Projects Agency under contract DAAH04-94- 
G-0284 monitored by the US Army Research Office. The 
views and conclusions contained in this document are 
those of the authors and should not be interpreted as rep- 
resenting the official policies, either expressed or implied, 
of the Defense Advanced Research Projects Agency, the 
United States Government, or Stanford University. 

most popular proposals for formulating a query 
into an image database is to sketch the desired 
picture or to provide an example of a similar 
image. Yet often we do not know the precise ap- 
pearance of the desired image(s). We may want 
a sunset, but we do not know if sunsets in the 
database are on beaches or against a city sky- 
line. When looking for unknown images, brows- 
ing, not query, is the preferred search mode. 
And the key requirement for browsing is that 
similar images are located nearby. Current re- 
trieval systems list output images in order of in- 
creasing distance from the query. However, the 
distances among the returned images also con- 
vey useful information during browsing. In this 
paper, we present a novel framework for com- 
puting the distance between images, and a set 
of tools to visualize an entire image data base 
or parts of it during browsing. 

The question of image similarity is complex and 
delicate. Semantic similarity (two images with 
cats are similar to each other) is still out of 
the question, and we must make do with simi- 
larity of appearance. More specifically, in this 
paper we focus on the overall color content of 
an image as the main criterion for similarity. 
The overall distribution of colors within an im- 
age contributes to the mood of the image in 
an important way, and is a useful clue for the 
image's contents. Sunny mountain landscapes, 
sunsets, cities, faces, jungles, candy, and fire 
fighters scenes lead to images that have differ- 
ent but characteristic color distributions. If the 
pictures in a database can be arranged in a 
geometric space so that their locations reflect 
diff'erences and similarities in their color distri- 
butions, browsing the database becomes intu- 
itively meaningful. In fact, the database is now 
endowed with a metric structure, and can be 
explored with a sense of continuity and compre- 
hensiveness: all we care, as far as the parts of 
the database that have undesired color distribu- 
tions are concerned, is that we need not traverse 
them. On the other hand, interesting regions 
can be explored with a sense of getting closer 
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or farther away from the desired distribution of 
colors. In summary, the user can form a mental, 
low-detail picture of the entire database, and a 
more detailed picture of the more interesting 
parts of it. If a picture is worth a thousand 
words, a picture of an image database is worth 
a whole book. 

Of course, arrangement criteria other than color 
distribution are possible. For instance, informa- 
tion about the position of colors in the images, 
as well as shape and texture, ought to be consid- 
ered eventually. However, color distribution is 
at the same time useful in its own right and com- 
plex enough to let us illustrate the main issues. 
Thus, while we experiment with the notion of 
similarity in the context of color information, we 
define a framework in which shape and texture 
descriptors can also be accommodated, leading 
to a skeletal theory of image database visual- 
ization. In particular, we address the following 
questions: 

• How do we summarize the color distribution 
of an image? 

• When do two images have similar color dis- 
tributions and, more generally, how do we 
measure the 'distance' between these distri- 
butions? 

• How can we arrange a collection of images 
so that similar images are near each other? 

Summarization of color distribution has to do 
with perceptual significance, invariance, and ef- 
ficiency at the same time. Colors should be 
represented in a way that reflects a human's 
appreciation of similarities and differences. At 
the same time, the distribution of colors in 
an image should be represented by a collec- 
tion of data that is small, for efficiency, but 
rich enough to reproduce the essential infor- 
mation. The issue of relevance to human per- 
ception has been resolved by the definition of 
appropriate color representations, among which 
we choose the CIE-LAB standard. Section 2 
addresses the issue of summarization by pre- 
senting a new, efficient clustering scheme based 
on k-d trees. This scheme buys efficiency at 
the expense of reduced guarantees about the 
size of the output. While more expensive al- 
gorithms may guarantee a minimal number of 
clusters, this is an unnecessary requirement for 
our application. The result of this method is 
a small collection of (weighted) points in color 
space which represent well the full distribution; 
we call this set of points a (color) signature. 
Section 3 introduces the Earth Mover's Dis- 
tance (EMD) [Stolfi, 1994] as a useful and flexi- 
ble measure of distance between signatures, and 
presents an efficient algorithm for its computa- 

tion based on linear programming. This dis- 
tance endows the image database with an ap- 
propriate metric, thereby addressing the ques- 
tion of image similarity. Section 4 addresses 
the third question above, and shows how to 
use the technique of Multi-Dimensional Scal- 
ing (MDS) [Kruskal, 1964] in order to visual- 
ize either the entire database or just the part 
of it returned in response to a query in a two- 
or three-dimensional space. The resulting com- 
posite image properly reflects the distribution of 
color distributions within the database. Finally, 
section 5 argues that the techniques and issues 
introduced in this paper generalize to other as- 
pects of image description. 

2    Color Signatures 

The color information of each image is reduced 
to a compact representation that we call the sig- 
nature of the image. In general a signature con- 
tains a varying number of points in a Euclidean 
space where a weight is attached to each point. 
In the case of color images, the points repre- 
sent clusters of similar colors and the weight of 
a point is the fraction of the image area with 
that color. 

To compute the signature of a color image, we 
first slightly smooth each band of the image's 
RGB representation in order to reduce possi- 
ble color quantization and dithering artifacts. 
We then transform the image into the CIE- 
LAB color space [Wyszecki and Styles, 1982] us- 
ing D65 as the reference white. This nonlinear 
transformation deforms the RGB color space so 
that the resulting Euclidean distance between 
color coordinates approximates how well colors 
are discriminated by humans. 

Each image implies a distribution of points 
in the three-dimensional CIE-LAB color space 
where a point corresponds to a pixel in the im- 
age. We coalesce this distribution into clusters 
of similar colors. We define these as clusters 
that do not exceed 30 units in any of the L, a, b 
axes. Because of the large number of images 
to be processed in a typical database, cluster- 
ing must be performed efficiently. To this end, 
we devised a novel two-stage algorithm based 
on a k-d tree [Bentley, 1975]. In the first phase, 
approximate clusters are found by a balanced 
partition of color space through a k-d tree. Sub- 
division stops when a cell becomes smaller than 
the allowed cluster size. This process can result 
in excessive subdivision. The second phase then 
tries to merge close clusters computed in the 
first phase by performing a second k-d tree clus- 
tering on points which represent the centroids of 
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the clusters that are produced in the first phase, 
after shifting the space coordinates by one half 
of the minimal allowed cell size. Each cluster 
contributes a pair {p,Wp) to the signature rep- 
resentation of the image where p is the average 
color of the cluster and Wp is its weight which 
is the fraction of image pixels that are in that 
cluster. Figure 2 shows examples of color signa- 
tures for three images. 

The signatures thus obtained are compact: the 
color distribution of an entire image is sum- 
marized by a handful of points, typically eight 
to twelve. Because of the clustering algorithm 
used, signatures represent well the image's over- 
all color distribution. Since signatures represent 
distributions in the CIE-LAB color space, they 
are perceptually significant, in that Euclidean 
distances between points are strongly correlated 
with perceptual differences. Because of cluster- 
ing, small variations in the colors of an image 
have little effect on signatures, thereby provid- 
ing a moderate degree of invariance to changes 
of viewpoint and lighting. Finally, signatures 
are simple and flexible abstractions for which 
we can define meaningful metrics, as shown in 
the following section. 

Distance Between Color 
Signatures 

In image retrieval, it is important to define a 
similarity measure between two color distribu- 
tions or, in particular, between two color sig- 
natures. When considering only the color con- 
tent of images, and ignoring the actual posi- 
tions of the pixels within the image, this prob- 
lem is known as the color indexing problem 
which was introduced by Swain and Ballard 
[Swain and Ballard, 1991] and was approached 
in several ways by others [Hafner et a/., 1995; 
Strieker and Orengo, 1995; Werman et al., 
1985]. Our approach is closest to, but more 
general and at the same time more efficient 
than that of [Werman et al., 1985]. The other 
methods are bound to retrieve false positives 
[Strieker and Orengo, 1995]. We define the dis- 
tance between two signatures to be the mini- 
mum amount of 'work' needed to transform one 
signature into the other (figure 1). The work 
needed to move a point, or a fraction of a point, 
to a new location is the portion of the weight 
being moved, multiplied by the Euclidean dis- 
tance between the old and the new locations. 
When changing one signature to another, the 
work is the sum of the work done by moving 
the weights of the individual points of the source 
signature to those of the destination signature. 

We allow the weight of a single source signa- 
ture point to be partitioned among several des- 
tination signature points, and vice versa. We 
call this distance function the earth mover's 
distance. This is a name suggested by Stolfi 
[Stolfi, 1994], by analogy with some CAD pro- 
grams for road design which have a function 
that computes the optimum earth displacement 
from roadcuts to roadfills. As compared with 
the match distance of [Werman et al., 1985], 
our distance is more general because it allows 
fractional/partial matches. Furthermore, it can 
be computed much more efficiently, as we now 
show. 

The earth mover's distance computation can 
be formalized as the following linear pro- 
gramming problem: Given two signatures: 
P = {{Pi,Wp,),...,{pm,Wp^)} and q = 
{{qi,w^,),...,{qn,WqJ} where pi and QJ are 
points m some Euclidean space, the CIE-LAB 
color space in our case, and Wp., Wg. are the cor- 
responding weights of the points, find an m x n 
cost matrix C where Cij is the amount of weight 
op Pi matched to QJ , that will minimize the func- 
tion: 

EE^^iib^ 
i=lj=l 

Qjl 

(II ■ II is the Euclidean distance) subject to the 
following constraints: 

Cij    >    0        l<i<m, l<j <il) 
m 

Y^Cij    <   wg^        l<j<n (2) 
i=l 
n 

^ dj     <     Wp^ 1 <i < 

m    n 
E E ^ij    =   min(u;p, u;q) . 
i=ij=i 

m (3) 

(4) 

where Wp = Ei^i Wpi and Wq = E"=i w^?.- The 
earth mover's distance is defined as the normal- 
ized distance between points p and q: 

EMD(p,q)    = 
i=l 2^j=l ^ij 

EZii:]=lCij\\pi-qj\ 
mm{wp,Wq) 

Constraint 1 allows only for positive amounts of 
'earth' to be moved. Constraints 2 and 3 limit 
the capacity of 'earth' a point can contribute 
to the weight of the point. Constraint 4 forces 
at least one of the signatures to use all of its 
capacity, otherwise a trivial solution is not to 
move any 'earth' at all. 
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As expected, the first two images are relatively 
close since they contain similar colors (blues and 
greens). The third image is relatively far from 
the first two but somewhat closer to the sec- 
ond image because the colors of the house and 
the trees in the second image are similar to the 
colors of the sunset in the third image. 

Figure 1: The earth mover's distance in 2D be- 
tween a signature with three points (black) and 
one with two (white). Bold and italic numbers 
are the weights of the points and the weights 
moved between points, respectively. 

The earth mover's distance has many desirable 
properties relevant to our application. As long 
as the total weight of each of our signatures is 
the same, the earth mover's distance is sym- 
metric and satisfies the triangle inequality — 
thus we really work with a metric space. The 
'optimal assignment' problem which the earth 
mover's distance computes also gives us a way 
to 'morph', or continuously transform, two dis- 
tributions into each other: simply imagine the 
appropriate weight fractions moving at constant 
rates along the segments joining the correspond- 
ing source and destination points in color space. 
During the morph the centroid of the morph- 
ing distribution will move continuously from the 
centroid of the source to that of the destination 
signature. This shows that the distance between 
the centroids of the two signatures involved, is 
a lower bound on the earth mover's distance: 
Assuming that Wp = Wq = w then 

where 

EMD(p,q) > llpa^e - flavel 

1    ?7i 1     n 

w 
1=1 

w 
J=l 

This is useful for quickly recognizing dissimilar 
distributions. 

Notice that in our formulation we do allow the 
total weights of the two signatures to be differ- 
ent. This is useful for content-based image re- 
trieval systems for example, when a color query 
specifies only a part of the wanted color distri- 
bution, leaving the rest as "don't care". In this 
case, of course, the EMD is not a true distance 
and the lower bound we show does not hold. 

The earth mover's distances between the images 
in figure 2 can be summarized by the following 

4    Database Visualization 

A metric for color signatures is crucial for im- 
age retrieval, because it quantifies the intuitive 
notion of image similarity. If the metric corre- 
sponds to perceptual similarity, retrieving im- 
ages in response to a given query amounts to re- 
turning images whose distance from the query is 
small in the space of color signatures. While the 
earth mover's distance is indeed at the core of 
our image retrieval system, and has proven very 
effective, in this paper we want to emphasize a 
related but distinct use of the signature metric 
defined in the previous section. When browsing 
an image database, we often have only a vague 
idea of what our target images look like. This 
is especially true when we have not seen the im- 
ages in the database beforehand. The standard 
format of interaction with the database, that is, 
iterations of a query answered by the presenta- 
tion of a list of images, is not satisfactory in this 
case. First, one would like to have a glolsal view 
of the returned images. As figure 3 (a) shows, 
images in the returned list can be related to 
one another and yet appear at separate places 
in the list. The returned images should be dis- 
played not only in order of their distance from 
the query, but also arranged according to their 
mutual distances. In brief, the user of the sys- 
tem would benefit from a more coherent view of 
the query results. 

Second, browsing and navigating in a large 
database is disorienting unless the user can form 
a mental picture of the entire database. Only 
having an idea of the surroundings can offer 
an indication of where to go next. The wider 
the horizon, the more secure navigation will 
be. How can such a global picture of an im- 
age database be created? Signatures offer once 
again a solution. Our earth mover's distance 
quantifies the perceptual difference that sepa- 
rates two signatures. Consequently, each sig- 
nature can be represented by a single point in 
a suitably high-dimensional space, such that 
distances  between these points are equal to 
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the earth mover's distances between the corre- 
sponding signatures. The computation of the 
coordinates of these high-dimensional points is 
called an embedding. However, humans can 
only visualize low-dimensional spaces, typically 
in two or three dimensions. We then look for 
an approximate embedding, rather than for an 
exact one. 

The approximate embedding problem was for- 
malized by Kruskal [Kruskal, 1964] into the so- 
called Multi-Dimensional Scaling (MDS) prob- 
lem. Given a set of n objects together with the 
matrix of distances 6ij between them, and given 
a (small) dimension d, the problem is to find 
a set of n points in d-dimensional space whose 
distances {5ij} are as close as possible to the 
original distances {Sij}. The choice of closeness 
that was suggested by Kruskal is to minimize: 

STRESS = 

,1/2 

Ei.sl 
Rigid transformations and reflections can be ap- 
plied to the MDS result without changing the 
STRESS. Using MDS can assist navigation in 
the space of images both locally and globally, 
as we now illustrate. 

4.1    Local MDS 

Performing MDS on the images returned from 
a query gives us a better way to display the 
query results. Instead of the traditional one- 
dimensional list of images sorted by their dis- 
tances from the query, we can display a two 
or three dimensional map of the images, where 
each image is positioned according to the MDS 
result. In this way we are presenting informa- 
tion reflecting (2) distances, instead of only n in 
the traditional method. In addition to visually 
representing the relative distances between all 
pairs of images, images with similar color con- 
tent tend to group together. Figure 3 shows the 
result from a sample query into our image re- 
trieval system. The query asked for images with 
20% blue and 80% don't care and requested 
only the ten best matching images. Figure 3(a) 
shows the traditional way of displaying the re- 
sulting images as a one-dimensional list sorted 
by the distances from the query, while figure 
3(b) shows the same images arranged according 
to a two-dimensional MDS. In the MDS display, 
similar images of desert scenes with yellowish 
ground group together at the top left, images 
with green plants group at the bottom, and the 
two other images - a desert image with a white 
ground and an image of a statue, are to the 
right.   An all-blue image is comparatively dis- 

similar from the others, and is accordingly rel- 
egated to the far right. In this iterated-query 
framework, navigation can proceed by choosing 
a promising area in the MDS display and using 
a representative image out of that area as the 
next query. 

4.2    Global MDS 

Performing MDS on a large set of images can 
help the user understand the space of color im- 
ages of the set. In figure 4 we see the MDS 
map of 500 images. It is easy to see that im- 
ages group by their average chroma. For ex- 
ample, blue images are at the top-left, green 
images are at the top-middle, yellow images are 
at the top-right, and so forth. The images are 
also ordered from bottom-right to top-left by 
their average lightness, dark images are at the 
bottom-right and bright images are at the top- 
left. Higher dimensional MDS can be done on 
the image database where different characteris- 
tics of the images will be revealed, such as their 
average chroma (the projection of the images 
on the appropriate axes gives the chromaticity 
diagram), average lightness, the colorfulness of 
the images, and so forth. Now when we look for 
a sunset we see immediately where to go. At a 
glance, we can write off most of the database, 
and home in to the "sunset-looking" part of it. 
At the same time, we form a mental picture of 
the entire database. We see everything in coarse 
detail, and we have the impression of grasping 
the overall database content, at least in terms 
of color distributions. Given a joystick that lets 
us get closer to the area of interest, we have at 
the same time focus, because nearby images are 
large on the display, and context, because all or 
most other images are still visible at a distance. 
As we move about, we have the comforting im- 
pression that the whole database is there all the 
time, rather than being handed down to us in 
small fragments. 

5    Conclusions 

The methods presented in this paper open a 
novel set of tools and possibilities for image 
data-base navigation and visualization. The 
color signatures we have defined and the earth 
mover's distance between them seem to capture 
well the perceptual similarity or dissimilarity 
of images based on their color content. Fur- 
thermore, the low-dimensional geometric em- 
beddings we compute using MDS techniques 
provide an intuitive way for the user to refine 
his/her query and to continue exploring inter- 
esting neighborhoods of the image space — or 
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to see large portions of it all at once. 

All image query system are ultimately based 
on computational approximations to perceptual 
image distance — approximations whose qual- 
ity we are often asked to take for granted. Our 
approach appears to be the first one to allow the 
user to explore, in an intuitive way, the area of 
the image space beyond what the system consid- 
ers the neighborhood of the query. Such an ex- 
ploration can provide increased confidence that 
what is wanted will not be missed. 

Clearly much remains to be done. It is likely 
that distances between similar images provide 
much more information than distances between 
images which have little in common. Yet cur- 
rently we compute large distances as accurately 
as small ones. As indicated in Section 3, we can 
gain significant speed-ups by simply using lower 
bounds for the earth mover's distance when the 
corresponding images are far apart. A major ex- 
tension of our work will be to apply the concepts 
of signature and the earth mover's distance to 
other modalities which also convey information 
about the content of the image, such as shape 
and texture. The principle of our approach will 
remain that we measure the distance between 
images by the minimum 'work' needed to make 
their signatures the same. Thus the data in 
a signature need not be fully homogeneous, as 
long as we provide a set of modification oper- 
ations, with associated costs, for each type of 
data present. We consider this ability to com- 
bine different kinds of feature sets and modal- 
ities (both in building the image database in- 
dex and in computing the appropriate geomet- 
ric embeddings) to be a unique advantage of our 
approach. 

For the intuitive use of the geometric embed- 
dings computed by MDS methods, it is crucial 
that the 'axes of variation' be perceptually clear 
to the user. This worked well for us in the case 
of color, in part because we started from data 
in a geometric color space whose axes have a 
familiar significance. Getting the same effect in 
the case of shape and texture seems more of a 
challenge. We intend to explore how to 'advise' 
MDS algorithms about what are desired coor- 
dinate axes to use. We also need to study more 
the relations between the axes chosen by MDS 
for related or overlapping image sets. Knowing 
the correspondence between these 'local charts' 
(in the sense of topology) of the image space can 
greatly help in providing a globally stable and 
consistent sense of navigation. 
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Figure 2: Three (color) images together with their color signatures. The left image contains 
mostly greens and blues, the middle image contains mostly greens, blues and browns, and 
the right image contains mostly yellows, browns and blacks. Color versions can be viewed at 
http://vision.stanford.edu/irs/colorpics.html. 

(a) 

(b) 

Figure 3: The top ten images for a query that asked for 20% blue and 80% don't 
care. (a) Traditional display. (b) MDS map. Color versions can be viewed at 
http://vision.Stanford.edu/irs/colorpics.html. 
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Figure    4:       2D    MDS    map    of   500    images. A    color    version    can    be    viewed    at 
http://vision.Stanford.edu/irs/colorpics.html. 
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Abstract 

We present a general strategy for shape-based 
image retrieval which considers similarity mod- 
ulo a given transformation group Q. The shape 
content of an image is summarized by record- 
ing what geometric primitives, such as line seg- 
ments and circular arcs, fit where in the image. 
Geometric hashing is used to compute a set of 
primitive features which are invariant under a 
^-transformation of the image. Our search en- 
gine is feature-based in the sense that similarity 
is determined by looping over the features in 
the query and asking: Which database images 
have features that are close to a given query 
feature? The most similar database images are 
ones that have many features which are close 
to query features. We apply our approach to 
an example database of 500 Chinese character 
bitmaps. 

1    Introduction 

The function of a content-based image re- 
trieval system [Niblack et ai, 1993, Guibas and 
Tomasi, 1996] is typically to find database im- 
ages that look similar to a given query image or 
drawing. Database and query images are usu- 
ally summarized by their color, shape, and tex- 
ture content. Here we use the term images in 
a very broad sense that includes any type of 
graphical information. Examples of images in- 
clude color or grayscale pixel images, technical 
drawings of aircraft parts, architectural draw- 
ings, line art, and figures produced with stan- 

*This work was sponsored by the Defense Advanced 
Research Projects Agency under contracts DAAH04-94- 
G-0284 and DAAH01-95-C-R009, and by NSF grant 
CCR-9215219. The views and conclusions contained in 
this document are those of the authors and should not 
be interpreted as representing the official policies, ei- 
ther expressed or implied, of the Defense Advanced Re- 
search Projects Agency, the United States Government, 
or Stanford University. 

dard drawing programs. 

In this paper, we focus on shape-based image 
retrieval. We consider the shape content of an 
image to be a set of planar curves that help 
identify the image. A set of curves which sum- 
marize an image will be called an illustration 
of that image. For example, we might perform 
edgel dectection and linking to obtain an illus- 
tration of a grayscale pixel image. Of course, 
the database image itself may already be an il- 
lustration. This is the case for an image which 
is a technical drawing. The shape index of an 
image is derived from an illustration of that im- 
age. 

This paper presents a general strategy for 
shape-based image retrieval in which the sim- 
ilarity of images is considered with respect to 
some given transformation group. Accounting 
for transformations is necessary to handle il- 
lustrations which are produced from a variety 
of sources. Such illustrations are likely to be 
expressed in coordinate systems with different 
units for scale and position. If we want to re- 
trieve a portrait image from its landscape ver- 
sion, then our notion of similarity must also ac- 
count for differences in orientation. If the il- 
lustrations are extracted from imaged objects, 
then allowing for a projective transformation in 
judging similarity is important. 

There are several different approaches to build- 
ing a search engine. A straightforward ap- 
proach is to compare every database image to 
the query using some dissimilarity function de- 
fined on pairs of images. Such a retrieval strat- 
egy will eventually become too slow for interac- 
tive use as the number of images in the database 
grows. A related approach is to summarize im- 
age content by a point/vector in R'^ in such a 
way that the L2 distance between points is a 
measure of image dissimilarity. A Euclidean- 
space nearest-neighbor algorithm may then be 
used to avoid brute force search. The problem 
with this approach is that the dimension needed 
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to capture differences in image content is likely 
to be quite high, perhaps even in the thousands, 
while current linear-space nearest-neighbor al- 
gorithms are limited in practice to maximum 
dimension dma.x ~ 30 due to "constant factors" 
which are exponential in the dimension. Yet an- 
other idea is to cluster database images so that 
when a query is far from a cluster representa- 
tive, it will be far from all other images in the 
cluster. This allows the search to eliminate all 
the images in a cluster by comparing the query 
to only the cluster representative. This pruning 
strategy can be made precise with the trian- 
gle inequality when the dissimilarity function is 
a metric. Unfortunately, the pruning power of 
the triangle inequality decreases as the dimen- 
sion increases. All the previously mentioned re- 
trieval strategies are image-based in the sense 
that direct comparisons are made between im- 
ages using a dissimilarity function. 

Our retrieval strategy is feature-based in the 
sense that the similarity is determined by loop- 
ing over the features in the query and asking: 
Which database images have features that are 
close to a given query feature? The most sim- 
ilar database images are ones that have many 
features which are close to query features. We 
have traded one nearest-neighbor problem in a 
high-dimensional image space for many nearest- 
neighbor problems in a low-dimensional feature 
space. The challenge is to find a small feature 
set of an image which captures the content the 
image. This problem is even more difficult when 
the features are required to be invariant under 
some transformation(s) of the underlying image. 

Our feature extraction approach starts with an 
illustration of the image. The illustration curves 
are projected onto a basis of basic shapes such as 
line segments, corners, circular arcs, etc.. More 
precisely, we record what basic shapes fit where 
in the illustration curves. This strategy was first 
suggested in [Cohen and Guibas, 1996]. The 
projection step is discussed further in section 2. 
An invariant set of geometric primitives (a.k.a. 
basic shapes) is then derived from the projected 
illustration using geometric hashing ([Lamdan 
and Wolfson, 1988]). The invariance is with re- 
spect to a transformation of the projected illus- 
tration. The geometric hashing step is the sub- 
ject of section 3. Define the features of an image 
to be the geometric primitives in its invariant 
projected illustration. The final preprocessing 
step is to build a nearest-neighbor search struc- 
ture on the set of all features of all database 
images. Section 4 is devoted to the creation 
and use of the feature space nearest-neighbor 
structure. Finally, we conclude in section 5 with 
some problems that need to be addressed in fu- 
ture work. 

Figure 1: A small sample of images in a 
database of 500 Chinese characters. The images 
are bitmaps. 

t3   /; 
J 

/    1- 

Figure 2: The shape summary of a Chinese char- 
acter bitmap is the medial axis of the set of 
black pixels which define the character. 

Figure 3: The Chinese character illustrations are 
projected onto a basis with a line segment as the 
only basic shape. 

670 



The strategy outlined in this paper will be ap- 
plied to an example database of 500 Chinese 
characters. A small sample of images in this 
database is shown in figure 1. 

The collection of Chinese characters is an ideal 
database to test our ideas because there are 
many patterns which occur throughout the 
database at different scales, locations, and ori- 
entations. Our shape summary of a character is 
the medial axis of the set of black pixels which 
define the character. The results shown in fig- 
ure 2 were computed using algorithms and soft- 
ware described in [Ogniewicz and Kiibler, 1995]. 
The character skeletons are a very good one- 
dimensional summary of the characters. 

2    Projecting an Illustration onto a 
Basis of Basic Shapes 

If an illustration is not created by a drawing 
program with a palette of geometric primitives, 
then its curves are likely to be polylines with 
a large number of vertices. This is the resp- 
resentation for the medial axes shown in fig- 
ure 2, as well as any illustration produced by 
linking edgels. Higher level descriptions of such 
curves will greatly simplify the indexing pro- 
cess. Therefore, we project the illustration onto 
a basis of basic shapes such as line segments 
and circular arcs. The projected illustration is 
a union of basic shapes which approximate the 
illustration curves. The basis of basic shapes is 
chosen so that as little information as possible is 
lost during projection. Different databases may 
call for different bases. 

There are many methods for finding common 
geometric primitives in polylines. For example, 
the segmentation algorithm in [Lowe, 1987] uses 
a split-and-merge algorithm to divide an edgel 
chain into straight segments. The FEX algo- 
rithm in [Etemadi, 1992] finds straight segments 
and circular arcs, while the algorithm in [Rosin 
and West, 1995] identifies straight segments, cir- 
cular arcs, and elliptical arcs. The algorithm 
in [Cohen and Guibas, 1997] locates any pat- 
tern shape described as a polyline within an- 
other polyline, allowing for a similarity trans- 
formation of the pattern. 

There is a potential problem with separating 
the curve extraction and curve projection steps. 
The algorithms mentioned above operate on one 
polyline at a time with no regard for the union 
of polyline curves as a whole. If a long straight 
fine segment is part of two different polylines in 
the illustration, then it will not be found.   In 

the case when the underlying image is a color 
or grayscale pixel image, one could use an al- 
gorithm for finding geometric primitives that 
works directly on the pixel data. 

The Chinese character illustrations are well ap- 
proximated using circular arcs and line seg- 
ments, but we simplify the medial axis pixel 
chains into line segments only. The results are 
shown in figure 3. A naive polyline simplifi- 
cation algorithm was used to approximate the 
medial axis pixel chains by straight segments. 
Consider the error in approximating the polyg- 
onal chain between start vertex u and end ver- 
tex w by the line segment mv connecting u and 
w. If this error is within a given bound, then 
reset w to the vertex right after w in the chain, 
and try the next segment. If the error exceeds 
the given tolerance, then approximate the chain 
from u to the vertex v just before w by the line 
segment uv, reset the start vertex u to v, and 
try to find a line segment approximation start- 
ing from the new u. A reasonably high error 
bound was used in order to segment the medial 
axis chains into a small number line segments. 

3    Accounting for Transformations 
Using Geometric Hashing 

As mentioned in the introduction, similarity of 
images is considered with respect to some given 
transformation group Q. Ideally, a transforma- 
tion of the underlying image will cause the same 
transformation of the corresponding illustration 
and projected illustration. We cannot directly 
compare two projected illustrations to judge im- 
age similarity. Instead, we derive an invariant 
feature set from the projected illustration us- 
ing geometric hashing. This technique will pro- 
duce the same feature set given projected illus- 
trations S and g{S), where g E Q. 

Geometric hashing is a method used to com- 
pare two point sets under some transforma- 
tion group. Usually, the method is applied 
to finite point sets P = { pi,.-.,Pm } and 
Q = { qi,- ■ ■ ,qn}- We illustrate the basic idea 
with the case of comparing P and Q under the 
group of translations. Consider the sets 

Ii{P)    =    {Pk-Pi ■  'i-<k<m, ky^i} 
IjiQ)    =    {qi-qj  ■■  l<l<n,l^j}. 

Note that Ii{P) and Ij{Q) are invariant under 
translation of P and Q, respectively. If translat- 
ing the set P by qj — pi produces a good match 
between P and Q, then the two sets Ii{P) and 
Ij{Q) will match well. The method can be made 
rolDust to missing data by comparing the trans- 

671 



lation invariant sets 4    Searching the Database 

I{P) = Q Ii{P) and I{Q) = U IjiQ)- 
i=l J-1 

In words, each of the points of P is recorded 
in m — 1 different coordinate systems. The 
ith coordinate system has the same orientation 
and scale as the coordinate system of P, but 
its origin is at the point pj. To compare P 
to Q, we compare I{P) to I{Q). Note that 
the sizes |/(P)| = m(m - 1) = 0{m?) and 
|7(Q)| = n{n - 1) = Oin?) are quadratic in 
the original set sizes. 

The details for the translation case can be gen- 
eralized to other transformation groups. The 
general idea is to use subsets of P as bases in 
which to record all the other points in P. Or- 
dered pairs of points {pi,Pj) define the basis in 
the case of similarity transformations. The seg- 
ment pipj plays the role of the unit interval ei 
from (0,0) to (1,0) in recording the other points 
of P with respect to {pi,Pj)- More precisely, let 
Tij be the transformation which maps pipj to 
ei. Then recording the point pk with respect 
to {pi,Pj) means recording Tijijpk)- The total 
number of points in the invariant set I{P) is 
0{rrv') in this case. For affine transformations, 
an ordered triple {pi,Pj,Pk) defines the basis in 
which to record the other points in P. If Tijk 
is the transformation that maps {pi,Pj,Pk) to 
the vertices (0,0), (0,1), and (1,0) of the right 
triangle Ai, then recording pt with respect to 
iPi,Pj,Pk) means recording Tijk{pi). The total 
number of points in the invariant set I{P) is 
0{Tn'^) in this case. 

The projected illustrations for our Chinese char- 
acter database are sets of segments. Although 
we do not have finite point sets, we can still 
apply the idea of geometric hashing to obtain 
a feature set which is invariant to a similar- 
ity transformation of the projected illustration. 
This is done by allowing each segment in the 
projected illustration P to play the role of the 
unit interval ei. If P contains m segments, then 
we will have 2m different coordinate systems in 
which to record the segments in P (the factor 
of two is from considering both orderings of the 
segment endpoints). Therefore, using segment 
endpoints as basis point pairs leads to an invari- 
ant set I{P) of Oim?) segments. The set I{P) 
consists of m copies of P at varying scales, loca- 
tions, and orientations. The overlap that occurs 
among these copies makes it very difficult to see 
the individual copies. A picture of some I{P) 
from the Chinese character database is not very 
informative, and hence no figure is provided. 

The final preprocessing step is to build a 
nearest-neighbor search structure on the feature 
space. When a query is given, its features are 
extracted in exactly the same manner as for the 
database images. For each query feature, we 
query the nearest-neighbor search structure for 
the k nearest database features to the query fea- 
ture. Each time a database image has a feature 
which is close to a query feature, its similarity 
score is increased. As the similarity scores are 
updated, the R greatest image scores (and cor- 
responding images) are tracked. Once all the 
query features have been processed, the R im- 
ages with the highest similarity scores are re- 
turned. 

An ideal situation for finding nearest database 
features is when the database features are points 
in a low-dimensional space, and the the L2 dis- 
tance between points measures feature dissimi- 
larity. In this case, a standard Euclidean-space 
nearest-neighbor search strategy may by em- 
ployed. The features in the Chinese character 
database are the line segments in the invari- 
ant projected illustration. What is an appro- 
priate distance measure between two line seg- 
ments? We might, for example, use the Haus- 
dorff distance between two line segments. There 
is work [Yianilos, 1993, Brin, 1995] on nearest- 
neighbor searching in general metric spaces (i.e. 
using only the distance between two objects). 
Here we opt for a simpler, ad hoc approach 
which embeds the segments as points in a four- 
dimensional Euclidean space. A directed line 
segment is specified by a quadruple 

{l,e,a,b), 

where / is length of the segment, 6 is the an- 
gle the segment makes with the horizontal, and 
(a, 6) is the position of the first endpoint. Note 
that the units of the components are different, 
so it does not make sense to use the L2 dis- 
tance unless we first normalize the components. 
Toward this end, we compute the standard de- 
viations ai, ag, aa, (Jb of the four component 
values over a large sample of database features. 
We use the L2 distance between the normalized 
point features 

I     9    a_   b_ 

C^l' Cfe' (Ja' CTfc 

as a measure of feature dissimilarity. 

Our choice for a Euclidean nearest-neighbor 
searching algorithm is due to Arya, Mount, 
et.al. in [Arya et al, 1994]. The algorithm pre- 
processes a set 5 C R'^ of n points in 0{n log n) 
time and 0{n) space,  so that the k nearest 
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neighbors to a given query point q can be com- 
puted in 0{k\ogn) time. We apply the al- 
gorithm to find k nearest features to a given 
query feature, where fc = 32 (in this setting, 
d = 4). If we let F denote the total number 
of database features and fq is the number of 
features in the query Q, then our query time is 
0(/o log F). For our 500 image database with 
the features extracted as previously described, 
a typical query takes roughly one second on an 
SGI Indy. Some sample queries and results are 
shown in figure 4. 

5    Some Problems for Future Work 

Our feature-based algorithm uses a very one- 
way notion of distance. A query and database 
image are similar whenever the database image 
has many of the same features as the query. 
There is no penalty for extra information in a 
database image which might cause it to look 
quite a bit different from the query. A pos- 
sible solution to this problem involves tagging 
each feature point with both the image and ba- 
sis points that produced it. This will allow us 
to estimate the transformation which makes the 
query match a particular database image, as 
well as the fraction of unmatched arclength in 
the database image. 

Unfortunately, there is a more serious problem 
with our overall approach. The similarity score 
depends heavily on the segment decompositions 
of the projected illustrations - and these decom- 
positions are not canonical. A high similarity 
score will be obtained iff there is a similarity 
transformation of Q that makes many segments 
in Q match well many segments in P, where 
two segments match well iff both pairs of end- 
points are close. This fact is due to our use of 
pairs of segment endpoints as bases in the geo- 
metric hashing step. In essence, we are judging 
the similarity of the representations of the pro- 
jected illustrations instead of the projected illus- 
trations themselves. This representation prob- 
lem will be the subject of future research. 

A third problem is that our geometric hash- 
ing strategy produces too many features to in- 
dex. If there are m segments in a projected 
illustration, the invariant projected illustration 
will have 0{m?') segments. This brute force ap- 
proach is motivated by the fact that we want 
to be able to match a subset of the query to a 
subset of a database illustration without making 
any a priori assumptions about features that are 
likely to appear in both the database illustra- 
tion and a similar query illustration. Suppose, 
instead, that we record segments only with re- 

spect to the c longest segments in the set, where 
c is a small constant. This strategy produces an 
invariant projected illustration with only 0{m) 
segments, but it assumes that a long segment in 
a database image is likely to appear as a long 
segment in a similar query. Thus, the represen- 
tation problem remains. 

Acknowledgements 

We would like to thank Guillermo Sapiro for rec- 
ommending the medial axis code package based 
on [Ogniewicz and Kiibler, 1995], and Carlo 
Tomasi for carefully reading the manuscript and 
providing useful comments. 

References 

[Arya et ai, 1994] S. Arya, D.M. Mount, N.S. 
Netanyahu, R. Silverman, and A.Y. Wu. An 
optimal algorithm for approximate nearest 
neighbor searching. In Proc. of the Fifth An- 
nual ACM-SIAM Symp. on Discrete Algo- 
rithms, pp. 573-582, 1994. 

[Brin, 1995] S. Brin. Near neighbor search in 
large metric spaces. In Proc. of VLDB '95. 
21st Int'l Conf. on Very Large Data Bases, 
pp. 574-584, 1995. 

[Cohen and Guibas, 1996] Scott D. Cohen and 
Leonidas J. Guibas. Shape-based illustration 
indexing and retrieval - some first steps. In 
ARPA lUW, pp. 1209-1212, 1996. 

[Cohen and Guibas, 1997] Scott D. Cohen and 
Leonidas J. Guibas. Partial matching of 
planar polylines under similarity transforma- 
tions. In Proc. of the Eighth Annual ACM- 
SIAM Symp. on Discrete Algorithms, pp. 
777-786, 1997. 

[Etemadi, 1992] A. Etemadi. Robust segmen- 
tation of edge data. In Int 'I Conf. on Image 
Processing and its Applications, pp. 311-314, 
1992. 

[Guibas and Tomasi, 1996] Leonidas J. Guibas 
and Carlo Tomasi. Image retrieval and robot 
vision research at Stanford. In ARPA lUW, 
pp. 101-108, 1996. 

[Lamdan and Wolfson, 1988] Yehezkel Lamdan 
and Haim J. Wolfson. Geometric hashing: A 
general and efficient model-based recognition 
scheme. In Second Int'l Conf. on Computer 
Vision, pp. 238-249, 1988. 

[Lowe, 1987] D.G. 
Lowe.   Three-dimensional object recognition 
from single two-dimensional images. Artificial 
Intelligence, 31:355-395, 1987. 

673 



1 

p 

A 

<a^ 'QmtyBm^- Ifl 

Jl)h%)l^lLM{ 

T^^ffl^^#it 

P Bii^ffl^^^^ 

7^##i^ai^?tk^ 

A^i^^^AJ^4 

iig0EEIZ£i'0 

Figure 4:   Sample queries (left) into the Chinese character database, with corresponding results 
(right). Each query takes about one second on an SGI Indy. 

[Niblack et al, 1993] W. Niblack, R. Barber, 
W. Equitz, M. FHckner, E. Glasman, 
D. Petkovic, P. Yanker, C. Faloutsos, and 
G. Taubin. The QBIC project: querying 
images by content using color, texture, and 
shape. In Proc. of the SPIE, 1908:173-187, 
1993. 

[Ogniewicz and Kiibler, 1995] R. L. Ogniewicz 
and O. Kiibler. Hierarchic Voronoi skeletons. 
Pattern Recognition, 28(3):343-359, 1995. 

[Rosin and West, 1995] Paul L. Rosin and Ge- 
off A.W. West. Nonparametric segmentation 
of curves into various representations. IEEE 
Trans, on PAMI, 17(12):1140-1153, 1995. 

[Yianilos, 1993] P. Yianilos. Data structures 
and algorithms for nearest neighbor search- 
ing in general metric spaces. In Proc. of the 
Fourth Annual ACM-SIAM Symp. on Dis- 
crete Algorithms, pp. 311-321, 1993. 

674 



Configuration Based Scene Classification and Image Indexing 

Pamela R. Lipson, Eric Grimson, and Pawan Sinha* 
MIT Artificial Intelligence Lab, 545 Technology Square, Cambridge, MA 02139 

E-MAIL: lipson@ai.mit.edu,welg@ai.mit.edu,sinha@ai.mit.edu 

Abstract 
Scene classification is a major open challenge in machine 
vision. Most solutions proposed so far such as those 
based on color histograms and local texture statistics 
cannot capture a scene's global configuration, which is 
critical in perceptual judgments of scene similarity. We 
present a novel approach, "configural recognition", for 
encoding scene class structure. The approach's main 
feature is its use of qualitative spatial and photomet- 
ric relationships within and across regions in low res- 
olution images. The emphasis on qualitative measures 
leads to enhanced generalization abilities and the use of 
low-resolution images renders the scheme computation- 
ally efficient. We present results on a large database of 
natural scenes. We also describe how qualitative scene 
concepts may be learned from examples. 

1     The Problem 

The goal of our work is to classify scenes based on 
their content. Scene classification has applications 
for the problem of image and video database index- 
ing. With the increase in the number and sizes of 
digital libraries there is a need for automated, flexi- 
ble, and reliable image search algorithms. 

Several strategies have recently been proposed for 
image classification. Most use aggregate measures 
of an image's color and texture as a signature for an 
image that can be used to determine how similar one 
image is to another. Image database indexing sys- 
tems based on this idea include QBIC [Ashley ei ai, 
1995] and VIRAGE[Bach et al, 1996]. These simi- 
larity measures are adequate if the goal is to find im- 
ages with similar distributions of color or other low 
level signal characteristics. However, if the goal is 
to find images from a given object/scene class, such 
as snowy mountains or waterfalls, the previously de- 
fined similarity measures often produce results in- 
congruent with human expectations (Figure 1). 

Figure 2 shows three images that perceptually be- 
long to the same class, viz. coasts. However, the 
elements of which they are composed vary signif- 
icantly in color distribution, texture, illumination, 
and spatial layout. 

Figure 1: Using color histograms to find the most similar 
images to a water scene at sunset (upper left) returns pictures 
of money, molten liquid, and a woman eating watermelon. 
Although these images all have the same overall golden color, 
most differ greatly in semantic content. 

'This work was sponsored in part by ARPA under CNR 
contract N00014-95-1-0600 

Figure 2:   These images all belong to the coastal images 
class although colors, illumination, and layout vary widely. 

In this paper, we suggest a novel representational 
strategy, "configural recognition", as a partial solu- 
tion to the scene classification problem. The strat- 
egy encodes class models as sets of qualitative rela- 
tionships between low resolution image regions. We 
will demonstrate how models of this form can toler- 
ate within class variations while also discriminating 
between classes. 

2    Motivation for the approach 

Our approach to scene classification is motivated by 
three considerations derived from studies of human 
perception. 

1) The importance of global scene configura- 
tion. In Figure 3 the image on the right has been 
derived from the one on the left by dividing the latter 
into pieces and permuting their positions. Clearly, 
both images have identical chromatic and (to a large 
extent) textural statistics. Yet, perceptually, they 
do not belong to the same class since they have dif- 
ferent overall configurations. This observation has 
been replicated in several systematic psychological 
studies which demonstrate that a stimulus in cor- 
rect spatial configuration allows for more accurate 
and rapid detection of itself or its parts than the 
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Figure 3: A mountain picture and its scrambled coun- 
terpart. Although both images contain the same color and 
textural characteristics, perceptually we would not classify 
the second image in the same category as the first. 

Figure 4: Three snow-capped mountains are shown. Each 
is divided into three regions (A, B, C). Perceptually, the cor- 
responding regions have similar content, even though they 
differ in their absolute sizes, positions, and colors. 

same stimulus with incorrect spatial relationships 
[Bar and Ullman, 996][Biederman, 1972]. Our con- 
clusion is that the overall organization of a scene's 
parts strongly influences its interpretation. 

2) The use of qualitative measurements. Fig- 
ure 4 shows three snow-capped mountain scenes. 
This class of images may be described as having 
three perceptually salient regions: a blue region (A), 
a white region (B), and a grey region (C). In all cases 
region A is above region B which is above region C. 
Therefore, even though the particular instances of 
the class exhibit these regions at diverse absolute 
locations and over different spatial extents, one con- 
stant is that all the regions across the images have 
the same relative spatial layout. 

Just as relative spatial relationships may be used 
to encode the overall configuration of scene content, 
relative photometric relationships between image re- 
gions may also be important for perceptual classifi- 
cation of scenes. For instance in all the images in 
figure 4, the regions labeled A are consistently bluer 
and brighter than those labeled C. 

This suggests that the classification of a scene may 
remain valid as long as the relative relationships 
between the image regions remain the same, even 
though the absolute region values may change. How- 
ever, when the ordinal relationships are violated, of- 
ten the percept and therefore the classification of 
that image is greatly altered. The difficulty ob- 
servers experience in recognizing photographic neg- 
atives is a case in point. 

Figure 5! Low resolution images may be sufficient for 
recognition. These images are identifiable despite their ex- 
tremely poor resolutions. 

3) The sufficiency of low spatial frequency 
Information for scene classification. Figure 5 
shows several readily recognizable low resolution 
thumbnails. The only information retained in these 
small images is an arrangement of low frequency 
photometric regions. This observation suggests that 
we can base our classification algorithm on an im- 
age's low frequency information. 

3     Qualitative encoding of scene structure 

The configural recognition scheme encodes class 
models as a set of salient low frequency image regions 
and salient qualitative relationships between those 
regions. The most closely related work to what we 
are about to describe is the ratio-template construct 
devised by Sinha to detect faces under varying illu- 
mination conditions. The construct consists of rela- 
tive luminance relationships between image regions 
with fixed spatial positions [Sinha, 1994]. Some re- 
searchers have previously considered using qualita- 
tive spatial relationships in the context of scene clas- 
sification to describe the relationships between ob- 
jects or object subparts in images [Chang and Lee, 
199l][Petrakis and Faloutsos, 1994]. They have typ- 
ically assumed, however, that the objects or object 
subparts are labeled by hand or easily identifiable. 

The configural recognition system differs from these 
approaches by constructing class models for scenes 
from a wide vocabulary of relative relationships, in- 
cluding both spatial and photometric, between im- 
age regions. In the current system, class models are 
described using seven types of relative relationships 
between image patches. Each of these relationships 
can have the following values: less than, greater 
than, or equal to. The first three relations encode 
the relative color between image regions in terms of 
their red, green, and blue components. The fourth 
relationship used is relative luminance between the 
patches. The spatial relationships used are relative 
horizontal and vertical descriptions with respect to 
the upper left corner of the image and the cardinal 
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axes. We also encode relative size, where the size of 
the patch is described by how many pixels it covers. 

Figure 6(a) denotes example beach scenes. (The ex- 
ample beach scene shown when rendered in color has 
blue sky, green water, and tannish colored sand). 
Figure 6(b) shows three highlighted image patches, 
from an image grid of large equally sized patches, 
and their relative relationships, denoted by arrows. 
This constitutes one possible model for beach scenes. 
The relationships in the model are that there is a 
bluer region, which is above and to the right of a 
greener region, both of which are above a more tan 

and lighter region. 

Figure 6: (a) A representative set of example beach im- 
ages. (The example beach scene when rendered in color has 
blue sky, green water and tannish colored sand.) (b) One en- 
coding of a qualitative beach concept. This model remains 
valid over many commonplace scene variations including (c) 
scale changes, (d) illumination variations (the colors have 
changed but the color and spatial relationships between the 
patches remain the same), (e) differing viewing parameters 
(distal vs. close up view), and (f) geometry changes. 

3.1     Benefits of qualitative encoding 

There are at least four significant benefits to using 
low-frequency imiage regions and their relative rela- 
tions to encode scene classes. 1. Invariance to many 
scene transformations. The prime benefit is that 
the use of relative relationships over low frequency 
patches allows the system to describe class similari- 
ties even though the exemplars may differ in appear- 
ance due to various lighting conditions, viewing po- 
sitions, and other scene parameters. Figure 6(c-f) il- 
lustrate how the relative relationships encoded in the 
model (shown in figure 6(b)) remain valid over dif- 
ferent but very commonplace image distortions such 
as changes in scale, illumination, viewing parameters 
and geometry. 2. Immunity to high-frequency sensor 
noise. 3. Dimensionality reduction. Instead of hav- 
ing to use high-resolution images, 32x32 thumbnails 

sufficed for the classification task. 4. Simple im- 
age partitioning requirements. Partitioning the im- 

age with a uniform grid suffices. 

4 Model to image matching 

We can think of the model as a prototype of a 
class. When the model is compared to the image, 
the model can be deformed by moving the patches 
around so that the model best matches the image 
in terms of relative luminance and photometric at- 
tributes without violating the encoded relative spa- 
tial arrangements. The model in this sense acts as 
a deformable template. A match between the model 
and a subset of the image can be defined by how 
well the deformed model matches the image subset 
and how little deformation was required to find that 

match. 

5 Implementation and testing 

The configural approach to scene classification was 
tested by generating several class templates and 
subsequently using these models to classify a large 
database of natural images. For each template, the 
automated classification was reported as a binary de- 
cision of either a member or non-member of the class. 
We compared the results of the template classifica- 
tion to perceptual class judgments made by human 
observers. 

The test database consists of 700 images from 
prepackaged CD-ROM collections from Corel which 
contained 100 images each with titles such as 
"Fields" and "Glaciers and Mountains". The total 
collection contains pictures which have a wide range 
of content, colors, textures, viewing positions, and 
weather conditions. Although the images in these 
compilations were mostly of natural scenes, many 
contain people, animals, and man-made structures 
such as fences, houses, and boats. 

Each image in the database was iteratively smoothed 
and subsampled to create a three tier Gaussian pyra- 
mid of low resolution images of sizes 32x32, 16x16, 
and 8x8 pixels. 

We manually constructed class templates for snowy 
mountains, snowy mountains with lakes, fields, and 
waterfalls. We compared each template to the datat- 
base of low resolution images. In figure 9 we describe 
the snowy mountain template and the waterfall tem- 
plate and show pictorially the database retrieval re- 
sults using these class models (figures 10- 15). In 
table 1 we describe the results of all four templates 
on the database in terms of "true positives", "false 
positives". (See [Lipson, 1996] for more details.) 

6 Learning the scene concept 

We have demonstrated that models consisting of 
qualitative relationships between low frequency im- 
age regions can be used effectively to classify images. 
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Table 1; The classification resiilts from four hand crafted 
templates.The resiilts are reported in terms of the "true posi- 
tives" and "false positives" with respect to human perceptual 
classification of the 700 image database. W, 

RESULTS "true pos." "false pos." 

Snowy mount. 75% 12% 

S. mnt. w/lake 67% 1% 
Field 80% 7% 

WaterfaU 33% 2% 

It would be desirable if instead of hand-crafting the 
models, an automated process could take a set of ex- 
ample images and generate a set of templates which 
describe the relevant consistencies between the pic- 

tures in the example set. 

We have developed an algorithm that computes the 
consistent relationships between regions across a set 
of example images. The algorithm first computes all 
pairwise qualitative relationships between each low 
resolution image region. For each region, the algo- 
rithm also computes a rough estimate of its color 
from a coarsely quantized color space as a measure 
of perceptual color. The next step, for each region, 
groups the image into directional equivalence classes, 
such as "above" and "below", with respect to that 
region. Redundant relationships for each region in 
each equivalence class are eliminated. The next step 
is to compute the consistent set of region relation- 
ships across the set of examples. There is, however, a 
problem in that the correspondence of regions across 
the images is not known. A reasonable assumption 
is that corresponding regions in each image are likely 
to occur in similar positions. To determine the set of 
consistent relationships, we only compare the set of 
relationships/colors in a neighborhood surrounding 
each region location across all the example images. 

We tested the approach by generating randomly col- 
ored synthetic images. A three patch qualitative 
concept was embedded in each image. The abso- 
lute colors and positions of the patches in the con- 
cept were allowed to vary as long as the qualita- 
tive color and spatial relationships were not violated. 
Figures 7 and 8 respectively show the inputs to and 
output from the learning system. The extracted con- 
cept matched the original randomly generated con- 
cept. We are currently testing this approach on real 
imagery. We are also extending our algorithm to al- 
low the user to delineate particularly salient regions 

in the images. 

7     Summary and Conclusions 

We have presented a novel approach to classifying 
scenes in terms of qualitative relationships between 
low frequency image regions that provides a compu- 
tationally efBcient way to encode overall scene struc- 
ture. Although the configural recognition approach 

Figure 7: Four example input images to the learning al- 
gorithm. The patches which correspond to the embedded 
qualitative concept are highlighted in white in each image. 

r2 < !■■) 
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Figure 8: Resulting qualitative concept determined by the 
learning algorithm. The learned concept matches the concept 
embedded in each of the images. 

appears to be a promising strategy for scene clas- 
sification, it also has limitations. For instance, the 
technique is not suited to make fine quantitative dis- 
criminations, describe classes of functionally defined 
objects, nor to classify scenes which depend on spe- 
cific object recognition. We are experimenting with 
an expanded repertoire of qualitative and quantita- 
tive information for classification of a broader class 
of images. For instance, we have created a template 
which includes relative texture measurements in or- 
der to classify cityscapes (see figure 16). 
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Figure 9: Qualitative models for two natural-scene classes, viz. snowy mountain scenes and waterfalls. The figures on top 
show the schematic layouts of the models while the tables hst the qualitative constraints that inter- and intra-region relationships 
in a given image have to satisfy for the image to be accepted as a member of the scene class. 

Figure 10:   "True positives" detected by the snowy mountain template. Notice the diversity in these scenes captured by i 
single qualitative model. 

Figure 11:   "False positives" detected by the snowy mountain template. Since the qualitative model does not encode fine 
textural details, it sometimes fails to distinguish between snowy mountains and white clouds. 
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Figure 12: Moimtain scenes not detected by the snowy mountain template. These failures are often due to significant 
differences between image configurations and the general scene structure encoded in the model. Also, sometimes the scene 
entities such as the snowy mountains are too smaU to be picked up by the qualitative model in the low frequency images. 
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Figure 13:   "True positives" detected by the waterfall template 

Figure 14:   "False positives" detected by the waterfall template. 

Figure 15:  Waterfall scenes not detected by the waterfall template. 

i«?[Sr'^->"-    -'I/O? 

Figure 16: A demonstrationof the use of relative textm-al statistics in the configural recognition framework. These cityscape 
scenes were detected by a qualitative mode that encoded not only qualitative chromatic and spatial relationships but also ordinal 
relations between the orientation energies in different image regions. 
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Abstract 
We present a method for classifying images in 
a databases where the query is a small set of 
images that represent the class. The algorithm 
extracts the dominant relative color, luminance 
and spatial relations between image patches in 
the low resolution query images and uses these 
relations to build one or more flexible templates. 
The templates capture the relative spatial and 
color properties of the class and are matched 
against the database to retrieve images that be- 
long to the same class. Our experiments show 
that the algorithm that builds these templates 
automatically from a set of examples is fast, re- 
quires little storage and reliably classifies images 
of natural scenes. These templates can be fur- 
ther refined to obtain more selectivity by using 
an interactive process where the user picks the 
desired images from the general set returned at 
the first stage and the system repeats the pro- 
cess at a higher resolution. 

1    Introduction 

We investigate a method for learning relational 
templates that capture the luminance,color and 
spatial properties of a class of natural scene im- 
ages given a set of examples that belong to the 
class. The templates that are extracted contain 
information about the relative color and lumi- 
nance properties and the spatial layout of the 
class of images described by the example set. 

'Research supported in part by ARPA under ONR 
contract N00014-95-1-0600 

They represent a user-defined query-class. The 
templates extracted from the query images can 
then be matched against the entire database to 
obtain images that belong to the same class. 
This system allows the user to define the class 
using example images rather than hand-drawn 
representations or other abstract queries and 
also allows the user to refine the query and per- 
form a more selective search based on the initial 
set of matches that it returns. 

1.1    Image Classification Systems 

In the past few years, the large number of digi- 
tal image and video libraries has led to the need 
for fiexible, automated content-based image re- 
trieval systems which can efficiently retrieve im- 
ages from a database that are similar to the 
user's query. Since what a user wants can vary 
greatly, we also want to provide a way for the 
user to explore and refine the query by letting 
the system bring up examples at every stage. 

Typical techniques that have been proposed 
to search through these large image databases 
efficiently use simple image properties like color 
histograms and color layout([Swain et aZ. 1991] 
[QBIC 1995]), compact representations of 
the image texture properties[Virage 1996], 
[Pentland et a/. 1996], spatial information 
and information encoded by the domi- 
nant wavelet coefficients [Jacobs et a/. 1995], 
or integrate spatial query methods with 
feature-based methods ([VisualSEEK 1996], 
[Zabih et a/.1996], [Strieker et a/.1996]). Minka 
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and Picard [Minka et a/. 1996] introduced a 
learning component in their system by using 
positive and negative examples which lets 
the system choose image groupings within 
and across images based on color and texture 
cues. Their system provides a way to learn 
labels that describe various parts of the scene 
based on the examples. Most of these methods 
described above use absolute properties (e.g. 
color, texture and spatial information) of the 
images. If we consider the domain of natural 
scene classification, these absolute properties 
can vary between images of the same class. For 
example. Figure 4 shows variations in color, 
texture, luminance and shape for images that 
belong to the class of "Fields". More recently, 
work by Lipson and Sinha ([Lipson 1996], 
[Sinha 1994]) in scene classification illustrates 
that predefined flexible templates that describe 
the relative color and spatial properties in 
the image can be used effectively for this 
task. They demonstrate that the following 
three ideas are crucial and effective in scene 
classification: (1) relative relationships matter 
more than absolute properties, (2) global 
configuration of the relationships is important 
and (3) low resolution information is sufficient. 
In this paper, we focus on automatically 
learning luminance, color and spatial relations 
between image patches and build these flexible, 
relational templates given a set of example 
images that represent a user-defined class. 
The system uses a multiresolution approach to 
extract and refine these relational templates. 

EXAMPLE IMAGES 

TEMPLATE UNITS 

BUILD TEMPLATE 

LOW RES. MATCH H RES. MATCH 

BEST TEMPLATE 

~r~r ^ 
DATATABASE 

PICK IMAGES F 

Figure 1: Flow of control in the system 

2    Method 

Our goal is to construct fiexible templates 
that capture the common spatial, luminance 
and color patterns across a set of example 
images. The method used to construct these 
flexible templates from a training set of images 
consists of the following steps (Figure 1): 
building histograms, extracting peaks, building 
templates, matching process with score metric, 
incorporating negative examples and refining 
the template at higher resolution. 

Directional histograms of luminance 
and color relations 

Since we want to capture commonality of 
relationships across a set of example images 
while allowing for spatial variation, we cannot 
just use correlation on blurred, low resolution 
images. We use very low resolution images to 
build a histogram of relations at the first stage. 
There are 4 relative relations between a pair of 
pixels (eg. red, green and blue color channels, 
luminance). There are 4 choices of symbols for 
each relationship (>, <, =, *) where * is the 
"don't care symbol", which implies that there 
are 4^ bins into which a pair of pixels can cast 
a vote. 
We allow for variation in position as follows. 
For each pixel in the low resolution image, 
histogram the signature of the relative re- 
lations in a particular direction (Figure 2 
LEFT). Build these histograms for diff'erent 
directions separately (e.g. N-S or E-W). 
We observed that (1) for many classes, the 
directional histograms had very few bins with 
multiple entries, and (2) there is a lot of 
commonality of hits in the histogram across 
similar images. Each node also has unary color 
information (eg. node is roughly blue). We 
ignore the bin which represents the equality 
relation i.e. regions of uniform color in the 
image do not contribute to the histogram peaks. 

Building templates from histograms 

Once we have built the directional histograms, 
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we extract common peaks in the histograms of 
the sample images. Each peak gives us a re- 
lational signature that defines a part of the fi- 
nal template (Figure 2). Once we pick the top 
peaks that overlap in the example images, we 
try combinations of these template units in the 
direction of the histogram to get possible tem- 
plates (Figure 2). We match these templates 
against the example images to pick the ones that 
best explains the example set. The nodes also 
have unary color properties. Finally we match 
the best templates against all the images in the 
database and rank order the images based on 
how well they are explained by the templates. 

Figure 3 shows examples of the quantized 
patches in the low resolution images for fields 
and snowy mountains. The figure also shows 
the templates that have been extracted from the 
quantized images using the method described 
above. These templates capture the color 
and spatial relations between image patches for 
these two classes. These extracted templates 
are then used to classify all the images in the 
database. 

i.zA i ■Cl 

A 

Ar ed) = B<red) 
reen) < B{gre«n) 
lue) > B(blue) 
um)>B(lum) 

B 

I 

Figure 2: LEFT: Comparisons made to build the 
directional histograms in the N-S and E-W direc- 
tions. MIDDLE: Example of a template unit ex- 
tracted. BOTTOM: Different ways of assembling 
template units to get the final template that best 
fits the example images. 

2.1    Results using trained templates 

We have built an interactive classification sys- 
tem which allows the user to pick a few exam- 
ples from a random set of images (top two rows 
of Figure 5). The system extracts the domi- 
nant luminance, color and spatial properties of 
the query images and searches the database for 
other images that have the same relationships. 
The system returns an ordered set of images 

FIELD-TEMPLATE MOUNTAIN TEMPLATE 

Figure 3: Top Row: Examples of images in fields 
and snowy-mtns classes and the same low resolution 
quantized images. Bottom Row: Templates for fields 
and snowy mountains built from these examples. 

that belong the query-class. . 

Figure 4 shows the results of the system run- 
ning with a set of field images as the query and 
the top matches for the field-template extracted 
from the example images. These experiments 
were run on a control set of 800 natural scene 
images from the Corel collection. Notice that 
the fields class has images that vary in color, 
texture and shape and the template needs to 
be general enough to capture these variations 
within the class. The last row in the figure 
shows examples of the false positives in the top 
100 matches. 

Figure 5 shows the results of training the tem- 
plate on the queries of snowy mountains. In the 
figure, the query images are the ones selected in 
red in the top two rows. The figure also shows 
the top matches returned by the system. 

Table 1 summarizes the average performance of 
the system over 50 trials for two classes (fields 
and snowy-mountains). There were 110 field 
images and 100 snowy mountain images in the 
dataset. These were classified manually for the 
purpose of evaluating the performance of the 
system. 

3    Summary and Future Directions 

In this paper, we have demonstrated a system 
that classifies images by automatically build- 
ing flexible templates that capture the lumi- 
nance, color and spatial relations between image 
patches, given a set of example images. The sys- 
tem has been tested for a few different classes of 
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Table 1: Summary of Results using trained templates. The table has the average number of false 
positives in the top 30 and the top 100 matches and the av. number of false negatives (images in 
the class that did not get classified correctly by the system) over 50 runs. 

Class FP in top 30 FP in top 100 FN 

Fields 
Snowy Mountains 

5 
3 

28 
16 

7 
13 

natural scenes. The performance in initial test 
runs indicates that the system can be used to 
classify images of some natural scenes efficiently 
and reliably with few explainable false identifi- 
cations. The system uses a multiple resolution 
approach where the user has the option of refin- 
ing the template after the first stage with more 
specific queries. This method of building rela- 
tional histograms can also be used to organize 
the database so that matching at query time 
can be more effective. 

Some of the future directions we are investigat- 
ing include (1) adding other relational cues (eg. 
texture) in addition to the color properties de- 
scribed above in order to refine templates and 
discriminate between images at a finer level, (2) 
extending the system to include negative exam- 
ples to reduce the false positive rate and (3) 
testing and evaluating the system more rigor- 
ously with larger databases. 
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Figure 4: Top Row: Query Images for fields-class. Middle 3 rows: Top 30 matches. Bottom Row: Some 
of the false positives in the top 100 matches. 

Figure 5: Results of running the system on the examples of snowy mountains selected as the query. TOP 
TWO ROWS: Random set of images and the query images selected by the user. BOTTOM 3 ROWS: Top 
30 matches after extracting the template from the query are shown here. 
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Abstract 

Color histograms are widely used for content- 
based image retrieval, because they are robust 
to large changes in viewpoint, and can be com- 
puted trivially. However, they fail to incorpo- 
rate spatial information. We have developed 
several methods for combining color informa- 
tion with spatial layout, while retaining the ad- 
vantages of histograms. One technique com- 
putes the distribution of a given color as a func- 
tion of the distance between two pixels. The 
resulting method, which we call a color correlo- 
gram, has proven to be quite effective even with 
very coarsely quantized color information. An- 
other method computes joint histograms of lo- 
cal properties, thus dividing pixels into classes 
based on both color and spatial properties. Ex- 
periments demonstrate that these simple, effi- 
cient measures perform significantly better than 
color histograms, especially when the number of 
images is large. 

1    Introduction 

Content-based image retrieval requires simple 
and effective image features for comparing im- 
ages based on their overall appearance. Color 
histograms are widely used, for example by 
QBIC [FHckner et al, 1995], Chabot [Ogle and 
Stonebraker, 1995] and Photobook [Pentland et 
al, 1996]. The histogram is easy to compute 
and is insensitive to small changes in viewing 
positions. A histogram is a coarse characteri- 
zation of an image, however, and images with 

very different appearances can have similar his- 
tograms. For example, the images shown in 
figure 1 have similar color histograms. When 
image databases are large, this problem is espe- 
cially acute. 

Since histograms do not include any spatial in- 
formation, recently several approaches have at- 
tempted to incorporate spatial information with 
color [Hsu et al, 1995, Strieker and Dimai, 1996, 
Smith and Chang, 1996]. These methods, how- 
ever, lose many of the advantages of color his- 
tograms. In this paper we describe methods 
for combining color information with spatial 
layout while retaining the advantages of his- 
tograms. One method computes the spatial cor- 
relation of pairs of colors as a function of the 
distance between pixels. We call this feature 
color correlogram} Another approach is based 
on computing joint histograms of several local 
properties. Joint histograms can be compared 
as vectors, just as color histograms can. How- 
ever, in a color histogram any two pixels of the 
same color are effectively identical. With joint 
histograms, pixels must share several proper- 
ties beyond color. We call this approach his- 
togram refinement. The methods we describe 
are easy to compute, and they produce concise 
summaries of the image. 

In sections 2 and 3, we briefly describe color cor- 
relograms and histogram refinement (for details 
see [Huang et al, 1997] and [Pass and Zabih, 
1996]).   We have evaluated these methods us- 

^The term "correlogram" is adapted from spatial data 
analysis [Upton and Fingleton, 1985] 
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Figure 1: Two images with similar color his- 
tograms 

ing a large database of images, on tasks with a 
simple, intuitive notion of ground truth. The 
experimental results that we present in section 
4 show that our methods are significantly more 
efficient than color histograms. 

2    Color Correlograms 

A color correlogram (henceforth correlogram) 
expresses how the spatial correlation of pairs of 
colors changes with distance. Informally, a cor- 
relogram for an image is a table indexed by color 
pairs, where the d-ih entry for row {i,j) specifies 
the probability of finding a pixel of color j at a 
distance d from a pixel of color i in this image. 
Here d is chosen from a set of distance values 
D (see [Huang et al, 1997] for the formal def- 
inition). An autocorrelogram captures spatial 
correlation between identical colors only. This 
information is a subset of the correlogram and 
consists of rows of the form {i,i) only. 

Since local correlations between colors are more 
significant than global correlations in an image, 
a small value of d is sufficient to capture the 
spatial correlation. We have an efficient algo- 
rithm to compute the correlogram when d is 
small. This computation is linear in the image 
size ([Huang et al, 1997]). 

The highhghts of the correlogram method are: 
(i) it includes the spatial correlation of colors, 
and (ii) it can be used to describe the global 
distribution of local spatial correlation of colors 
if D is chosen to be local (see section 4). An 
additional advantage lies in the abihty of our 
methods to succeed with very coarse color in- 
formation. As we show in [Huang et al, 1997], 
our data suggests that 8-color correlograms per- 
form better than 64-color histograms. 

Unhke purely local properties, such as pixel 
position, gradient direction, or purely global 
properties, such as color distribution, correlo- 
grams take into account the local color spa- 
tial correlation as well as the global distri- 
bution of this spatial correlation. While any 
scheme that is based on purely local proper- 
ties is hkely to be sensitive to large appearance 
changes, (auto)correlograms are more stable to 
these changes; while any scheme that is based 
on purely global properties is susceptible to false 
positive matches, (auto)correlograms prove to 
be quite effective for content-based image re- 
trieval from a large image database. 

3    Histogram Refinement 

In histogram refinement the pixels of a given 
bucket are subdivided into classes based on lo- 
cal features. There are many possible features, 
including texture, orientation, distance from the 
nearest edge, relative brightness, etc. If we con- 
sider color as a random variable, then a color 
histogram approximates the variable's distribu- 
tion. Histogram refinement approximates the 
joint distribution of a variety of local proper- 
ties. 

Histogram refinement prevents pixels in the 
same bucket from matching each other if they 
do not fall into the same class. Pixels in the 
same class can be compared using any standard 
method for comparing histogram buckets (such 
as the Li distance). This allows fine distinctions 
that cannot be made with color histograms. 

As a simple example of histogram refinement, 
consider a positional refinement where each 
pixel in a given color bucket is classified as either 
"in the center" of the image, or not. Specifically, 
the centermost 75% of the pixels are defined as 
the "center". This centering-based refinement 
produces a spht histogram in which the pixels 
of color buckets are loosely constrained by their 
location in the image. 

3.1     Color coherence vectors 

CCV's are a more sophisticated form of his- 
togram refinement, in which histogram buck- 
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ets are partitioned based on spatial coherence. 
Our coherence measure classifies pixels as ei- 
ther coherent or incoherent. A coherent pixel is 
a part of a sizable contiguous region, while an 
incoherent pixel is not. A color coherence vec- 
tor (or CCV) represents this classification for 
each color in the image. Sizable contiguous re- 
gions can be found by a variety of methods; the 
one we have used simply computes connected 
components in the discretized color space and 
then thresholds the components based on their 
size. We have also experimented with more 
complex combinations of local properties; see 
[Pass and Zabih, 1996] for details. There are 
two variants of CCV's which we have experi- 
mented with. One variant, which we will write 
as CCV/C, combines coherence with centering- 
based refinement, thus sphtting each bucket 
into four classes. A particularly useful variant, 
which we will write as CCV/C/G, includes co- 
herence, centering and the intensity gradient di- 
rection. 

4    Experimental Results 

The methods we describe have been imple- 
mented and tested on a large image database. 
It contains just under 15,000 images, and in- 
cludes the 11,667 images used in Chabot [Ogle 
and Stonebraker, 1995], the 1,440 images used 
in QBIC [Flickner et al, 1995], and a 1,005 im- 
age database available from Corel. For some of 
our tests we also included in the database 40,000 
images from CNN taken one minute apart. 

Hand examination of our database revealed 77 
pairs of images which contain different views 
of the same scene. One image is selected 
as a query image, and the other represents a 
"correct" answer. The queries include vari- 
ous situations like different views of the same 
scene, large changes in appearance, small light- 
ing changes, spatial translations, etc. In each 
case, we compute where the second image ranks, 
when similarity is computed using color his- 
tograms or using our methods. The color im- 
ages shown are available on the web starting at 
http://www.cs.cornell.edu/home/rdz. 

We considered the RGB colorspace with color 

quantization into 64 colors. We chose the dis- 
tance set £> = {1,3,5,7} for computing the au- 
tocorrelograms ^. Since we explored the spar- 
sity of the feature vectors to speed up their pro- 
cessing, the query response time for autocor- 
relograms is under 2 seconds on a SPARCsta- 
tion 20. For histogram refinement, we looked at 
CCV, CCV/C and CCV/C/G. 

4.1    Results 

Examples of some queries and answers (and 
the rankings according to the histogram, CCV, 
CCV/C, and autocorrelogram methods) are 
shown in Figure 2. As these examples sug- 
gest, our methods are robust in tolerating large 
changes in appearance of the same scene caused 
by changes in viewing positions, changes in the 
background scene, partial occlusions, camera 
zoom that causes radical changes in shape, etc. 

To evaluate performance we used two perfor- 
mance measures: r-measure which sums up the 
rank of the correct answers over all queries; pi- 
measure which sums up (over all queries) the 
precisions at recall equal to 1. Note that a 
method is good if it has a low r-measure and a 
high pi-measure. Table 1 compares the overall 
performance of the autocorrelogram, histogram, 
CCV, and CCV/C using 64 color buckets. The 
Li norm is used to compare feature vectors. 

We have also conducted an evaluation of the 
CCV and CCV/C/G methods on the larger 
database. Here, we assume the user will ex- 
amine only the top few answers, and ask the 
question "how many times does the right an- 
swer occur in the top few"? We call the number 
of images that a user will consider scope, and 
we can evaluate methods by comparing their 
scope-versus-recall curves. The data shown in 
table 2 suggests that our methods work signifi- 
cantly better than color histograms. 

^We did not have to compute the correlogram here as 
the autocorrelogram itself was sufficient to produce good 
results. 
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hist: 367. CCV: 230. CCV/C: 245. auto: 1. hist: 144. CCV: 55. CCV/C: 45. auto: 1. 

hist: 310. CCV: 177. CCV/C: 160. auto: 6. hist: 119. CCV: 36. CCV/C: 25. auto: 2. 

■nm 

hist: 411. CCV: 84. CCV/C: 56. auto: 1. hist: 198. CCV: 33. CCV/C: 6. auto: 12. 

Figure 2: Sample queries and answers with ranks for various methods. Lower ranks indicate better 
performance. Ranks are from a database of 15,000 images. 

Method hist CCV CCV/C auto 

r-measure 6301 3934 3272 172 
Average r-measure 82 51 42 2 

pi-measure 21.25 27.54 31.60 58.03 
Average pi-measure 0.28 0.36 0.41 0.75 

Table 1: Performance of various methods on 15,000 image database. 

4.2    Statistical analysis 

We adopt the approach used in [Pass and Zabih, 
1996] to analyze the statistical significance of 
the improvements. We formulate the null hy- 
pothesis HQ which states that the autocorrel- 
ogram method is as Hkely to cause a negative 
change in rank as a non-negative one. Under 
Ho, the expected number of negative changes 
is M = 38.5, with a standard deviation a = 
■/77/2 ^ 4.39. The actual number of negative 
changes is 4, which is less than M - 7a. We can 
reject HQ at more than 99.9% standard signifi- 
cance level. 

For histogram refinement, we used a much 
larger database with a slightly different set of 40 
query pairs. In 37 of the 40 cases, CCV's pro- 

duced better results, while in 1 case they pro- 
duced worse results and in 2 cases the methods 
behaved identically. The average change in rank 
due to CCV's was an improvement of 277 posi- 
tions (note that this included the 1 case where 
CCV's did worse, which was a failure of 9 posi- 
tions). The average percentage change in rank 
was an improvement of 58%. In the 37 cases 
where CCV's performed better than color his- 
tograms, the average improvement in rank was 
300 positions. 

The null hypothesis HQ states that CCV's are 
equally Hkely to cause a positive change in ranks 
(i.e., an improvement) or a negative change. We 
will discard the two ties to simplify the analy- 
sis. Under HQ, the expected number of posi- 
tive changes is 19, with a standard deviation of 
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Scope Hist CCV CCV/C/G 

1 2.5% 10.0% 47.5% 
10 15.0% 42.5% 75.0% 
25 32.5% 57.5% 92.5% 
50 47.5% 75.0% 92.5% 
100 62.5% 77.5% 95.0% 
250 65.0% 82.5% 97.5% 

Table 2: Recall on 60,000 image database. Higher percentages are better. 

^38/2 ^ 3.08. The actual number of positive 
changes is 37, which is almost 6 standard devi- 
ations greater than the number expected under 
HQ. We can therefore reject HQ at any standard 
significance level (such as 99.9%). 

5    Conclusions 

We have demonstrated several ways to com- 
bine color and spatial information for image re- 
trieval. These methods incorporate spatial in- 
formation in different ways, and make differ- 
ent tradeoffs. Images that are similar under 
one measure may be quite different under an- 
other. This in turn suggests that automated 
methods for combining different measures may 
be required. 
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Abstract 

A system to retrieve images using a description of 
visual appearance is presented. A multi-scale in- 
variant vector representation is obtained by first fil- 
tering images in the database with Gaussian deriva- 
tive filters at several scales and then computing low 
order differential invariants. The multi-scale repre- 
sentation is indexed for rapid retrieval. Queries are 
designed by the users from an example image by se- 
lecting appropriate regions. The invariant vectors 
corresponding to these regions are matched with 
those in the database both in feature space as well 
as in coordinate space and a match score is obtained 
for each image. The results are then displayed to 
the user sorted by the match score. Prom experi- 
ments conducted with over 1500 images it is shown 
that images similar in appearance and whose view- 
point is within 25 degrees of the query image can be 
retrieved with a very satisfactory average precision^ 
of 57.4% 

1    Introduction 

The goal of image retrieval systems is to oper- 
ate on collections of images and, in response to 
visual queries, extract relevant images. The ap- 
plication potential for fast and effective image re- 
trieval is enormous, ranging from database manage- 
ment in museums and medicine, architecture and 

This material is based on work supported in part by 
the National Science Foundation, Library of Congress 
and Department of Commerce under cooperative agree- 
ment number EEC-9209623, in part by the United 
States Patent and Trademark Office and Defense Ad- 
vanced Research Projects Agency/ITO under ARPA or- 
der number D468, issued by ESC/AXS contract num- 
ber P19628-95-C-0235, in part by the National Science 
Foundation, Central Intelligence Agency, Department 
of Defense (DARPA) and National Security Agency un- 
der grant number IRI-9619117 and in part by NSF Mul- 
timedia CDA-9502639. Any opinions, findings and con- 
clusions or recommendations expressed in this material 
are the author(s) and do not necessarily reflect those of 
the sponsors. 

'^ precision is the proportion of retrieved images that 
are relevant 

interior design, image archiving, to constructing 
multi-media documents or presentations [4]. How- 
ever, there are several issues that must be under- 
stood before image retrieval can be successful. Fore- 
most among these is an understanding of what 're- 
trieval of relevant images' means. Relevance, for 
users of a retrieval system, is most likely associated 
with semantics. Encoding semantic information 
into a general image retrieval system entails solv- 
ing such problems as feature extraction, segmenta- 
tion and, object and context recognition. These are 
extremely hard problems that are as yet unsolved. 
However, in many situations attributes associated 
with an image, when used together with some level 
of user input, correlate well with the kind of se- 
mantics that are desirable. Consequently, recent 
work has focused directly on surface level image 
content descriptions such as color[20], texture fea- 
tures [10, 3,14,11], shape [12, 24] and combinations 
thereof [1, 5, 14]. 

In this paper images are retrieved using a charac- 
terization of the visual appearance of objects. An 
object's visual appearance in an image depends not 
only on its three-dimensional geometric shape, but 
also on its albedo, its surface texture, the view point 
from which it is imaged, among other factors. It 
is non-trivial to separate the different factors that 
constitute an object's visual appearance. However, 
we posit that the shape of an imaged object's in- 
tensity surface closely relates to its visual appear- 
ance. Here a local characterization of the intensity 
surface is constructed and images are retrieved us- 
ing a measure of similarity for this representation. 
The experiments conducted in this paper verify the 
association that objects that appear to be visually 
similar can be retrieved by a characterization of the 
shape of the intensity surface. 

Different representations of appearance have been 
used in object recognition [13, 18] and have been 
applied to specific types of retrieval such as face 
recognition [6, 23]. To the best of our knowledge the 
system presented here is the first attempt to char- 
acterize appearance to retrieve similar images and 
in this paper the development of Synapse (Syntac- 
tic Appearance Search Engine), an image database 
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search engine, is described. The approach taken 
here does not rely on image segmentation (man- 
ual or automatic) or binary feature extraction. Un- 
like some of the previously mentioned methods, no 
training is required. Since the representation is 
local, objects can be embedded in different back- 
grounds. Using an example image and user interac- 
tion to construct queries, Synapse retrieves similar 
images within small view and size variation in the 
order of their similarity in syntactic appearance to 
a query. 

The claim is that, up to a certain order, the local 
appearance of the intensity surface (around some 
point) can be represented as responses to a set of 
scale parameterized Gaussian derivative filters (see 
Section 3). This set or vector of responses, called 
a multi-scale feature vector, is obtained solely from 
the signal content and without the use of "global 
context" or "symboUc interpretation". Further, the 
family of Gaussian filters are unique in their abil- 
ity to describe the scale-space or deep structure 
[7, 9, 22, 2] of a function and are well suited for 
representing appearance. 

In this paper an indexable strategy for image 
retrieval is developed using feature vectors con- 
structed from combinations of the derivative filter 
outputs. These combinations yield a set of dif- 
ferential invariants [2] that are invariant to two- 
dimensional rigid transformations. Retrieval is 
achieved in two computational steps. During 
the off'-line computation phase each image in the 
database is first filtered at sampled locations and 
then filter responses across the entire database are 
indexed(see Section 3). The run-time computa- 
tion of the system begins with the user selecting 
an example image and marking a set of salient re- 
gions within the image. The responses correspond- 
ing to these regions are matched with those of the 
database and a measure of fitness per image in the 
database is computed in both feature space and 
coordinate space (see Section 4). Finally, images 
are displayed to the user in the order of fitness (or 
match score) to the query (see Section 5). 

2    Related Work 

Eigen-space representations [13, 6, 23, 21] are one 
of the earliest attempts to characterize appearance 
or the intensity shape. This space is constructed by 
treating the image as a fixed length vector, and then 
computing the principal components across the en- 
tire database. The images therefore have to be size 
and intensity normalized, segmented and involves 
training. The approach presented in this paper does 
not characterize appearance by eigen decomposition 
or any variation thereof. Further, the method pre- 
sented uses no learning, does not depend on con- 
stant sized images, tolerates significant variation in 
background and retrieves from heterogeneous col- 
lections of images using local representations of ap- 

Figure 1: Allowing the user to construct queries by 
selecting the box shown 

pearance. 

Gaussian derivative representations have been used 
in the context of recognition [15]. Indexed differ- 
ential invariants have recently been used [18] for 
object recognition. We also index on differential 
invariants but there are several differences. First, 
the invariants corresponding to the low two order 
derivatives are used (as opposed to the first nine 
invariants), for reasons of speed as well as relevance 
to retrieving similar images (see section 3). Second, 
their indexing algorithm depends on interest point 
detection and is, therefore, limited by the stabil- 
ity of the interest operator. We on the other hand 
sample the image. Third, the authors do not incor- 
porate multiple scales into a single vector whereas 
here three different scales are chosen. In addition 
the index structure and spatial checking algorithms 
differ. 

The earliest general image retrieval systems were 
designed by [1, 14]. In [1] the shape queries re- 
quire prior manual segmentation of the database 
which is undesirable and not cost-effective for most 
applications. Texture based image retrieval is also 
related to the appearance based work presented in 
this paper. Using Wold modeling[10] , the authors 
try to classify the entire Brodatz texture set and 
in [3] they attempt to classify scenes, such as city 
and country. Of particular interest is work by [11] 
who use Gabor filter representation (globally over 
the entire image) to retrieve by texture similarity. 

3    Syntactic Representation of 
Appearance 

This section begins by making explicit the notion of 
appearance and the uniqueness of Gaussian deriva- 
tive filters therein. Then a representation, namely a 
multi-scale feature vector is constructed by filtering 
an image with a set of Gaussian derivative filters. 
The multi-scale feature vector are transformed so 
that the elements within this vector are invariant 
to 2D rigid transformations. This transformed fea- 
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ture vector is called the multi-scale invariant vector. 
Then a scheme for indexing multi-scale invariant 
vectors computed over the entire image database 
is presented. This completes all the steps of the 
off-line computation described earlier. 

3.1    Characterization of Appearance 
A function can be locally characterized by its Tay- 
lor series expansion provided the derivatives at the 
point of expansion are well conditioned. The inten- 
sity function of the image, on the other hand, need 
not satisfy this condition. However, it is well known 
that the derivative of a possibly discontinuous func- 
tion can be made well posed if it is convolved with 
the derivative of a smooth test function [19]. Con- 
sider the normalized Gaussian as a choice for the 
smooth test function. Then the derivatives of the 
image I^ (x) = {I*G) (x,cr) ,x e iR^.u 6 5ft+, are 
well conditioned for some value of a. This is written 
as 

4...tn,<r W   =   (/*Gii...i„)(x,CT) 

Gi 
(5" 

-G 
Si^ ...Si^ 

and ik = Xi...XD, k = 1.. .n. 

The local N-jet of / (x) at scale a and order N is 
defined as the set [8]: 

J^[I]ix,a) = {Ii,...i„,,\n = O...N}       (1) 

It 
can be observed that the set limAr-+oo J'^ [I] (x, cr) 
bundles all the derivatives required to fully specify 
the Taylor expansion of /.^ up to derivatives of or- 
der N. Thus, for any order A'', the local N-jet at 
scale a locally contains all the information required 
to reconstruct / at the scale of observation a up 
to order A'^. This is the primary observation that is 
used to characterize appearance. That is, up to any 
order the derivatives locally characterize the shape 
of the intensity surface, i.e. appearance, to that or- 
der. From the experiments shown in this paper it is 
also observed that this representation can be used 
to retrieve images that appear visually similar. 

The choice of the Gaussian as the smooth test func- 
tion, as opposed to others, is motivated by the fact 
that it is unique in describing the scale-space or 
deep structure of an arbitrary function. A full re- 
view of scale-space is beyond the scope of this paper 
and the reader is referred to [26, 7, 2, 9, 22]. Here 
some of the important consequences of incorporat- 
ing scale space are considered. For increasing values 
of a the Gaussian filter admits a narrowing band of 
frequencies and I will appear smoother. The scale- 
space of / is simply I„, where a is the free variable. 
Similarly, the scale space of the derivatives of / is 
the range of /ji...i„,<7 where a is the free variable. 
Scale-space has an important physical interpreta- 
tion in that it models the change in appearance of 
an imaged object as it moves away from a camera. 

An argument is therefore made for a multi-scale 
feature vector which describes the intensity surface 
locally at several scales. Prom an implementation 
stand point a multi-scale feature vector at a point p 
in an image / is simply the elements of the vector: 

{j^[/](p,<Ti),J^[/](p,a2)...J^[/](p,afc)} 
(2) 

for some order N and a set of scales CTI ...Ck. 
In practice the zeroth order terms are dropped to 
achieve invariance to constant intensity changes. 
Multi-scale vectors represent appearance more ro- 
bustly than a single-scale vector. This can viewed 
from several different perspectives. Since, multi- 
scale vectors are values computed at several differ- 
ent kernel sizes, therefore, they contain more in- 
formation than fixed window operators. Equiva- 
lently, multi-scale vectors contain information at 
several different bandwidths and with the choice of 
a Gaussian accurately represent the intensity shape 
at different depths from the camera. From a prac- 
tical standpoint this means that mis-matches due 
to an accidental similarity at a single scale can be 
reduced. 

A measure of similarity between two multi-scale 
vectors can be obtained by correlating them or com- 
puting the distance between the vectors. In ear- 
lier work [17] it was shown that multi-scale vectors 
can be used to retrieve images visually similar and 
within a small view and finite scale variation of the 
query. An important observation from that work 
is that as images become more dissimilar their re- 
sponse vectors become less correlated, starting at 
the higher order. Thus, similar images can be ex- 
pected to be more correlated in their lower order 
than higher ones. Similar arguments can be made 
for scales. As images get dissimilar, they can be 
expected to retain strong correlation only at large 
scales (lower spatial frequency). Further the range 
of scales over which they correlate well gets smaller. 
As a consequence, in this paper the multi-scale vec- 
tor is computed at three different scales placed half 
an octave apart. This is discussed in the next sub- 
section. 

3.2    Multi-Scale Invariant Vectors 
The limitation of using the derivatives directly in 
a feature vector is that it hcis restricted tolerance 
to rotations. This issue is partially addressed by 
transforming the multi-scale feature vector so that 
it is invariant to 2D rigid transformations. 

Given the derivatives of an image /, irreducible dif- 
ferential invariants (invariant under the group of 
displacements) can be computed in a systematic 
manner [2]. The term irreducible is used because 
other invariants can be reduced to a combination 
of the irreducible set. The value of these entities is 
independent of the choice of coordinate frame (up 
to rotations) and the terms for the low orders (two 
here) are enumerated below. 
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The irreducible set of invariants up to order two of 
an image / are: 

Intensity 
Magnitude 
Laplacian 

do 
di 
d2 
dz 
di 

= 11+^1 
— Ixx + ^yy 
= Ixx^xlx + ^-Ixy-lx^y + ^yy^y^y 
— 7-2    4- 9 r2     ,7-2 
~ ^xx   '   ^-^xy ~ -^yy 

In experiments conducted in this paper, the vector, 
ACT = {di,...di)^ is computed at three different 
scales. The element do is not used since it is sen- 
sitive to gray-level shifts. The resulting multi-scale 
invariant vector has at most twelve elements. Com- 
putationally, each image in the database is filtered 
with the first five partial derivatives of the Gaus- 
sian (i.e. to order 2) at three different scales at 
uniformly sampled locations. Then the multi-scale 
invariant vector D - (A^i, A^^, A^a) is computed 
at those locations. 

A location across the entire database can be iden- 
tified by the generalized coordinates, defined as, 
c = {i, X, y) where i is the image number and {x, y) 
a coordinate within this image. The computation 
described above generates an association between 
generalized coordinates and invariant vectors. This 
association can be viewed as a table M : (i, x, y, D) 
with 3 -f A; columns ( k is the number of fields in 
an invariant vector) and number of rows, R, equal 
to the total number of locations (across all images) 
where invariant vectors are computed. 

To retrieve images, a 'find by value' functionality 
is needed, with which, a query invariant vector is 
found within M and the corresponding generaUzed 
coordinate is returned. The brute force approach 
entails a linear search in M which is extremely time 
consuming. The solution is to generate inverted 
files (or tables) for M, based on each field of the in- 
variant vector and index them. Then the operation 
of 'find-by-value' can be performed in log(i?) time 
(number of rows) and is described below. 

To index the database by fields of the invariant 
vector, the table M is split into k smaller tables 
M\ ...M'U, one for each of the k fields of the in- ^1- ^fc' 
variant vector. Each of the smaller tables Mp,p = 
1 • • • fc contains the four columns {D{p),i,x,y). At 
this stage any given row across all the smaller tables 
contains the same generalized coordinate entries as 
in M. Then, each M'^ is sorted and a binary tree is 
used to represent the sorted keys. As a result, the 
entire database is indexed. 

4    Matching Invariant Vectors 

Run-time computation begins with the user mark- 
ing selected regions in an example image. At sam- 
pled locations within these regions, invariant vec- 
tors are computed and submitted as a query. The 
search for matching images is performed in two 
stages.   In the first stage each query invariant is 

Figure 2: The results of the car query shown in 
Figure 1 

supplied to the 'find-by-value' algorithm and a list 
of matching generalized coordinates is obtained. In 
the second stage a spatial check is performed on a 
per image basis, in order to verify that the matched 
locations in an image are in spatial coherence with 
the corresponding query points. In this section the 
'find-by-value' and spatial checking components are 
discussed. 

4.1    Finding by Invariant Value 
The multi-scale invariant vectors at sampled loca- 
tions within regions of a query image can be treated 
as a list. The n*'' element in this list contains the in- 
formation Qn = {Dn,Xn,yn), that is, the invariant 
vector and the corresponding coordinates. In order 
to find-by-invariant-value, for any query entry Q„, 
the database must contain vectors that are within 
a threshold t = {h .. .tk) > Q- The coordinates of 
these matching vectors are then returned. This can 
be represented as follows. Let p be any invariant 
vector stored in the database. Then p matches the 
query invariant entry D„ only if D„-* < p < Dn+t. 
This can be rewritten as 

&,tl [Dn U) tiJ)<p{i)<DniJ)-t{j)] 

where & is the logical and operator and k is the 
number of fields in the invariant vector. To imple- 
ment the comparison operation two searches can be 
performed on each field. The first is a search for the 
lower bound, that is the largest entry smaller than 
DniJ) - tij) and then a search for the upper-bound 
i.e. the smallest entry larger than Dn{j) + t{j). 
The block of entries between these two bounds are 
those that match the field j. In the inverted file 
the generalized coordinates are stored along with 
the individual field values and the block of match- 
ing generalized coordinates are copied from disk. 
To implement the logical-and part, an intersection 
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of all the returned block of generalized coordinates 
is performed. The generalized coordinates common 
to all the k fields are the ones that match query 
entry Q„. The find by value routine is executed for 
each Qn and as a result each query entry is asso- 
ciated with a list of generalized coordinates that it 
matches. 

4.2    Spatial-Fitting 
The association between a query entry Qn and the 
list of / generalized coordinates that match it by 
value can be written as 

Tif 1 yuf )) 

Here Xn,yn are the coordinates of the query entry 
Qn and c„, ... c„^ are the / matching generalized 
coordinates. The notation Cn, implies that the gen- 
eralized coordinate c matches n and is the /"* entry 
in the list. Once these associations are available, a 
spatial fit on a per image basis can be performed. 
In order to describe the fitness measure, two def- 
initions are needed. First, define the distance be- 
tween the coordinates of two query entries m and 
n as Sm,n- Second, define the distance between any 
two generalized coordinates Cmj and c„j that are 
associated with two query entries 171,11 as Sc^.,c„ 

Any image u that contains two points (locations) 
which match some query entry m and n respec- 
tively are coherent with the query entries m and n 
only if the distance between these two points is the 
same as the distance between the query entries that 
they match. Using this as a basis, a binary fitness 
measure can be defined as 

** Tn,n \^) — * 

1    if 3j3k ^m,n      ^c 

0    otherwise 

<T 

That is, if the distance between two matched points 
in an image is close to the distance between the 
query points that they are associated with, then 
these points are spatially coherent (with the query). 
Using this fitness measure a match score for each 
image can be determined. This match score is sim- 
ply the maximum number of points that together 
are spatially coherent (with the query). Define the 
match score by: 

,    .       max  r,     /   \ 
score [u) = m  bm [u) (3) 

where, Sm{u) = L!n=i •^(")m,n- "^^^ computa- 
tion of score{u) is at worst quadratic in the total 
number of query points. The array of scores for all 
images is sorted and the images are displayed in the 
order of their score. T used in .7^ is a threshold and 
is typically 25% of Sm,n- Note that this measure 
not only will admit points that are rotated but will 

also tolerate other deformations as permitted by the 
threshold. The value of the threshold is selected to 
reflect the rationale that similar images will have 
similar responses but not necessarily under a rigid 
deformation of the query points. 

4.3    Query Construction 
The ability for the user to construct queries by se- 
lecting regions is an important distinction between 
the approach presented here and elsewhere. Users 
can be expected to employ their considerable se- 
mantic knowledge about the world to construct a 
query. Such semantic information is difficult to in- 
corporate in a system. An example of query con- 
struction is shown in Figure 1, where the user has 
decided to find cars similar to the one shown and 
decides that the most salient part are 'wheels'^. It 
is clear that providing such interaction removes the 
necessity for automatic determination of saliency. 
In the car example, the user provides the context 
to search the database by marking the wheel and 
retrieved images mostly contain wheels. The asso- 
ciation of wheels to cars is not known to the sys- 
tem, rather it is one that the user decides is mean- 
ingful. Several other approaches in the literature 
take the entire feature set or some global represen- 
tation over the entire image[l, 4, 21,11]. While this 
may be reasonable for certain types of retrieval, it 
cannot necessarily be used for general purpose re- 
trieval.Therefore, we believe that the natural hu- 
man ability in selecting salient regions must be ex- 
ploited. More importantly, letting the user design 
queries eliminates the need for detecting the salient 
portions of an object, and the retrieval can be cus- 
tomized so as to remove unwanted portions of the 
image. Based on the feedback provided by the re- 
sults of a query, the user can quickly adapt and 
modify the query to improve performance. 

5    Experiments 

The database used in this paper has digitized im- 
ages of cars, steam locomotives, diesel locomotives, 
apes, faces, people embedded in diff'erent back- 
ground (s) and a small number of other miscella- 
neous objects such as houses. 1561 images were 
obtained from the Internet and the Corel photo-cd 
collection to construct this database. These pho- 
tographs were taken with several different cameras 
of unknown parameters, and under varying uncon- 
trolled lighting and viewing geometry. Also, the 
objects of interest are embedded in natural scenes 
such as car shows, railroad stations, country sides 
and so on. The choice of images reflects two pri- 
mary considerations. First, the images should not 
reflect a bias towards any particular attribute and 
second, the system must be able to rank dissimilar 
images with little difliculty. This is confirmed by 
the experiments performed to date. 

see Figure 2 for the results 
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Table 1: Queries submitted to the system and expected retrieval 
Given(User Input) '^' "" 

wheel, Figure 1 
wheel (front wheel only) 

Monkey's coat 
Face 
Face 

Patas Monkey Face 

Find 
White Wheeled Cars, see Figure 2 

White Wheeled Cars 
Dark Textured Apes 

All Faces 
Same Person's Face 

All Visible Patas Monkey Faces 

Precision 
57.0% (see text) 

48.6% 
57.5% 
74.7% 
61.7% 
44.5% 

A measure of the performance of the retrieval 
engine can be obtained by examining the re- 
call/precision table for several queries. Briefly, re- 
call is the proportion of the relevant material ac- 
tually retrieved and precision is the proportion of 
retrieved material that is relevant [25]. Consider as 
an example the query described in Figure 1. Here 
the user wishes to retrieve 'white wheel cars' simi- 
lar to the one outlined and submits the query. The 
query has both wheels marked to impose additional 
spatial constraints. The top 25 results ranked in 
text book fashion are shown in Figure 2. Note that 
although there are several valid matches as far as 
the algorithm is concerned (for example image 8 a 
train), they are not considered vahd retrievals as 
stated by the user and are not used in measuring 
the recall/precision. This is inherently a conser- 
vative estimate of the performance of the system. 
The average precision (over recall intervals of 10^) 
is 48.6%. Five other queries that were also submit- 
ted are depicted in table 1. Due to lack of space de- 
tailed explanations are not provided and the reader 
is referred to [16] for details. The recall/precision 
table over these five queries is in Table 2. The av- 
erage precision over all the queries is a 57.4%. This 
compares well with text retrieval where some of the 
best systems have an average precision of 50%^. 

Unsatisfactory retrieval occurs for several reasons. 
First it is possible that the query is poorly designed. 
In this case the user can design a new query and 
re-submit. Also Synapse allows users to drop any 
of the displayed results into a query box and re- 
submit. Therefore, the user can not only redesign 
queries on the original image, but also can use any 
of the result pictures to refine the search. A second 
source of error is in matching generalized coordi- 
nates by value. The choice of scales in the exper- 
iments carried out in this case are ;^,3, ;;^. It is 
possible that locally the intensity surface may have 
a very close value, so as to lie within the chosen 
threshold and thus introduce an incorrect point. 
By adding more scales or derivatives such errors 
can be reduced, but at the cost of increased dis- 
crimination and decreased generalization. Many of 
these 'false matches' are eliminated in the spatial 

^The value n(= 10) is simply the retrievals up to 
recall n. 

^Based on personal communication with Bruce Croft 

checking phase. Errors can also occur in the spatial 
checking phase because it admits much more than a 
rotational transformation of points with respect to 
the query configuration. Overall the performance 
to date has been very satisfactory and we believe 
that by experimentally evaluating each phase the 
system can be further improved. 

The time it takes to retrieve images is dependent 
linearly on the number of query points. On a Pen- 
tium Pro-200 Mhz Linux machine, typical queries 
execute in between one and six minutes. 

6    Conclusions, Limitations and 
Future Work 

Within small view variations, images that are sim- 
ilar to a query are retrieved. These images are also 
observed to be visually similar and we posit that 
this method has good potential for image retrieval. 

While a discussion of matching objects across differ- 
ent sizes was presented and has been implemented 
elsewhere [17], in this paper, the multi-scale invari- 
ant vector was used only to robustly characterize 
appearance. The next immediate step is to explic- 
itly incorporate matching across size variations. 

A second important question is, what types of in- 
variants should constitute a feature vector ? This 
is an open research issue. Finally, although the 
current system is some what slow, it is yet a re- 
markable improvement over our previous work. We 
believe that by examining the spatial checking and 
samphng components further increases in speed are 
possible. 
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Abstract 
This work addresses the issue of color feature 
selection for content-based retrieval from large, 
heterogeneous color image databases where no 
assumptions can be made about the images or 
the type of queries. The color features used to 
describe an image have been developed based 
on the need for speed in matching and ease 
of computation on complex images while main- 
taining invariance to differences in scale, ori- 
entation, and location of the queried object in 
the database images and also the presence of 
significant, interfering backgrounds. The colors 
present and their spatial relationships are used 
as features to describe a color image. These 
features are used in an efficient, multi-phase re- 
trieval system to produce retrieval results fast 
enough for use with an online user. Test results 
with multi-colored query objects from man- 
made and natural domains highlight the capa- 
bilities of the system. 

'This material is based on work supported in part by 
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and Department of Commerce under cooperative agree- 
ment number EEC-9209623, in part by the United States 
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D468, issued by ESC/AXS contract number F19628- 
95-C-0235, in part by the National Science Founda- 
tion, Centred Intelligence Agency, Department of Defense 
(DARPA) and National Security Agency under grant 
number IRI-9619117, in part by ARPA (via USAF Rome 
Laboratory) under contract F30602-94-C-0042 and in 
part by NSF Multimedia CDA-9502639. Any opinions, 
findings and conclusions or recommendations expressed 
in this material are the authors and do not necessarily 
reflect those of the sponsors. 

1    Introduction 

With the growing number of multimedia 
databases, retrieval of images, audio and video 
from large databases has become an active area 
of research. As in text retrieval, objects in the 
database which are relevant to the query being 
posed by the user need to be retrieved. Content- 
based retrieval is a popular paradigm for ensur- 
ing relevance in image retrieval where the aim is 
to find the images in a database which contain 
the object represented in a query image. 

The fact that there are no obvious features 
across images which carry semantic information 
like words do in text, makes the selection of de- 
scriptive features for an image difficult. How- 
ever, when the databeise has images of multi- 
colored objects which can be recognized on the 
basis of their distinctive color signatures, the 
color of the object and related color-based fea- 
tures are an obvious choice for indexing. 

There has been work in color-based retrieval 
using color histograms [Swain and Ballard, 
199l][Hafner et ai, 1995], but the retrieval re- 
sults are sensitive to difierence in scale and 
viewpoint between the object as depicted in the 
query image and as present in the database im- 
ages. Using color clusters [Kankanhalli et ai, 
1996] avoids the scale problem but both strate- 
gies are affected by the presence of interfering 
backgrounds, particularly when the query im- 
age is a small embedded part in a large tar- 
get image. We have considered the general 
case where multi-colored objects occur with sig- 
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Figure 1: Effect of interfering background on histogram peak location: (a) "Ziploc" advertisement 
with a cell highlighted (b) global hue histogram of whole image with relevant peaks 
labelled (c) hue histogram of marked cell with peaks labelled 

nificant, interfering backgrounds and in widely 
varying sizes, locations and orientation in the 
database images. 

2    Selection of features 

The main requirement for the color characteris- 
tics selected for matching is to provide discrim- 
ination between images which contain objects 
similar to the query object and those which do 
not. The feature matched needs to be invari- 
ant to differences in the scale, location and ori- 
entation of the query object in the candidate 
image and the presence of background colors in 
the candidate image. It is also desirable for the 
characteristics to be indexable and the match- 
ing process to be fast. 

We have used two scale and orientation invari- 
ant color features, describing the color content 
of an image and the spatial relationships be- 
tween color regions. In general, there is a trade- 
off between the discriminatory power of a color 
feature and its speed of matching. Simpler fea- 
tures are easy for indexing and matching, while 
complex features which provide more discrim- 
inatory power may not be indexable and take 
longer to match. We have selected both types 
of features and employed a two phase match- 
ing strategy to balance the trade-off between 
speed of retrieval and the precision obtained. 

The emphasis in the first phase of matching is 
on speed of retrieval, and the second phcise aims 
at removal of false matches from the image list 
produced by the first phase. 

2.1    Histogram Peaks as features 

The simplest constraint on a database image re- 
trieved as a response to a query is that it must 
have all the colors of the query object present. 
To check for this requirement, we need to de- 
scribe the color content of an image. As ob- 
served in [Matas et al, 1995], the locations of 
peaks in a histogram are stable under view- 
point change and scale transformation, unlike 
histogram bin counts used in [Swain and Bal- 
lard, 1991]. The storage space required is re- 
duced when compared to using the full his- 
togram, and standard key-based indexing tech- 
niques can be used. Even the peak locations 
are affected by the presence of background in 
the image. However, the color peaks present 
in an image can be determined more accurately 
when the histogram covers a small area of the 
image, minimizing the the presence of interfer- 
ing colors from the background as illustrated in 
Figure 1. 

We use a split and merge technique for peak de- 
tection which produces accurate peaks in spite 
of the presence of interfering backgounds. Since 
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we do not know a priori the size or the loca- 
tion of the object of interest in the image, the 
image is divided uniformly into mxn cells. Lo- 
cal histograms are constructed for each image 
cell in the HSV (hue, saturation, value) color 
space since it is more stable than RGB under 

variations in illumination. Since the hue compo- 
nent is the most stable and value component the 
least stable, we use HSV histograms with finely 
discretized hue axis and coarsely quantized sat- 

uration and value axes (64x10x10). Peaks are 
detected in the histograms by finding local max- 
ima in a 3-D neighborhood window. A com- 
bined list of peaks is produced by merging mul- 
tiple copies of the same peak. 

2.2    Describing spatial relationships 
between colors 

There could be many images which have all the 
colors of the query object, but not in the same 
spatial configuration as in the query object. In 
the extreme case, the matched colors are scat- 
tered across the image and do not form any con- 
nected cluster. In other cases, some color adja- 
cency relationship present in the query object 
may be violated in candidate images. For ex- 
ample, in the query in Figure 2 (a), the red 
(labelled 0) and blue (labelled 3) regions are 
adjacent whereas in the false match (b), they 
are not adjacent. These false matches could be 
eliminated if information on spatial distribution 
of colors in the image was available. 

The color adjacency graph (CAG) formulation 
used by Kittler et al [Matas et al., 1995] is a 
good descriptor of the color relationships in a 
multi-colored object, where the color regions are 
nodes in a graph with edges connecting color 
regions which share an edge at the pixel level. 
However, a CAG description of the database im- 
ages is not feasible for retrieval due to the com- 
plexity of the images. Most of the images con- 
tain natural objects and color regions in which 
there are no distinct boundaries between colors. 
An attempt to construct a CAG for these im- 
ages has produced very large, complex graphs, 
making the matching phase intractable. There- 
fore, we need a simpler representation for the 
spatial distribution of colors that allows efficient 

"^Bbaperry 
Haircolor.with BrilHantSWoe 

fcASTINC 
KHI-O't rni COUWIMI 

(a) (b) 

Figure 2: Example of mismatch in spatial 
color relationships : (a) "Blueberry 
Morning" query image (b) A false 
match 

generation and storage for all images and allows 
fast matching. 

It should be noted that during the peak de- 
tection process, we have already localized color 
peaks in image cells, giving us the color con- 
tent in each cell. We now use this information 
to construct a graph describing the approximate 
spatial relationships between colors in the image 
without any additional pixel level processing. 

We start by constructing an intermediate graph 
representation directly from the peak descrip- 
tion of the image based on whether pixel level 
adjacency is possible between two color regions, 
and condense it into a compact graph - the 
spatial proximity graph (SPG). Each node in 
the intermediate SPG corresponds to a detected 
color peak, and edges between two nodes indi- 
cate that the two color regions which produced 
the peaks could be adjacent in the image. Let 
nodes of the intermediate SPG be of the form 
cj„, where m is the peak color label of the node 
and i is the cell in which it is located. There 
is an edge E between two nodes of the graph if 
the following condition is met. 

•^(c;„.c^„)ifi 
4-neighbors. 

j OR m — n and {i,j) are 

The intermediate graph obtained is not scale 
invariant, since a larger region would produce 
more nodes in the graph.  A smaller, scale in- 
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variant SPG which still captures the spatial re- 
lationships between colors is obtained by col- 
lapsing connected nodes of the same color label 
into a single node of that color label. The graph 
may still have multiple nodes of the same color 
label, but only if these peaks were spatially dis- 
connected in the image. The SPG is computed 
off-line for all database images and stored using 
an adjacency matrix representation. 

The spatial proximity graph (SPG) description 
has a number of very useful properties. Apart 
from being scale and orientation invariant, it 
can be computed easily for all types of images, 
with or without prominent color boundaries. 

The SPG shows all possible pixel-level adjacen- 

cies that could appear in an image, without go- 

ing through pixel-level processing. So any color 
adjacency relationship present in the image is 
still captured in this simplified graph. On the 
other hand, the graph is approximate since it 
may indicate some possible adjacency relation- 
ships for which there is actually no pixel-level 
adjacency in the image e.g. when two color re- 
gions are within a cell in the image, but there 
is no pixel adjacency between them. 

3    Overview of Retrieval System 

The features desribed above are used in an 
experimental retrieval system, FOCUS (Fast 
Object-Color-based qUery System). The 
schematic diagram of the system is shown in 
Figure 3. When a query image is obtained, the 
peaks in its color histogram and the graph de- 
scribing the color relationships are computed. 

Computed Offline 
INDEXED 

IMAGE PEAKS 

query graph 

Query 
Image 

query . 
peaks 

IMAGE 
SP GRAPHS 

PHASE I 

Peak Matching 

V \i 

PHASE II 

SPG Filtering 

Reduced 

L 

L: Ranked list of images 
P: Peak correspondences 

Online 

Figure 3: Overview of the FOCUS image re- 
trieval system 

The peaks extracted offline from the databjise 
images are stored in a B+ tree which is an 
order-preserving indexing structure. A fre- 

quency table is also constructed which gives the 
number of images which will be retrieved for 
each point in the discretized HSV space. For 
each peak in the query, P, {hq,Sg,Vg), a range 
query of (/i, ± 3, Sg ± 4, u, ± 5) is executed start- 
ing with the peak which retrieves the minimum 
number of images onwards. A join of the lists 
of image identifiers is taken to find the images 
which have peaks matching all query peaks. 
The time complexity of the retrieval process is 
given by 0{qlog{kN)), where q is the number 

of query peaks, N is the total number of images 
in the database and k is the average number of 

peaks per image. The images extracted are or- 

dered by increasing mismatch scores, where the 
mismatch score is computed cis the total city 

block distance between the matched candidate 
image peaks and the query peaks. 

The correspondence between each color label 
in the image and the color peak in the query 
image which it matched is available from the 
peak matching computed during the first phase. 
Many image color labels may not match any 
query peak, since peaks maybe produced by 
the background in the image. The SPG com- 
puted off-line can be drastically reduced by re- 
moving all nodes in the image SPG whose color 
label does not match any query peak. The re- 
duced SPG is also relabelled using the query 
peak color labels so that both the query graph 
and the reduced SPG now use the same color la- 
bels. The reduced SPG is much smaller than the 
original SPG, as illustrated in Figure 4, making 
the graph matching feasible as an online pro- 
cess. 

The problem tackled during the online second 
phase is to detect if the query color graph occurs 
as a sub-graph of the reduced candidate image 
SPG. Though this is an instance of the subgraph 
isomorphism problem which is known to be NP- 
complete, due to the restricted nature of this 
problem, the matching computation is fsEisible. 
The running time is of the order of 0(n™) where 
n is the size of the query adjacency matrix and 
m is the maximum number of instances of a 
color label in the reduced SPG, typically 3 or 
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Figure 4: Reducing SPGs by deleting nodes not matched in phase 1: (a) Original image (b) Query 
image (c) SPG computed offline (d) SPG after reduction 

less. Further details of this system can be found 
in [Das et al, 1997][Das et al, 1996]. 

4    Results 

The database on which FOCUS has been tested 
consists of 400 advertisements from magazines 
and 800 color images from nature including 
birds, fish, flowers, animals land vegetables. 
The retrieval results obtained can be judged us- 
ing precision and recall as criteria. Precision is 
the proportion of correct retrievals in the im- 
ages retrieved upto the last correct image. Re- 
call is the proportion of correct retrievals out of 
all the images in the database that should have 
been retrieved for the given On a query set of 25, 
the recall was 95%. The average precision after 
phase 1 was 44% and after phase 2 it improved 
to 60%. The performance was better when the 
query had more than three colors. The average 
precision score for a query set with more than 
three colors was 50% after phase 1 and 75% af- 
ter phase 2. Two sample retrieval results are 
shown in Figure 5. 

The time taken for a complete cycle of retrieval 
consists of the query processing time, phase 1 
matching and phase 2 matching. FOCUS runs 
on a 133 MHz Pentium processor and all times 
mentioned are averaged over many trials. Query 
processing takes about 0.1 sec on a query im- 
age of size 100x200, which is the average size 

of queries tried. Phase 1 matching takes 0.1- 
0.2 sec and phase 2 matching takes about 0.01 
for each image in the list produced by phase 
1. Since this list has 30 images on an average 
the second phase takes about 0.3 sec. The re- 
trieval process is fast enough to be scalable to 
very large databases since the query processing 
time is independent of the size of the database, 
the first phase of matching grows only logarith- 
mically with the size of the database and the 
second phase depends only on the number of 
images retrieved by the first phase. 

5    Conclusion 

We have presented two robust color features 
which have been used to develop a fast, back- 
ground independent color image retrieval sys- 
tem which produces good results with multi- 
colored query objects. The retrieval is robust to 
differences in the scale, orientation and location 
of the query object in candidate images. The 
speed of the system and the small storage over- 
head make it suitable for use in large databases 
with online user interfaces. In future, we plan 
to increase the size of the database, add more 
color features to further distinguish between im- 
ages and add more phases to utilize other types 
of image information. 
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Figure 5: Examples of Retrieved Results - the query is marked by a white box 

Acknowledgments 

We would like to thank R.Manmatha for test- 
ing the retrieval results and providing valuable 
suggestions, Jonathan Lim for building the web- 
page for the online demonstration of the system 
and Bruce Draper for ideas in earlier versions of 
this work. 

References 

[Swain and Ballard, 1991] M.J. Swain and 
D.H. Ballard. Color Indexing. International 
Journal of Computer Vision, 7(l):ll-32, 
1991. 

[Niblack et al, 1993] W. Niblack, R. Barber et 
al. The QBIC project: Querying Images 
by Content using Color, Texture and Shape. 
SPIE Conference on Storage and Retrieval 
for Image and Video Databases, 1908:173- 
187,1993. 

[Hafner et a/., 1995] J. Hafner, H. Sawhney, 
W. Niblack et al. Efficient Color Histogram 
Indexing for Quadratic Form Distance Func- 
tions. IEEE Transactions on Pattern Anal- 
ysis and Machine Intelligence, 17(7):729-736, 
1995. 

[Matas et al, 1995] J. Matas, R. Marik and 
J. Kittler. On Representation and Match- 
ing of Multi-Coloured Objects. Fifth Interna- 
tional Conference on Computer Vision, 726- 
732, 1995. 

[Kankanhalli et al, 1996] M.S. Kankanhalli, 
B.M. Mehtre and J.K. Wu. Cluster-Based 
Color Matching for Image Retrieval. Pattern 
Recognition, 29(4):701-708, 1996. 

[Gong et al, 1996] Y. Gong, C.H. Chuan and 
G. Xiaoyi. Image Indexing and Retrieval 
Based on Color Histograms. Multimedia 
Tools and Applications, 2(2):133-156, 1996. 

[Das et al, 1996] M. Das, B.A. Draper, 
W.J. Lim, R. Manmatha and E.M. Riseman. 
A Fast, Background-independent Retrieval 
Strategy for Color Image Databases. Com- 
puter Science Technical report TR-96-79, 
Univ. of Massachusetts at Amherst. 

[Das et al, 1997] M. Das, E.M. Riseman and 
B.A. Draper. FOCUS : Searching for Multi- 
colored Objects in a Diverse Image Database. 
To appear in IEEE conference on Computer 
Vision and Pattern Recognition, 1997. 

706 



Automatic Text Detection and Recognition* 

Victor Wu, R. Manmatha, Edward M. Riseman 
Multimedia Indexing And Retrieval Group 

(Joint Laboratory of Center For Intelligent Information Retrieval and Computer Vision Lab) 
Computer Science Department 

University of Massachusetts, Amherst, MA 01003-4610 
E-MAIL: vwu@cs.umass.edu 

Abstract 

A four-step system which automatically detects 
and extracts text in images is presented. First, 
a texture segmentation scheme is used to focus 
attention on regions where text may occur. Sec- 
ond, strokes are extracted from the segmented 
text regions, and then processed to form rectan- 
gular boxes surrounding the corresponding text 
strings. Multi-scale processing is used to ac- 
count for significant font size variations. Third, 
text is extracted by cleaning up the background 
and binarizing the detected text strings. Fi- 
nally, better text bounding boxes are generated 
by using the binarized text as strokes. Text 
is then cleaned and binarized from these new 
boxes, and can then be passed through a com- 
mercial OCR engine for recognition. The sys- 
tem is stable, robust, and works well on im- 
ages (with or without structured layouts) from 
a wide variety of sources, including digitized 
video frames, photographs, newspapers, adver- 
tisements in magazines/newspapers, stock cer- 
tificates, and personal checks. 

*This material is based on work supported in 
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part by the United States Patent and Trademark 
Office and Defense Advanced Research Projects 
Agency/ITO under ARPA order number D468, is- 
sued by ESC/AXS contract number F19628-95-C- 
0235, in part by the National Science Foundation un- 
der grant number IRI-9619117 and in part by NSF 
Multimedia CDA-9502639. Any opinions, findings 
and conclusions or recommendations expressed in 
this material are the autlior(s) and do not neces- 
sarily reflect those of the sponsors. 

1    Introduction 

Most of the information available today is either 
on paper or in the form of still photographs and 
videos. To build digital libraries, this large vol- 
ume of information needs to be digitized into 
images and the text converted to ASCII for 
storage, retrieval, and easy manipulation. For 
example, video sequences of events such as a 
basketball game can be annotated and indexed 
by extracting a player's number, name and the 
team name that appear on the player's uniform 
(Figure l(b, c)). In contrast, image indexing 
based on image content, such as the shape of an 
object, is a quite difficult task. 

Current OCR technology [Bokser, 1992, Mori 
et al, 1992] is largely restricted to finding 
text printed against clean backgrounds, since in 
these cases it is easy to binarize the input im- 
ages to extract text (text binarization) before 
character recognition begins. It cannot handle 
text printed against shaded or textured back- 
grounds, nor text embedded in pictures. More 
sophisticated text reading systems usually em- 
ploy page segmentation schemes to identify text 
regions. Then an OCR module is applied only 
to the text regions to improve its performance. 
Some of these schemes [Wahl et al, 1982, Wang 
and Srihari, 1989, Nagy et a/., 1992, Pavhdis 
and Zhou, 1992] are top-down approaches, some 
are bottom-up methods [Fletcher and Kasturi, 
1988, O'Gorman, 1993], and others are based 
on texture segmentation techniques in computer 
vision [Jain and Bhattacharjee, 1992]. How- 
ever, the top-down and bottom-up approaches 
usually require the input image to be binary 
and has a Manhattan layout. Although the ap- 
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Figure 1: The system, example input image, and extracted text, (a) The top level components of the 
text detection and extraction system. The pyramid of the input image is shown as /, 7i, I2 
...; (b) An example input image; (c) Output of the system before being fed to the Character 
Recognition module. 

preach in [Jain and Bhattacharjee, 1992] can 
in principle'be applied to grayscale images, it 
was only used on binary document images, and 
in addition, the text binarization problem was 
not addressed. In summary, few working sys- 
tems have been reported that can read text from 
document pages with both structured and non- 
structured layouts. The system presented in 
this paper is our contribution to constructing 
a complete automatic text reading system. 

2    System Overview 

Our system takes advantage of the following dis- 
tinctive characteristics of text which make it 
stand out from other image information: (1) 
Text possesses a distinctive frequency and ori- 
entation attributes; (2) Text shows spatial co- 
hesion — characters of the same text string are 
of similar heights, orientation and spacing. 

The first characteristic suggests that text may 
be treated as a distinctive texture, and thus be 
segmented out using texture segmentation tech- 
niques. Thus, the first phase of our system is 
Texture Segmentation as shown in Figure 1(a). 
In the Chip Generation phase, strokes are ex- 
tracted from the segmented text regions. Using 
reasonable heuristics on text strings based on 
the second characteristic, the extracted strokes 
are then processed to form tight rectangular 
bounding boxes around the corresponding text 

strings. To detect text over a wide range of font 
sizes, the above steps are applied to a pyramid 
of images generated from the input image, and 
then the boxes formed at each resolution level 
of the pyramid are fused at the original resolu- 
tion. A Text Clean-up module which removes 
the background and binarizes the detected text 
is applied to extract the text from the regions 
enclosed by the bounding boxes. Finally, text 
bounding boxes are refined (re-generated) by 
using the extracted items as strokes. These new 
boxes usually bound text strings better. The 
Text Clean-up process is then carried out on the 
regions bounded by these new boxes to extract 
cleaner text, which can then be passed through 
a commercial OCR engine for recognition if the 
text is of an OCR-recognizable font. The phases 
of the system are discussed in the following sec- 
tions. 

3    The Texture Segmentation 
Module 

A standard approach to texture segmentation 
is to first filter the image using a bank of linear 
filters such as Gaussian derivatives [Malik and 
Perona, 1990] or Gabor functions, followed by 
some non-linear transformation such as a hy- 
perbolic function tanh{at). Then features are 
computed to form a feature vector for each pixel 
from the filtered images. These feature vectors 
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Figure 2: Results of Texture Segmentation and Chip Generation, (a) Portion of an input image; (b) The 
final segmented text regions; (c) Extracted strokes; (d) Text chips mapped on the input image. 

are then classified to segment the textures into 
different classes. 

Here, 9 filters of the 3 second order derivatives of 
Gaussian at three different scales a = (1, \/2,2) 
are used. Each filter output is passed through 
the non-linear function tan/i(|). At each pixel, 
a feature vector can be constructed consisting 
of the 9 energy estimates computed using the 
outputs of the non-linear transformation. The 
feature vectors are then clustered using the K- 
means algorithm (with K = 3). One of the clus- 
ters is labeled as text automatically. Finally, a 
morphological closure operation is carried out 
on the segmented text regions since the seg- 
mented regions might have holes and be broken 
[Wu et ai, 1997]. 

Figure 2(a) shows a portion of an original in- 
put image with a variety of textual information 
to be extracted. There is text on a clean dark 
background, text printed on Stouffer boxes, 
Stouffer's trademarks (in script), and a picture 
of the food. Figure 2(b) shows the final seg- 
mented text regions. 

4    The Chip Generation Phase 

In practice, text may occur in images with com- 
plex backgrounds and texture patterns, such as 
foliage, windows, grass etc. Thus, some non- 
text patterns may pass the filters and initially 
be misclassified as text (Figure 2(b)). Further- 
more, segmentation accuracy at texture bound- 
aries is a well-known and difficult problem in 

texture segmentation. Consequently, it is often 
the case that text regions are connected to other 
regions which do not correspond to text, or one 
text string might be connected to another text 
string of a different size or intensity. This might 
cause problems for later processing. For exam- 
ple, if two text strings with significantly differ- 
ent intensity levels are joined into one region, 
one intensity threshold might not separate both 
text strings from the background. 

Therefore, heuristics need to be employed to re- 
fine the segmentation result. Since the segmen- 
tation process usually finds text regions while 
excluding most of those that are non-text, these 
regions can be used to direct further process- 
ing (focus of attention). Furthermore, since 
text is intended to be readable, there is usually 
a significant contrast between it and the back- 
ground. Thus contrast can be utilized finding 
text. Also, it is usually the case that characters 
in the same word/phrase/sentence are of the 
same font and have similar heights and inter- 
character spaces. Finally, it is obvious that 
characters in a horizontal text string are hor- 
izontally aligned. Therefore, all the heuristics 
above are incorporated in the Chip Generation 
phase in a bottom-up fashion: significant edges 
form strokes (Figure 2(c)); strokes from the seg- 
mented regions are aggregated to form chips 
corresponding to text strings. The rectangular 
bounding boxes of the chips are used to indicate 
where the hypothesized (detected) text strings 
are (Figure 2(d)). These steps are described in 
detail in [Wu et ai, 1997]. 
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Figure 3: The scale problem and its solution, (a) Chips generated for the input image at full resolution; 
(b) half resolution; (c) \ resolution; (d) Chips generated at all three levels mapped onto the 
input image. Scale-redundant chips are removed. 
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Figure 4: Binarization results before and after the Chip Refinement step,   (a) Magnified portion of an 
input image; (b) binarization result before refinement; (c) after refinement. 

5    A Solution to the Scale Problem 

The three frequency channels used in the seg- 
mentation process work well to cover text over 
a certain range of font sizes. Text from larger 
font sizes is either missed or fragmented. This 
is called the scale problem. Intuitively, the 
larger the font size of the text, the lower the fre- 
quency it possesses. Thus, when the text font 
size gets too large, its frequency falls outside the 
three channels selected in section 3. 

A pyramid approach (Figure 1(a)) is used to 
solve the scale problem: a pyramid of the input 
image is formed and each image in the pyra- 
mid is processed using the standard channels 
(cr = 1, \/2,2) as described in the previous sec- 
tions. At the bottom of the pyramid is the orig- 
inal image; the image at each level (other than 
the bottom) has half of the resolution as that of 
the image one level below. Text of smaller font 

sizes can be detected using the images lower in 
the pyramid (Figure 3(a)), while text of large 
font sizes is found using images higher in the 
pyramid (Figure 3(c). The bounding boxes of 
detected text regions at each level are mapped 
back to the original input image and the redun- 
dant boxes are then removed as shown in Figure 
3(d). Details are presented in [Wu et ai, 1997]. 

6    Text on Complex Backgrounds 

The previous sections describe a system which 
detects text in images and puts boxes around 
detected text strings in the input image. Since 
text may be printed against complex image 
backgrounds, which current OCR systems can- 
not handle well, it is desirable to have the back- 
grounds removed first. In addition, OCR sys- 
tems require that the text must be binarized 
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Table 1: Summary of the system's performance. 48 images were used for detection and clean-up. Out of 
these, 35 binarized images were used for the OCR process. 
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Figure 5: Example 1. (a) Original image (adsll); 
WordScan Plus 4.0 on b. 

before actual recognition starts. In this system, 
the background removal and text binarization is 
done by applying an algorithm to the text boxes 
individually instead of trying to binarize the in- 
put image as a whole. This allows the process 
to adapt to the individual context of each text 
string. The details of the algorithm are in [Wu 
et a/., 1997]. 

7    The Text Refinement 

Sometimes non-text items are identified as text 
as well. In addition, the bounding boxes of the 
chips sometimes do not tightly surround the 
text strings. The consequence of these prob- 
lems is that non-text items may occur in the 
binarized image, produced by mapping the ex- 
tracted items onto the original page. An exam- 
ple is shown in Figure 4(a,b). These non-text 
items are not desirable. 

However, by treating the extracted items as 
strokes, the Chip Refinement module which is 
essentially similar to the chip Generation mod- 

(c) 

(b) Extracted text; (c) The OCR result using Caere's 

ule but with stronger constraints, can be ap- 
plied here to eliminate the non-text items and 
hence form tighter text bounding boxes. This 
can be achieved because (1) the clean-up pro- 
cedure is able to extract most characters with- 
out attaching to nearby characters and non-text 
items (Figure 4(b)), and (2) most of the strokes 
at this stage are composed of complete or almost 
complete characters, as opposed to the vertical 
connected edges of the characters in the initial 
processing. Thus, it can be expected that the 
correct text strokes comply more consistently 
with the heuristics used in the early Chip Gen- 
eration phase. The significant improvement is 
clearly shown in 4. 

8    Experiments 

The system has been tested over 48 images 
from a wide variety of sources: digitized video 
frames, photographs, newspapers, advertise- 
ments in magazines or sales flyers, and personal 
checks. Some of the images have regular page 
layouts, others do not. It should be pointed out 
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that all the system parameters remain the same 
throughout the entire set of test images, show- 
ing the robustness of the system. 

Characters and words (as perceived by one of 
the authors) were counted in each image as 
ground truth. The total numbers over the whole 
test set are shown in the "Total Perceived" col- 
umn in Table 1. The detected characters and 
words are those which are completely enclosed 
by the boxes produced after the Chip Scale Fu- 
sion step. The total numbers of detected char- 
acters and words over the entire test set are 
shown in the "Total Detected" column. Char- 
acters and words clearly readable by a person 

after the Chip Refinement and Text Clean-up 
steps (final extracted text) are also counted for 

each image, with the total numbers shown in the 
"Total Clean-up" column. The column "Total 
OCRable" shows the total numbers of cleaned- 
up characters and words that appear to be of 
OCR recognizable fonts in 35 of the binarized 
images. Note that only the text which is hori- 
zontally aligned is counted (skew angle of the 
text string is less than roughly 30 degrees)^. 
The "Total OCRed" column shows the num- 
bers of characters and words from the "Total 
OCRable" sets correctly recognized by Caere's 
commercial WordScan OCR engine. 

Figure 5(a) is a portion of an original input im- 
age which has no structured layout. The final 
binarization result is shown in (b) and the cor- 
responding OCR output is shown in (c). Notice 
that most of the text is detected, and most of 
the text of machine-printed fonts are correctly 
recognized by the OCR engine. It should be 
pointed out that the cleaned-up output looks 
fine to a person in the places where the OCR 
errors occurred. 

9    Conclusion 

A robust system has been presented which auto- 
matically detects and extracts text from images 
from a wide variety of sources such as news- 
papers, magazines, printed advertisement, pho- 

^In this paper, the focus is on finding horizontal, fin- 
ear text strings only. The issue of finding text strings of 
any orientation will be addressed in future work. 

tographs, and checks. The apphcation potential 
of the system is enormous. 
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Abstract 
The Image Understanding Environment (lUE) 
provides a large, robust, well-documented, C-I--I- 
hierarchy and tool suite to support Image Un- 
derstanding research and technology transfer. 
This paper describes the additions and improve- 
ments that have been made to the lUE since its 
first public release at IUW'96. 

1    Introduction 

The Image Understanding Environment (lUE) 
is a software environment intended for use in 
developing image understanding algorithms and 
applications. Sponsored by DARPA, it was con- 
ceived to promote the exchange of research re- 
sults within the lU community by providing a 
common environment that can be used and ex- 
tended throughout the community. By enabling 
this exchange, the lUE enhances the productiv- 
ity of the community and provides the means to 
quantitatively measure progress in the field. 

More specifically, the lUE provides a well- 
documented, modular, object-oriented, C-|--|- 
class hierarchy; a suite of development tools; 
implementations of established lU algorithms; 
and the ability to interoperate with existing en- 
vironments. Papers in previous lUW Proceed- 
ings provide more detailed descriptions of the 
lUE components. Another paper in this year's 
proceedings demonstrates many capabilities of 
the lUE by looking at the implementation of a 

'This work supported by ARPA under TEC contract 
DACA76-93-C-0015. 

real application. This paper describes the sta- 
tus of the lUE and our plans for its future. 

The lUE project is currently in the fourth year 
of a five year development program. The first 
public release of the lUE was announced at last 
year's Image Understanding Workshop. That 
release demonstrated the core components of 
the lUE hierarchy and tools, and included a 
few demonstration algorithms implemented us- 
ing the lUE. Since that time, the lUE team has 
focused on improving the performance of the 
system, enhancing its tools, and creating a core 
library of lU algorithms. The remainder of this 
paper describes these improvements, describes 
our plans for the future, and provides informa- 
tion on how to obtain the current version of the 
lUE via anonymous ftp. 

2    Performance and Ease of Use 
Improvements 

2.1    Size and Speed 

The lUE class hierarchy is a very large. It cur- 
rently contains specifications for approximately 
750 classes and implementations for 600. In- 
cluding template instances, the lUE libraries 
contain close to 1000 classes. With a system 
this large, careful planning is needed to ensure 
that the libraries can be effectively used. Over 
the last year, the lUE team focused on reducing 
the size of the lUE libraries to manageable lev- 
els. Table 1 shows some approximate statistics 
for version 1.1, released last year, and for the 
current version (as of this writing, v2.0-beta). 
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Metric vl.l v2.0-beta 

Number of classes 460 600 

Number of template instances 430 400 

Size of libraries (Sun4/Solaris) 122MB/130MB 24MB/26MB 

Typical compilation time 25 sec (Sun4) 10 sec (Solaris) 

Typical link time (w/dynamic linking) 100 sec 25 sec 

Typical load time (dynamic linking) 50 sec 5 sec 

Table 1: Size and speed improvements. 

The most significant improvements came from 
reducing the size of the libraries from 122MB to 
24MB. These smaller libraries result in signifi- 
cantly faster compile/link/run cycles. We ob- 
tained this reduction, despite adding 100 new 
classes, with improvements such as the follow- 
ing: 

• Better encapsulation of Standard Template 
Library (STL) and other templates, so they 
would not be instantiate in every module 

• decoupling modules to reduce the number 
of symbols duplicated in multiple modules 

• reducing the amount of code generated for 
each lUE class by our code generator 

• shortening names used as template param- 
eters (STL template symbol names can 
grow to more than IK) 

• grouping related template instances into 
single modules 

• removing unnecessary intermediate classes 
from our hierarchy 

2.2    Installation 

Early users of the lUE often experienced diffi- 
culties installing the lUE. Most of the problems 
involved mismatches between the user's envi- 
ronment and the environment the lUE expected 
to find. These differences included tool version 
mismatches, improper configuration, or inade- 
quate forethought on the part of the lUE devel- 
opers. To combat these problems, we consoli- 
dated all user provided configuration informa- 
tion into a single file, provided a tool to vali- 
date the user's environment, upgraded the lUE 

to use the latest versions of the GNU compiler 
and libraries, and, where possible, made the sys- 
tem less dependent on particular configurations. 
We also improved the installation document and 
provide instructions on validating the lUE in- 
stallation, once it is complete. 

2.3    Documentation 

From the outset, everyone involved with the 
lUE recognized the importance of good docu- 
mentation. For this reason, the interfaces to all 
of the lUE classes are generated from specifica- 
tions that are also used to generate documen- 
tation, both printed and electronic (HTML). 
Generating code from a specification in this 
way ensures that the reference manual is al- 
ways up-to-date. It also encourages implemen- 
tors to provide documentation as part of the 
design/implement process (since they need the 
spec to generate the code). In addition, it en- 
ables the use of a variety of tools, such as in- 
terface definitions for different languages and 
documentation formats, to generate useful in- 
formation from the specification. 

The lUE includes five major documentation 
components: 

• Primer—detailed, step-by-step instructions 
and illustrations on how to use the lUE to 
solve common problems. 

• Overview—high-level discussion of the lUE 
programming model and class structure, 
with discussions of the major sub-trees. 

• Programmers Reference—detailed infor- 
mation about every class in the lUE. 
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• Data Exchange Reference—complete def- 
inition of our exchange files and descrip- 
tions of the components available to assist 
in reading and writing files from non-IUE 
systems. 

• Installation guide and Release notes— 
specific instructions and information about 
the release. 

Since the first public release, we have sig- 
nificantly improved the Programmers Refer- 
ence and Installation guide, incorporating many 
ideas from our early users, and have added and 
updated a number of Chapters in the Primer. 
The most significant additions to the Primer 
over the past year include: 

interface reads data from lUE Data Exchange 
files and allows users to display the data and 
manipulate the data. In the near future, we ex- 
pect this tool to be able to communicate with an 
lUE server that allows users to invoke lUE tasks 
on data selected within the display. Ultimately 
this capability should allow users to build appli- 
cations using Java as a sophisticated scripting 
language. The functionality of the Java tool is 
still limited; the performance of the Java visu- 
alization tool is presently not as good as that of 
the Fresco tool, especially when reading DEX 
files, and it can only display 2D data. How- 
ever, we will eventually add 3D visualization 
and we expect performance to significantly im- 
prove over time, especially as new compilers be- 
come available. 

• a new chapter on using the lUE to imple- 
ment grouping algorithms, 

• a new chapter describing the lUE visual- 
ization tools, and 

• an updated chapter describing the creation 
and use of lUE tasks. 

3    Development Tools 

3.1    Visualization 

The lUE's development tools, particularly the 
visualization tools, have undergone significant 
revision since the first public release. The Alpha 
visualization tool released last year has been re- 
placed by a new program built on top of Fresco 
(a public-domain successor to Interviews). This 
new version can display more data types, sup- 
port multiple views, additional interaction, and 
provides a cleaner interface. We have also pro- 
vided a simple functional interface that allows 
users to write programs that dynamically add 
data to a display. A new demonstration pro- 
gram, iue-examples, demonstrates the use of 
this interface, as well as demonstrating many of 
the tasks in the lUE task library. 

The newest addition to the lUE's tool suite 
is a Java version of the visualization program. 
This program, written entirely in Java, includes 
many of the capabilities of the Fresco based vi- 
sualization tool.   In its current form, the Java 

3.2    Khoros compatibility 

Over the last year the lUE team has contin- 
ued to improve compatibility between the lUE 
and Khoros. The lUE and Khoros do not de- 
pend on each other in terms of installation, code 
dependencies, or core functionality. However, 
using them together can provide substantial 
benefits—lUE users can use existing libraries of 
image processing algorithms written for Khoros, 
and Khoros users can use the lUE to perform 
feature-based processing, either using existing 
lUE tasks, or writing their own using the lUE 
representations. 

In its current form, the lUE—Khoros link in- 
cludes: 

• A tool to create Khoros glyphs to represent 
lUE tasks on Khoros' Cantata desktop 

• Pre-made glyphs for all tasks in the lUE 
Algorithm Libraries Support, in the lUE, 
for reading and writing KDF image files to 
allow lUE glyphs to pass image data to and 
from Khoros glyphs 

• Wrappers that allow lUE glyphs to com- 
municate symbolic data using lUE's DEX 
files. 

The lUE currently supports the most recent ver- 
sion of Khoros (version 2.1 at the time this of 
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writing). 

4    Task Libraries 

The lUE was designed with the model that, 
once the infrastructure was in place, the task 
libraries would become populated with user- 
contributed algorithms. This exchange of soft- 
ware holds the greatest potential value of the 
lUE. However, a core library is necessary to val- 
idate the lUE implementation and design, and 
to bootstrap development by encouraging users 
to begin using the lUE. 

The first public release included example appli- 
cations that demonstrated the use of the lUE 
for a few tasks. These included a collection of 
tasks to detect features in solar imagery, a SAR 
point detector, a FLIR segmenter, and a collec- 
tion of lUE and KBVision tasks that perform 
model-based change detection. 

Since the version 1.1 release last year, the lUE 
team has been working on populating the "offi- 
cial" lUE Task Library with robust implemen- 
tations of a collection of common and/or cur- 
rent algorithms. Tables 2 and 3 lists the con- 
tents of the task library as of version 2.0-beta. 
In the selection of algorithms for this library, 
we focused on tasks that create and manipulate 
features, since these algorithms highlight some 
of the unique capabilities of the lUE, and they 
are less widely available than standard image 
processing algorithms. In the near future, we 
expect to add a collection of image processing 
tasks to the lUE libraries. Until that time, users 
can use the algorithms available in Khoros, or 
any other image processing algorithm that can 
produce image files in a format understood by 
the lUE (i.e.. Tiff, KBVision, or KDF file for- 
mat). 

As the lUE implementors, Amerinex supports 
three mechanisms for distributing algorithm im- 
plementations among lUE users. Algorithms 
that are sufficiently robust and properly doc- 
umented can be added to the "official" lUE 
task libraries, where they will be maintained as 
the lUE evolves. Algorithms that are too com- 
plex to be maintained, or do not meet the cri- 
teria for inclusion in the "official" library, can 

be added to "user contributed" libraries that 
are distributed along with the lUE. Finally, the 
lUE will publish references to lUE task libraries 
that are maintained (or not) at the author's site. 
The "user contributed" libraries currently con- 
tain the tasks in Table 4, which are actually 
lUE wrappers around non-IUE code provided 
by the contributors, and the tasks that make 
up the demonstration applications. Over time 
we expect to "harden" the demonstration tasks 
and migrate them to the "official" library. 

5 Class Hierarchy Additions 

Over the last year most of the class implemen- 
tation effort has focused on implementing the 
basic 3D representations. In particular, the 
lUE now includes various 2D and 3D curves, 
3D planes and patches, and soon, 3D functional 
surfaces. Other additions include: 

• support for Khoros' KDF image file format 

• image-feature-collection 

• circular arcs 

• enhanced graph classes 

• tuples and intervals 

• basic spatial index classes 

• ID and 2D histograms 

• pixel chains 

• reorganized coordinate system and trans- 
form classes and a new coordinate trans- 
form graph interface. 

6 User community 

Our user community has been steadily growing 
since the lUE's first public release. Some of the 
more substantial efforts include the following: 

UK initiatives: The Image Understanding 
Community in the UK has received funding 
from their government to evaluate and ex- 
tend the lUE. Eight research sites are work- 
ing with the lUE to determine how their en- 
vironments can be integrated with the lUE. 
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Function Name Basic Description 
Point detection extremal-points Locates local extrema of the image intensity 

function within a specified window 
extremal-curvature Locates points in the image intensity function 

where the magnitudes of the principal curva- 
tures are both large 

Deriche-Giraudon-corners Implements the corner detection process de- 
scribed by Deriche and Giraudon [l99l] 

Kitchen-Rosenfeld-corners Implements the corner detection process de- 
scribed by Kitchen and Rosenfeld [1982] 

Edge detection Marr-Hildreth-edgels Implements the edge detection process defined 
by Marr and Hildreth [1980] 

Canny-edgels Implements the detection process described in 
[Canny, 1986] 

valley-ridges Locates points in image intensity function 
where the magnitude of the largest principal 
curvature is great and the magnitude of the 
smallest principal curvature is near zero 

Prei-Chen-edgels Implements the Frei-Chen boundary detection 
algorithm as described in [Frei and Chen, 1977] 

Fitting line-fitting Implements the direct algebraic technique for 
fitting a line to a set of points as described in 
[Agin, 1981] 

plane-fitting Implements the direct technique for fitting a 
surface to a set of points as described in [Pratt, 
1987] 

ellipse-fitting Implements an efficient and robust method for 
fitting ellipses to scattered data as described 
by Fitzgibbon, Pilu, and Fisher [1996] 

circle-fitting Implements the method for directly fitting a 
general implicit quadratic surface to a set of 
2d points as described in [Agin, 1981], but con- 
strained to fit a circle 

conic-fitting Implements the method for directly fitting a 
general implicit quadratic surface to a set of 
2d points as described in [Agin, 1981] 

cubic-fitting Implements the direct technique for fitting a 
surface to a set of points as described in [Pratt, 
1987] 

Table 2: lUE task library functions. 
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Function 
Curve formation 

Region formation 

Name 
edge-contours 

Glazer-chains 

Guy-Medioni-curves 

Pavlidis-Horowitz-polylines 

Pavlidis-polylines 

Sobel-edges 

adaptive-region-growing 

simple-region-growing 

Basic Description 
Implements simple grouping algorithm that 
chains edgels together to form edge contours 
Implements the grouping process described in 
[Glazer, 1992] 
Computes  a set  of "saliency  maps"   as  de- 
scribed by Guy and Medioni [1993] 
Implements the^ algorithm, described by 
Pavlidis and Horowitz [1974], for approximat- 
ing a sequence of points by a set of lines 
Implements a variant of the "Polygonal Fit" 
algorithm described in [Pavlidis, 1982] 
Implements a relatively simple method to re- 
cover extended edge structures, represented as 
pixel-chains   

Implements an algorithms similar to simple- 
region-growing, except that pixel differences 
are compared against an adaptive threshold 
Implements a simple queue-based method for 
region growing     

Table 3: lUE task library functions (continued). 

The University of Manchester, is coordinat- 
ing these efforts and is acting as a central 
repository to maintain and distribute the 
results of their efforts. They are also act- 
ing as the primary line of communication 
between their efforts and our development 
work. David Cooper has principal respon- 
sibility for this project at the University of 
Manchester. 

Target Jr.: Joe Mundy's laboratory at Gen- 
eral Electric has begun the process of in- 
tegrating GE's TargetJr environment with 
the lUE. They are developing the C-|—f 
visualization infrastructure that both the 
lUE and TargetJr use, and are develop- 
ing the necessary linkage between TargetJr 
and lUE classes. The ultimate goal is for 
the lUE to subsume the capabilities of Tar- 
getJr. 

Terry Boult: Terry Boult's laboratory at 
Lehigh University has embarked on a num- 
ber of projects to enhance current lUE ca- 
pabilities. These projects include the de- 
sign and implementation of a filter class hi- 

erarchy, interactive interfaces to the lUE, 
improved matrix classes, and sensor and 
sensor models. Terry Boult is also primar- 
ily responsible for the lUE code generator. 

lUE Summercamps: Terry Boult expanded 
the lUE summercamp program, organiz- 
ing two summercamp sessions last summer. 
The first took place at Lehigh. Approxi- 
mately 10 lU graduate students attended 
from lU programs at various universities. 
The second session took place in Europe, 
for the benefit of European lU commu- 
nity. This session was attended by approx- 
imately 12 students and researchers from 
throughout europe. 

SGI port: Lee Iverson at SRI is working on 
porting the lUE to IRIX. We expect to in- 
corporate his modification and distribute 
the IRIX configuration files in the relatively 
near future. AAI will not provide full sup- 
port for this port, but will act as a clearing 
house for changes and updates. 
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Function Name Basic Description 
Stanford Wang-Binford-chains lUE wrapper around code provided 

by authors 
Brunei Rosin-West-arcs lUE wrapper around code provided 

by authors 
CMU point-detection lUE wrapper around code provided 

by K. Ikeuchi to detect peaks in 
SAR images 

AAI gaussian-smooth Smooths a scalar image using 
scaled-integer approximation to 
Gaussian kernel 

map-lines-to-image Maps a set of lines to the equivalent 
raster, where each line's raster has 
a user-specified width 

quantization Maps a scalar image through uni- 
form quantization 

connected-components Maps a label image to an image 
where each connected region has a 
unique new label 

planar-correction Fits a plane to the intensity data of 
a scalar image and remaps the im- 
age pixels using the plane to nor- 
malize values 

AAI-valley-detection Computes valley edgels by analyz- 
ing the principal curvatures of the 
intensity surface 

Table 4: User-contributed task library functions. 
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7    Plans for the Future 

Development efforts for the remainder of year 
four will focus on the following areas: 

• continuing efforts to make the lUE more 
"usable" according to metrics such as com- 
pile/link/run cycle time 

• continuing to improve and expand the ca- 
pabihties of the visuahzation tools 

• reworking the image class implementation 
to better support large images and to im- 
prove image access performance in general 

• adding 3D algorithms to the task library 

• providing support to our growing user com- 
munity 

Terry Boult is again organizing a summercamp 
session at Lehigh University this year. Anyone 
interested in attending should send mail to iue- 
help@aai.com. 

8    Obtaining the lUE 

The lUE version 2.0 consists of the lUE class 
library, including complete specification and 
sources, HTML and PostScript documentation, 
a primer, and support libraries. In addition, 
pre-compiled libraries are available for our sup- 
ported architectures: SunOS4, Solaris, and 
Linux2. The lUE is available via anonymous 
FTP from Amerinex and a number of mirror 
sites in the US, Canada, Europe, and Japan. 
To get full information on ftp and web ac- 
cess to the lUE, send email to iue-info@aai.com 
with the subject "HELP", or visit Amerinex's 
web site at http://www.aai.com. To join the 
iue-users maihng list, send email to iue-users- 
request@aai. com 
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Abstract 
The lUE provides a large, robust, well- 
documented, C-|—f- hierarchy and tool suite 
to support Image Understanding research and 
technology transfer. This paper explores many 
of the capabilities of the lUE by looking closely 
at the implementation of an application to lo- 
cate fibers in a microscope image. Our exam- 
ple explores concepts such as image feature rep- 
resentations, spatial indices, graphs, matrices, 
points and curves. We also discuss the lUE vi- 
sualization library and tools, and demonstrate 
some of their capabilities. 

vironments. Papers in previous lUW proceed- 
ings [Dolan et ai, 1996, Kohl et ai, 1994] pro- 
vide more detailed descriptions of the lUE com- 
ponents. Another paper in this year's proceed- 
ings describes the current status of the lUE and 
our plans for its future. This paper illustrates 
some of the capabilities of the environment by 
exploring a complete application written using 
the lUE class hierarchy, task libraries, and user 
interface. We begin with a description of the 
problem to be solved. The following sections de- 
scribe various solutions using the lUE. We end 
by discussing the lUE's appUcation model and 
visualization tools. 

1    Introduction 

The Image Understanding Environment (lUE) 
is a software environment for developing im- 
age understanding algorithms and applications. 
Sponsored by DARPA, it was conceived to pro- 
mote the exchange of research results within the 
lU community by providing a common environ- 
ment that can be used and extended throughout 
the community. By enabling this exchange, the 
lUE enhances the productivity of the commu- 
nity and provides the means to quantitatively 
measure progress in the field. 

More specifically, the lUE provides a well- 
documented, modular, object-oriented, C-I--H 
class hierarchy; a suite of development tools; 
implementations of established lU algorithms; 
and the ability to interoperate with existing en- 

*This work supported by ARPA under TEC contract 
DACA76-93-C-0015. 

2    Problem: Fiber Extraction 

The fiber extraction application locates the po- 
sition, shape and extent of fibers in microscope 
imagery. It is intended to be part of a quality 
control system that evaluates a manufacturing 
process by measuring characteristics of fibers— 
such as size, density, count, and length—as 
viewed in a microscope image. The extraction 
process scans an image and generates a collec- 
tion of curves representing the fiber segments 
it finds. Later processing uses these curves to 
compute the desired quality metrics. 

The fiber extraction process follows a typical 
formula: 

1. image processing 
2. feature extraction 

3. feature grouping 
4. analysis 
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Figure 1: A typical fiber image. 

The images we use in this example, are white- 
light images with 512 x 474 scalar pixels. De- 
pending on fiber properties, lighting, and other 
optical effects, fibers may appear as two paral- 
lel curves (valleys in an intensity image) with a 
small ridge between them, as shown in Figure 1. 
The image processing stage cleans up the image 
and removes the ridge between the valleys. The 
feature extraction stage locates points within 
the image that show the characteristics of a val- 
ley. The feature grouping stage forms the valley 
points into curves. The analysis stage performs 
the appUcation-specific analysis on the curves 
such as computing the quality metrics. We dis- 
cuss the first three stages in sections 3, 4, and 5. 
The fourth stage is beyond the scope of this pa- 
per. Section 6 demonstrates the tools for com- 
bining the stages (as lUE tasks) into a single 
program that computes the curves from an im- 
age and displays the partial and final results. 

3    Preprocessing 

In typical computer vision applications, prepro- 
cessing usually involves the application of im- 
age processing techniques to an original source 
image. The operations commonly used include 
smoothing, thresholding, edge sharpening, his- 
togram equalization, background subtraction, 
and image quantization.  In each case, the ob- 

jective is to enhance particular properties or 
correct certain deficiencies in the image so that 
subsequent visual processing is simplified. The 
particular operation may be defined over a sin- 
gle pixel, or a neighborhood of pixels, and it 
may be applied to the entire image, or restricted 
to a region of interest. 

The lUE, like most environments for Image Un- 
derstanding research, provides libraries of basic 
image processing tasks. The current libraries in- 
clude tasks that perform Gaussian-smoothing, 
thresholding, quantization, planar correction, 
and histogram computation. Soon we will add 
a collection of filter classes and additional tasks 
that use these filters to perform image process- 
ing functions more efficiently. 

3.1    Problem: Reducing Noise 

The first processing stage in the fiber extraction 
application entails processing the image to en- 
hance the characteristic evidence of fibers in an 
image, while reducing unimportant information. 
In our example, later processing stages will look 
for valleys that are characteristic of fibers in an 
image. To improve the performance of these 
later stages, we smooth the image by apply- 
ing a Gaussian filter. This operation makes 
the valleys more pronounced by removing noise 
along the edges, and removes uninteresting de- 
tails that might lead to the detection of spurious 
valleys. This operation is valid (it does not in- 
troduce or discard relevant information) since 
true fiber valleys are pronounced and relatively 
large. 

We use the lUE task AAI_gaussian_smooth to 
smooth the image, as shown in Example 1. This 
code simply invokes the task with an image it 
reads from a file, to obtain a new, filtered, im- 
age. 

The complete fiber application then follows this 
task by invocations of the tasks described in the 
next two sections. Section 6 shows the code 
that performs these operations, along with calls 
to the visualization interface to display partial 
and final results. 
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IUE_image_pointer im_ptr_in,  im_ptr_out; 
IUE_INT order_x,  order_y; 

// Load the image from a file 
IUE_scalar_image_2d* im_in = read_image( input_image ); 

//  Create an image pointer object 
im_ptr_in.put_image_ptr(iin_in) ; 

// Invoke the AAI-gaussian^smooth task 
AAI_gaussian_sinooth(im_ptr_in, order_x,  order_y,   im_ptr_out); 

Example 1:    Invoking the Gaussian Filter Task. 

4    Image Feature Extraction 

The early stages of visual processing are typi- 
cally concerned with directly computing infor- 
mation from the image in the form of simple 
primitive features like points, edges, lines, tex- 
tures, and regions. Processing is generally data- 
driven and bottom-up, and the computation is 
usually local and identical over all image posi- 
tions. The result may be a new image or set of 
images (e.g., the intrinsic images of Barrow and 
Tenenbaum [1978]); or it may be a set of image 
features, which are geometric, symbolic entities 
encapsulating structural properties of the im- 
age. 

Because image features are geometric in na- 
ture, these classes inherit from spatial objects— 
indeed, each instantiable image feature is a spa- 
tial object. And because they originate in the 
image, it is desirable to provide additional at- 
tributes that connect image features to their 
source image and that characterize the signal 
properties of that image. To this end, the im- 
age feature hierarchy is defined as a set of mixin 
classes, that combine with the spatial object hi- 
erarchy to encapsulate relevant image proper- 
ties for their instantiable descendants. The class 
IUE_image_feature provides a common root for 
this mixin hierarchy. 

Another significant aspect of image features is 
that the processes used to compute them often 
produce a collection of feature objects rather 
than a single object. For example, edge de- 
tection typically produces a set of edgels cor- 

responding to significant edge locations in the 
image (as opposed to a single isolated edge lo- 
cation). For later visual tasks, it is frequently 
desirable to identically process each member of 
this collection. In addition, because all mem- 
bers of the collection are derived from the same 
image, they share a common coordinate system. 
Thus, it may be useful to define a spatial index 
on the collection to make subsequent processing 
more efficient. The container class IUE_image_ 
feature_collection provides such expedients. 

4.1    Representing image events 

Although it is possible to represent the com- 
puted image events using a so-called iconic 
scheme like intrinsic images, such a represen- 
tation has a number of drawbacks in contrast 
to a symbolic scheme like image features. The 
primary differences between the two representa- 
tional strategies include the following factors: 

Resolution — Iconic representations have a 
fixed and uniform resolution—usually the 
pixel sample rate of the source image. Sym- 
bolic representations support sub-pixel and 
non-uniform resolutions, which means that 
they can represent objects in 7?.". 

Correspondence — Iconic representations 
are dense in the sense that they have a 
value at every image location, whereas im- 
age events are typically sparse. For ex- 
ample, it would be quite unusual to have 
an edge at  each image location.     Since 
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symbolic features are created in one-to-one 
correspondence with image events rather 
than with image locations they are thus 
sparse like the events themselves. Fur- 
thermore, iconic representations support 
only one value per image location. Al- 
though multi-valued images (e.g., tuple- 
images) and multiple images could be used, 
it is somewhat problematic to represent 
more than one event at a location. Yet this 
may often be a requirement, e.g., where two 
edges intersect or where a curve and a re- 
gion abut. 

Representational character — Iconic repre- 
sentations are implicit; symbolic represen- 
tations are explicit. For example, edges ex- 
tracted from a source image might be repre- 
sented as a field of edge magnitudes in one 
intrinsic image and edge directions in an- 
other. Note that at any location there is no 
explicit connection between the respective 
values in the two images. More precisely, 
in the iconic representation there is no first- 
class object representing the edge; instead, 
it must be recovered or inferred from the in- 
dividual properties recorded at a location. 

Geometry — The geometry of iconic repre- 
sentations tends to be spatially distributed. 
Take for example the problem of represent- 
ing a curve like an ellipse. One could simply 
mark in a single image the locations that 
the curve passes through; thus, the repre- 
sentation of the curve is distributed over 
the pixels it intersects. However, such a 
scheme leaves important properties of the 
curve imphcit—e.g., given a point on the 
curve, what is the tangent there? What is 
the next point? Where is the center? In 
contrast, image features are coherent geo- 
metric entities. One has only to create an 
ellipse object from the particular parame- 
ters and the curve is represented coherently 
as a single integral unit. 

Functional attachment — As images, iconic 
representations have little functional at- 
tachment that is useful for subsequent com- 
putations. Whereas image feature classes 
provide methods  that  naturally support 

grouping and structural inference such as 
the geometric methods derived from spa- 
tial objects, images mainly provide access 
and iteration constructs alone. 

The purpose of the foregoing discussion is not 
so much to disparage iconic representations as 
to point out the representational and compu- 
tational advantages of image feature classes. 
Based on these comparisons, it should be appar- 
ent that iconic schemes can reasonably support 
the representation of only the most primitive 
initial features extracted from the image. Any- 
thing beyond such simple structures as points, 
edges, and the like, requires a more geomet- 
ric, symbolic approach. Since the lUE provides 
a rich set of image features that are carefully 
matched to particular image events, the use of 
image feature classes is thus preferred in the en- 
suing discussions and in general. 

4.2    Valley Points 

When one considers the image intensity func- 
tion as a surface, there are a number of signifi- 
cant categories of point events that indicate the 
topographical nature of the surface in a local 
neighborhood. These include peaks, pits, ridges, 
and valleys. Each type of point is distinguished 
by its principal curvatures, Kmin,'^max, as fol- 
lows. 

peak Both principal curvatures are negative: 

^mini ""max <0. 

pit Both   principal   curvatures   are   positive: 

^mim '^m.ax >0. 

ridge The magnitude of the maximum cur- 
vature is small relative to that of the 
minimum  curvature,   which   is   negative: 

I'l-maxl ^ I'^mml and Krnin ^ '-'• 

valley The magnitude of the minimum cur- 
vature is small relative to that of the 
maximum  curvature,   which   is   positive: 

^min <   « ■max and Kma.x > 0. 

Apart from differential geometry,  what lends 
significance to each event (i.e., what makes it 
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worth computing) is its connection to the spe- 
cific physical phenomena being imaged. For the 
problem at hand, the key correspondence is that 
which exists between valley points of the image 
intensity function and the presence of fibers. 

The lUE provides image point classes (e.g., 
IUE_image_point_2d) to represent peak and pit 
events, and point edgel classes (e.g., IUE_point_ 
edgel_2d) to represent ridge and valley events. 
The code shown in the following examples is ex- 
tracted from the task AAI_valley-detection. 
This task is specialized for extracting IUE_ 
image-point_2d events corresponding to val- 
leys in an image. The lUE also provides a 
more general task, valley-ridges, that ex- 
tracts either point or segment edgels that cor- 
respond to valley and/or ridge edgels. An- 
other lUE task. Extremal-curvature, extracts 
image-points that correspond to peaks and/or 
pits. 

4.3    Valley point detection 

The second fiber processing phase involves lo- 
cating valley points that we can later group 
along the valley floor into curvilinear structures. 
Because of this subsequent grouping step, we 
use edgel features, specifically IUE_point_edgeL 
2d, to record point estimates, rather than sim- 
ple point features such as IUE_image_point_2d). 
The edgel class supports the representation of 
direction as well as location information—both 
of which are used in the curvilinear grouping op- 
eration. The next section looks at the problem 
of grouping edgels into curve fragments. Here 
the focus is on computing initial local estimates 
of valley points. 

Finding valley points entails finding points on 
the image surface where the maximum curva- 
ture is relatively large and the minimum cur- 
vature is small—i.e., points where the surface 
is relatively flat along the feature, but rapidly 
curves upward in the transverse direction—cf. 
Figure 2(b). More than that, the points should 
lie on the valley floor, which means that they 
should be locally minimum in the direction of 
maximum curvature. The two main steps in the 
detection process are therefore: 1) compute the 

principal curvatures to determine if the topog- 
raphy is valley-like; 2) interpolate the surface in 
the direction of maximum curvature to find the 
locally minimum point. 

To actually compute the curvatures at a point 
in the image, one could explicitly convert the 
image to an IUE_discrete-functional_surface, S, 
using the appropriate constructor on that sur- 
face class. Then at each surface location S{x, y), 
the curvatures are simply found using the meth- 
ods minimum-curvature and maximum-curvature. 
Likewise, the direction of Kmm is easily obtained 
by invoking the method principal-axis-min. 

Alternatively, and as is shown in the code below, 
one could compute the partial second deriva- 
tives of the image function / via convolution 
and at each image location form the Hessian H 
from these partials. The Hessian of / is defined 
as the following 2x2 matrix. 

H 
'J/X '■yy 

where the elements are the second partial 
derivatives of I at location {x,y). It can be 
shown that the eigenvalues of this system are 
proportional to the principal curvatures of the 
surface at {x,y) and that the corresponding 
eigenvectors give the principal directions. In 
fact, provided that the surface is oriented with 
normals pointing in the direction of positive z, 
then for each {x, y) of the image the direction of 
the largest directional second derivative is given 
by the eigenvector associated with the largest 
eigenvalue of H, which in turn corresponds to 
the direction of maximum surface curvature. 

The code fragment in Example 2 displays part 
of the computation at each pixel. In particular, 
it shows initialization of the Hessian and the 
computation of the eigenvector associated with 
the largest eigenvalue—equivalently the direc- 
tion of maximum surface curvature. Note that 
the threshold_in parameter ensures that only 
pronounced valleys (as opposed to gradual de- 
pressions) are considered. 

This code makes use of the lUE matrix and vec- 
tor classes. The lUE supports a full complement 

727 



Figure 2: A fiber image and its valley topography, (a) The small rectangle marks a fiber structure 
in the intensity image, (b) A detail of the intensity surface marked by the rectangle in 
(a) reveals its valley-like topography with large minimum curvature up the valley walls 
and small maximum curvature along the valley floor. 

of matrix types, along with methods such as 
determinant, cofactor, inverse, and eigen-system. 
The vector classes provide methods such as nor- 
malize, dot-product, and cos-angle, in addition 
to the standard operators such as addition, sub- 
traction, and multiplication with a scalar. The 
code in the example uses an internal function 
IUEi_eigensystem2 to compute the eigenvalues 
and vectors of a 2x2 square matrix, rather than 
using the matrix method, to take advantage of 
simplifications possible for 2x2 matrices. 

Using the computed direction vector at each 
image location, "non-minimal" suppression is 
performed—saving only points that are local 
minima. The precise location of the minima 
may be further refined through sub-pixel inter- 
polation. In any case, at each valley point an in- 
stance of IUE_point_edgeL2d is generated at the 
computed valley position and is stored for the 
subsequent chaining operation. The following 
three code fragments illustrate the non-minimal 
suppression function. 

This first step in non-minimal suppression, 
shown in Example 3, interpolates the neighbor- 
hood of image values using a multi-linear inter- 
polation scheme. The objective is to find inten- 
sity values along the line of maximum curvature, 
which is the search direction for the suppression 

step. The magnitude of dirvec determines the 
radius of search, which here happens to be 1.0 
pixel units. The intensity value at the current 
location is held by zl; the rearward value along 
the curvature line is held by zO, while the for- 
ward value is held by z2. 

The next step in non-minimal suppression, 
shown in Example 4, determines if the current 
pixel location is a linear minimum in terms of 
the image intensity function. If it is not, then 
the current location cannot be near a valley 
point. On the other hand, if it is a hnear 
minimum, then the subsequent code performs 
a parabolic interpolation along the minimum 
curvature line using values zO, zl, z2 respec- 
tively. This interpolation precisely locates the 
local minimum. 

The parabolic interpolation along a line of max- 
imum curvature is illustrated in Figure 3 for the 
same region that was marked by the rectangle in 
Figure 2(a). A detail of the intensity data with 
a line of maximum curvature superimposed is 
shown in (a). In (b), the corresponding surface 
cross-section with the points at zO, zl, and z2 
is indicated. The computed minimum point is 
also labeled at the bottom of the curve. 

The final step, shown in Example 5, constructs 
a new IUE_point_edgeL2d using the computed 
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// declarations 

IUE_DOUBLE dxx, dxy, dyy, lambdal, lajnbda2; 

IUE_syimnetric_matrix Hessian(2); 
IUE_square_matrix Eigenvectors(2); 

IUE_row_matrix Eigenvalues(2); 

IUE_vector_2d dirvec; 

IUE_INT maxindex; 
IUE_DOUBLE NORM = 1.0 / sqrt(2.0); 

// for each image  location  (x,   y) 
II  compute partial derivatives  .   .   . 

Hessiand.l) = dxx; Hessian(l,2) = dxy; 
Hessian(2,l) = dxy; Hessian(2,2) = dyy; 

// vectors are in column space of Eigenvectors matrix 
if (!IUEi_eigensystem2(Hessian, Eigenvalues, Eigenvectors, NORM)) continue; 

lambdal = fabs(Eigenvalues(1,1)); 
lambda2 = fabs(Eigenvalues(1,2)); 

if (lambdal > lambda2)  // select  largest  eigenvalue 
maxindex = (lambdal > threshold_IN) ? 1 : 0; // threshold eigenvalue 

else 
maxindex =   (lambda2 > threshold_IN)  ? 2   :   0; 

if   (maxindex == 0)   continue; 

dirvec.put_x(Eigenvectors(1,maxindex)); 
dirvec.put_y(Eigenvectors(2.maxindex)); 

dirvec.normalize0; 

Example 2:     Computing the direction of maximum curvature. 
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static 

lUE.BOOL 
IUEi_non_ininimal_suppression 

( 
Window_Type& window, 
const IUE_discrete_point_2d& pixloc, 

const IUE_vector_2d& dirvec, 

IUE_point_2d& vpt 

IUE_INT px = pixloc.x(), py = pixloc.y(); 
lUE.DOUBLE   X, Y, t, zO, z2, zl = window.get(px, py, 0, 0); 

lUE.INT     sx, sy; 

IUE_DOUBLE dl, dO; 

X = fabs(dirvec.x()); 

Y = fabsCdirvec.yO); 
sx =  (dirvec.x()  < 0)   ?  -1   :   1; 
sy =  (dirvec.y()  < 0)   ?  -1   :   1; 

// interpo 
I/ assumes 
if (Y > X) 

{ 
dl = ( 
dO = ( 
z2 = ( 
dl = ( 

late neighboring image values 
at   least 3x3 neighborhood 

dO 
zO 

} 
else 

{ 

(1-X)*window.get(px,py,0,sy)) + 
(1-X)*window.get(px,py,0,0)) + 

(1-Y)*d0) + 
(l-X)*window.get(px,py,0,-sy)) + 

((1-X)*window.get(px,py,0,0)) + 

((1-Y)*d0) + 

dl 
dO 
z2 

dl 
dO = ( 
zO = ( 

(1-Y)*window.get(px,py,sx,0)) 
(1-Y)*window.get(px,py,0,0)) 

(1-X)*d0) 
(1-Y)*window.get(px,py,-sx,0)) 
(1-Y)*window.get(px,py,0,0)) 

(1-X)*d0) 

(X*window.get(px,py,sx,sy)) ; 
(X*window.get(px,py,sx,0)); 

(Y*dl); 
(X*window.get(px,py,-sx,-sy)); 

(X*window.get(px,py,-sx,0)); 

(Y*dl); 

(Y*window.get(px,py,sx,sy)); 
(Y*window.get(px,py,0,sy)); 

(X*dl); 
(Y*window.get(px,py,-sx,-sy)); 

(Y*window.get(px,py,0,-sy)); 

(X*dl); 

Example 3:     Non-minimal suppression: neighborhood value interpolation. 
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// now determine if current point  is  a  linear minimum 
II  if so  interpolate  to get valley point:  vpt 
if ((zO <= z2 && zl < zO) II (z2 < zO && zl < z2)) 

{ 
t = IUEi_interpolate_parabolic(zO, zl,  z2); 
vpt.put_x(px + t * dirvec.xO); 
vpt.put_y(py + t * dirvec.yO); 
return IUE_TRUE; 

} 
else 

return lUE.FALSE; 

Example 4:     Non-minimal suppression: locate local minima. 

- 

'solar/hc i.im,    (142.699, 370 .799)    tc (146. 

160; 
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140; 
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- 
1 

/ 
\ 
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zl / 
fpt 
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(a) (b) 

Figure 3: An example of parabolic interpolation, (a) The intensity data with a line of minimum 
curvature superimposed, (b) The corresponding surface cross-section with points zO, 
zl, and z2 indicated—plus, the computed minimum point. 
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minimum location valley_pt and the direction 
vector dirvec. The strength attribute is set to 
the largest eigenvalue and the edgel is added to 
the feature collection edgel_set_OUT. 

After iterating over all image locations, the net 
result is a collection of IUE_point-edgeL2ds that 
encode the locations, directions of minimum 
curvature, and relative strengths of all valley 
points in the image. Figure 4 shows the results 
of running this algorithm on the fiber image. 
Figure 5 is a close-up, showing the edgels ex- 
tracted from a portion of the image. 

5    Grouping 

The third fiber processing phase involves group- 
ing the primitive data events extracted from the 
image into more complex structures that bet- 
ter represent the fibers. Grouping is an impor- 
tant task of intermediate-level vision. As in our 
example, grouping typically follows a feature 
extraction process and is concerned with orga- 
nizing raw image features (tokens^) into coher- 
ent structures based upon apparent regularities 
of intrinsic, geometric, or statistical properties. 
Because the resulting structures integrate infor- 
mation over sets of tokens and make explicit sig- 
nificant trends in the data, they constitute a key 
abstraction in the overall visual computation. 

Grouping can be realized by either (or both) 
of two complementary processing paradigms: 
preattentive, or bottom-up, grouping and 
expectation-driven, or top-down, grouping. 
Preattentive grouping occurs without recourse 
to domain-specific knowledge and aggregates to- 
kens based upon generic regularities such as 
straightness, smoothness, parallelism, and sym- 
metry, as well as similarity of color, shape, size, 
etc. By contrast, expectation-driven grouping 
exploits domain-specific world knowledge to fo- 
cus the search for significant regularities among 
extracted features. For example, if one knows 
that vehicles are present in the scene and wishes 
to locate them, the significance of finding ellip- 
tic structure in the image is increased. Likewise 

with aerial images, the long ribbon-like struc- 
tures of roads and runways are of increased sig- 
nificance. Whenever domain knowledge is avail- 
able, the grouping process gains efficiency by 
being tuned to the specific structures. 

As a computation, grouping may be character- 
ized as computing a compatibility relation (usu- 
ally higher-order) on a set of tokens. The re- 
lation expresses the particular regularity that 
holds for pairs, or subsets, of tokens. For exam- 
ple, a relation-like collinearity defined on a set 
of edge tokens might assemble them into groups 
according to their satisfaction of a collinearity 
(or straightness) predicate. Figure 6 illustrates 
this for a set of edgels, shown in the left panel. 
In the right panel, collinear groups of edgels are 
indicated by overlaying a "best-fit" line atop 
each group. 

5.1    Representation 

The grouping task requires a number of diverse 
representations: (a) to support the computation 
of the grouping relation, (b) to express the re- 
lation itself, and (c) to represent the results of 
the grouping process. 

Computing Relations 

The lUE provides two main constructs to facili- 
tate computing grouping relations: IUE_image_ 
feature_collection and IUE_spatiaUndex. An 
IUE_image_feature_collection is a container for 
a set of tokens (image-features) extracted from 
the same image. It supports iteration and re- 
trieval based on attribute values. For example, 
it is possible to query a collection of edgel to- 
kens for the set of all edgels with strength above 
a given threshold, A. A collection also typically 
has an associated IUE_spatialindex. Spatial in- 
dices support direct retrieval of tokens based on 
spatial location. Since proximity is an impor- 
tant criterion of many grouping relations, spa- 
tial indices provide a key computational expe- 
dient. 

'We refer to features in the data as tokens to avoid 
confusion with the C-t-+ objects we use to represent de- 
tected features. This terminology is consistent with the 
literature [Marr, 1976, Stevens and Brookes, 1987]. 
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is_ininpt = IUEi_iion_minimal_suppression(window,pixloc,dirvec,valley_pt); 

if   (is_miiipt) 

{ 
tangent.put_x(-dirvec.y()); 
tangent.put_y(dirvec.x()); 
valley_pt += off_set; 

edgel = new IUE_point_edgel_2d(valley_pt.tangent,   (IUE_scalar_image_2d*)0); 

} 

edgel->put_strength(fabs(Eigenvalues(l, maxindex))); 
edgel_set_OUT.append(edgel); 

Example 5:     Constructing a point edgel. 

Figure 4: The valley edgels extracted from a typical fiber image, (a) The original intensity data. 

(b) The edgels extracted from this image. 

Figure 5: The valley edgels extracted from a portion of the image. 
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Figure 6: A set of edgels (left) and groups of edgels satisfying a collinearity predicate indicated 
by overlaid dark lines (right). 

Expressing Relations 

To represent a grouping relation, the lUE pro- 
vides a set of templated graph classes: IUE_ 
digraph_via_adj_set with its corresponding node 
and edge classes, IUE_digraph_vas-node and 
IUE_digraph_vas_edge. In the future, the class 
IUE_hypergraph with its corresponding edge 
class, IUE_hyperarc will also be available. Using 
the digraph classes, one can encode binary re- 
lations explicitly and higher-order relations im- 
plicitly in terms of chques. By contrast, the hy- 
pergraph classes afford explicit representation 
of higher-order relations. 

One can also represent grouping relations di- 
rectly in terms of templated collection classes: 
IUE_set, IUE_sequence, and, in the future, IUE_ 
ordered-set. The first two classes are currently 
available, while the last class will be added to 
future editions of the lUE. Using these collec- 
tion classes, one can express both binary and 
higher-order relations. The latter two support 
the representation of ordered relations as well 
(useful for encoding relative position, impor- 
tance, etc.). However, none of these collection 
classes directly provides the traversal and search 
mechanisms of graphs. This means that compu- 
tations involving transitivity and closure oper- 
ations may be more difficult for the user. 

Representing Results 

Grouping can result in either aggregation or uni- 
fication. Aggregation is equivalent to assem- 
bling tokens into collections under a particular 
grouping relation—e.g., forming parallel sets of 
lines into groups. Unification on the other hand 
entails creating a new token or abstraction that 
embodies the essential character of the group as 
a whole. 

An aggregation may be represented by any one 
of the collection classes: IUE_image_feature_ 
collection, IUE_set, IUE_sequence, or IUE_ 
ordered_set. One of the generic relational 
classes like IUE_digraph_via_adj-set or IUE_ 
hypergraph might also provide a satisfactory 
representation. However the lUE also provides 
more specialized constructs to represent aggre- 
gations such as lUE-perceptuaLgroup and its 
descendants. The IUE_perceptuaLgroup is a 
form of IUE_part_instance_network that is spe- 
cialized to account for a number of properties of 
perceptual structure fike uncertainties and ag- 
gregate features. 

A grouping abstraction is typically represented 
by a new image-feature object. For example, 
the colfinearity of a set of edgels might be rep- 
resented by an IUEJmage-line_segment object 
(Figure 6). Effectively, the structure of the 
group is resolved as a single new token and, de- 
pending on the particular grouping algorithm, 
the new token may or may not supplant its con- 
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stituents. 

Another useful set of classes for representing as- 
semblages of tokens are the topology classes of 
the lUE. These include vertices, edges, faces, 
and blocks, as well as 0-, 1-, and 2-chains. These 
classes support the representation of complex 
structures in terms of their boundaries and in- 
cidence relations on their constituent tokens. 
Thus, a block is bounded by a set of 2-chains 
of faces, a face by a set of 1-chains of edges, and 
an edge by a 0-chain of vertices. 

Quite understandably the particular classes 
that are used to represent the results of group- 
ing will vary according to the structures being 
computed. In the examples that follow the rele- 
vant classes are IUE_point_edgeL2d, lUE.edgeL 
sample_2d, and IUE-edgeLchain_2d. 

The class IUE_point_edgeL2d, discussed earlier 
in section 4.2 is one concrete variant of edgel- 
2d; the other is lUE Jine.^egment_edgeL2d. The 
class IUE_edgeLsample_2d is a wrapper class 
that supports location, tangent, and strength 
queries. The motivation for this class is to pro- 
vide a uniform interface, from the point of view 
of an edgel-chain, irrespective of the particular 
underlying edgel class: IUE_point_edgeL2d or 
lUE Jine-segment_edgeL2d. The data of a sam- 
ple may be shared or owned by the sample. In 
the latter case, when the sample is deleted so is 
the associated data. 

An IUE_edgeLchain_2d is a subclass of lUE. 
standard_sampled-curve_2d, which means that 
it is a curve described by a sequence of samples, 
in particular a sequence of IUE_edgeLsampIe_ 
2d, and is assumed to be piecewise linear or 
C° continuous. Such a curve may be strictly- 
analytic, in which case geometric properties like 
tangent and curvature are ill-defined at the sam- 
ple points. Or, it may not be strictly-analytic, 
in which case such properties are computed at 
sample locations from neighboring intervals of 
the curve—this is in order to preserve a grace- 
ful behavior throughout the curve. 

5.2    Edgel Chaining 

The lUE libraries currently include a num- 
ber of tasks to perform grouping, includ- 
ing: Guy-Medioni-curves, Pavlidis-Horowitz- 
polylines, and Sobel-edges. For this presen- 
tation, we demonstrate a fourth lUE group- 
ing task, an algorithm due to Glazer [1992] for 
grouping edgels into curvilinear structures. Es- 
sentially, the algorithm entails computing a bi- 
nary relation on the collection of edgels. The 
connectivity defined by this relation is used to 
guide a chain growing process starting at the 
strongest ungrouped edgel. The chain is first 
grown in the backward direction'^ (relative to 
the edgel's tangent) and then in the forward di- 
rection. As edgels are added to the chain they 
are marked as grouped. When the chain can 
grow no further, a new chain is begun using the 
current strongest ungrouped edgel. This chain- 
ing process is accomplished via the following 
steps: 

1. Filter the collection of edgels on the at- 
tribute strength to produce an active set A. 
A is an ordered set, sorted in descending or- 
der of strength. This is so that processing 
will proceed strongest to weakest. 

2. Compute a binary relation TZiA), based on 
distance and angular change as measured 
between pairs of edgel tokens. Formally, let 
lij be the straight line connecting tokens 
ti and tj-, d{ti,tj) the distance between ti 
and tj; Pi the angle (in absolute value) be- 
tween the tangent at ti and line iij; and f3j 
the angle (in absolute value) between the 
tangent at tj and Hne iij. Then the pair 
{ti,tj) G 7^ iff distance {d{ti,tj) < 6o) and 
both angles {Pt^Pj < Po) for user-specified 
thresholds So and Po- These measures are 
illustrated in Figure 7(a) and (b). 

3. Form a one-element edgel-chain C with the 
strongest remaining edgel token ti G A. If 
no tokens remain in A, exit; otherwise, set 
to = ti and remove to from A. 

^This order of growing the chain, first in the backward 
direction and then in the forward direction, is chosen for 
efficiency and does not otherwise affect the algorithm. 
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(a) 

(c) 

(b) 

Figure 7: Link measures used for edgel chaining with Glazer algorithm, (a) The straight-hne 
segment £ij connecting edgel tokens U and tj where d{ti,tj) is its length, (b) The 
angles A and f3j formed between iij and the tangents at U and tj, respectively, (c) 
The angle ^ij formed between tokens U and tj. (d) The turning angle a^ of the chain 
at token i,-. 

(a) Starting with the first token to of C, 
extend the chain backward through 
the strongest neighbor of to: ti E A, 
based on a measure of the link strength 
between the back end of the chain and 
the candidate token ij. Set to = ti. 
Remove to from A and repeat. 

(b) Starting with the last token i„ of C, 
extend the chain forward through the 
strongest neighbor of i„: ti G A, based 
on a measure of the link strength be- 
tween the front end of the chain and 
the candidate token ti. Set i„ = ti. 
Remove i„ from A and repeat. 

4. Go to step 3. 

The measure of link strength presented in 
[Glazer, 1992] involves a number of terms of ge- 
ometric compatibility, both binary and higher- 
order. The higher-order term measures the 
magnitude of the angle ai between the appro- 
priate end-tangent of the chain and the line con- 
necting the end token to the candidate token. In 
the forward direction, this means the angle be- 
tween the line from token ti-i to ti and the line 
extending from ti through the candidate token 

ti+i. This is shown in Figure 7(d). This angle 
must be small for the link-strength measure to 
be meaningful, i.e., a < 7r/4. If this measure 
of angular compatibility between the chain and 
the candidate token is satisfied, then the actual 
link strength is computed as: 

LSij = d{t^, tj)wd + (A + I3j)wfs + 'y^JW-y 

where d{ti,tj), /3i, and (3j are as defined above 
and shown in figures 7(a) and (b), 7ij is the ab- 
solute value of the angle formed between tokens 
ti and tj and shown in Figure 7(c), and the ws 
are weights associated with each measure. 

To illustrate the use of various lUE constructs, 
three different versions of the algorithm are pre- 
sented. The first uses run-time attributes to 
construct an implicit graph via adjacency sets. 
For a set of n tokens, the graph construction re- 
quires n^ time. Using this graph, the chaining 
operation requires hn expected time, where h 
is the average cardinality of the adjacency sets. 
The second version adds a spatial index to lo- 
cate neighbors more efficiently. The spatial in- 
dex allows the graph to be constructed in kn 
expected time, where k is the average density 
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of tokens Xvithin a disk of radius So (the maxi- 
mum link radius) centered on each token. The 
third variant replaces the implicit graph with 
an explicit one. This simplifies the code and 
has the potential to improve the efficiency of 
the chaining operation because link strengths 
can be computed once, during the graph forma- 
tion process, and then stored on each explicit 
graph edge. 

Problem: Fiber extraction 

In the previous section we discussed the de- 
tection of points corresponding to fiber loca- 
tions appearing as valleys in intensity images. 
The result of the valley point detection process 
was a collection of point-edgels. Although these 
edgels provide evidence for the presence of fibers 
through local estimates of the position and di- 
rection of valley features, they are entirely dis- 
joint. Based solely on such primitive features, 
one can say little about the shape and extent 
of the fibers themselves—indeed, it unknown 
which edgels are part of the same fiber. The ini- 
tial task of grouping then is to determine which 
edgels belong to the same valley structure and 
to consolidate each such group into a curve. In 
terms of lUE classes, the input is a collection of 
IUE_point_edgeL2ds and the output is a collec- 
tion of IUE_edgeLchain_2ds. 

Figure 8 shows a collection edgels extracted 
from a portion of an image and the chains de- 
rived from these. Notice that the chains do 
not follow the entire fibers. The edgel chain- 
ing process described here groups edgels only 
up to junctions; the resulting set of edgel-chains 
therefore constitutes fiber fragments rather than 
entire fibers. A subsequent grouping step is re- 
quired to recover complete fibers. This step 
involves many of the same concepts as edgel 
grouping and will not be discussed here. The 
individual fragments are represented as lUE- 
edgeLchain_2ds, and the individual edgels are 
overlaid using their normal vectors. 

Solution (1): Fragment formation via 
an implicit graph 

Referring to the algorithm sketched earlier in 
this section, the first step in the fragment for- 
mation process is to filter the initial set of 
edgels based upon the values of their strength 
attribute. This forms the set of active tokens, 
which is sorted in descending order of strength, 
allowing processing to proceed in strongest-first 
fashion. At this stage, a runtime dynamic at- 
tribute is also added to each edgel, which will 
allow adjacency information to be stored on the 
edgel, although at this point the adjacency set 
is empty and acts simply as a place holder. 

The dynamic attributes mechanism of the lUE 
permits the user to add, at runtime, any at- 
tributes that the computation may require. 
Much like entries of a property list in LISP, such 
attributes consist of name-value pairs. And, un- 
like normal C++ attributes which are defined 
on a class for every instance of that class, dy- 
namic attributes are defined on a per object 
basis. Thus, some instances of a class may 
have a particular runtime attribute while oth- 
ers do not. Further, just as with property 
lists, it is sufficient to do a put to the ob- 
ject with a name-value pair in order to add 
the attribute (property) to the object. The 
DAtype template provides a type safe inter- 
face to dynamic attributes. Attempting to re- 
trieve a value as an incompatible type gener- 
ates a runtime error. The code fragment in Ex- 
ample 6 shows how this is accomplished using 
the iteration macro, IUE_FORJEACH_ELEMENT, to 
iterate over the extracted edgels. The vari- 
ables edgSETitr and edgSETend are C+-I- Stan- 
dard Template Library (STL) style iterators— 
incrementing the iterator moves to the next el- 
ement in a collection and dereferencing an it- 
erator returns the contents at the current posi- 
tion. The end iterator represents the position 
just beyond the last element in the collection. 
The IUE_FOR-EACH_ELEMENT macro performs the 
body of the loop for every element between the 
first and second iterators, in this case, for all 
elements. 

Note that DAtype < ... > : :put (...) has copy- 
by-value semantics; in this case each element of 
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Figure 8: Chains extracted from a portion of the fiber image, (a) The extracted edgels that form 
the input to the grouping algorithm, (b) The chains that result. 

//  1) Put  all  sufficiently strong  edgels  into  a sequence and sort 
II   them by decreasing strength so  that  they can  be processed 
II  strongest first,   initialize Active Set,   and store  an empty 
II  adjacency set  with the  object 

IUE_array_sequence<IUE_point_edgel_2d*: 
IUE_image_feature_collection<IUE_i->oiTit 
HJE_image_feature_collection<IUE_ 

<IUE_point_edgel_2d*> 

SortedEdgels; 
_^  _„^el_2d*> Act iveEdgels; 

 ^__ ■.xui:,_point_edgel_2d*>: : iterator edgSETitr; 
j.ur._iinage_feature_collection<IUE_point_edgel_2d+>: : iterator edgSETend; 
IUE_image_feature_collection<IUE_point_edgel_2d*> NeighborsO; 
lUE. 

edgSETitr = edgelset.begin(); 

edgSETend = edgelset.end(); 
IUE_FDR_EACH_ELEMENT(edgSETitr,edgSETend) 

{ 
edgelO = *edgSETitr; 
if(edgelO->strength() >= MinSeedMag) 

{ 
SortedEdgels.append(edgelO); 
ActiveEdgels.insert(edgelO); 
DAtype< IUE_image_feature_collection<IUE_point_edgel_2d*> >::put( 

*edgelO, "neighbors", NeighborsO); 

} 
} 
IUE_END_FOR_EACH_ELEMENT; 

//  sort  is  a global STL function:  note parens on comparator 
sort(SortedEdgels.begin().SortedEdgels.end(),stronger_edgel()); 

Example 6:     Code to initialize the set of candidate edgels and add an empty "neighbors" collec- 
tion to each edgel. 

738 



the set is copied. Thus, it is more efficient to at- 
tach an empty set NeighborsO to each edgel and 
to then directly fill this set, as opposed to first 
filling a temporary and then attaching a copy of 
the filled set to the edgel. Because both set and 
order semantics are required, two containers are 
used: the set ActiveEdgels and the sequence 
SortedEdgels. Each is a "reference" container 
in the sense that each contains pointers to edgels 
instead of the edgels themselves. With all suffi- 
ciently strong edgels appended to the sequence, 
SortedEdgels, the sequence is then sorted on 
edgel strength, as shown at the end of the ex- 
ample. 

The function sort is an STL generic func- 
tion that takes two iterators on an ordered 
container and a boolean comparator (typically 
user-defined) and sorts that portion the con- 
tainer bracketed by the two iterators. Note 
that the comparator stronger follows the STL 
model for comparator functions. It is an in- 
stance of the class stronger_edgel, a user- 
defined class, whose operator () is a bi- 
nary boolean function defined to compare the 
strengths of two edgels. The code fragment in 
Example 7 gives this definition. 

The second step is to compute the binary com- 
patibility relation on the set of active tokens. As 
was mentioned earlier, the relation is encoded 
by adding an adjacency set to each edgel. The 
code fragment in Example 8 illustrates how this 
runtime attribute is accessed and updated in the 
lUE. 

Note that access is in terms of the attribute 
(property) name. A reference to the edgel's 
set is first obtained in Neighborsl, and then 
the function IUEi_initial_neighbors com- 
putes the neighbors of the current edgel under 
the particular binary relation and stores them 
in Neighborsl. With the completion of this 
code fragment, a graph of the relation is implic- 
itly represented via the adjacency sets on the 
edgels. 

The third step is to select the strongest to- 
ken from the active set and to grow a chain 
both forward and backward relative to the tan- 
gent direction through the strongest ungrouped, 
but connected, tokens. Because an edgel chain 

is a sampled-curve, the IUE_edgel_chain-2d 
current-Chain constructor first creates an 
edgel sample from edgel *edgelO, and from this 
sample, an edgel-chain consisting of a single 
sample is created^. The code fragment in Ex- 
ample 9 illustrates the chaining process. 

Note that the seed token edgelO is drawn 
from the sorted sequence, SortedEdgels, so 
that the algorithm is best-first. The function 
IUEi_extend_chain grows the current-Chain 
in both the forward and backward directions 
and removes from the ActiveEdgels set any 
edgels that are added to the chain. Chains that 
are sufficiently long are added to the collection 
of edgel-chains ChainSet, which is the final out- 
put of the algorithm. 

Solution (2): Fragment Formation 
using an explicit graph 

Next, we examine an alternate version of the 
edgel chaining algorithm, which uses an explicit 
rather than implicit graph to represent possible 
candidates. The expUcit graph provides arcs 
between the candidates on which we can at- 
tach information concerning potential links, and 
supports more sophisticated finking algorithms. 
We will see that this allows us to avoid some 
dupUcate computation, by saving the results on 
the arcs. We use this example to demonstrate 
graph usage. Although, in this case, the compu- 
tation is simple enough that the cost of manag- 
ing the graph exceeds the cost of recomputing 
the information. 

This implementation is largely the same as the 
first version in terms of the measures of link 
strength and the order of processing. Apart 
from a minor addition in step 1 of the code 
fragments presented in Section 5.2, the primary 
differences between the two versions show up 
in step 2 (computation of the binary compat- 
ibiUty relation) and, more particularly, in the 
two helper functions: IUEi_initial_neighbors 
and IUEi_bestjneighbor. All code that refers 
to the explicit graph of edgels relies on the type- 

^The first false flag indicates that the data is shared 
and the second false flag indicates that the curve is not 
strictly analytic—cf., the spec for samples and sampled- 
curves. 
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class stronger_edgel : 
public binary_functioii<IUE43oint-edgel-2d,IUE4)oint-edgel-2d,bool> 

{ 
public: 
bool operator()   (const IUE_point-edgel-2d* el, 

const IUE_point-edgel-2d* e2)   const 

{ 
return(el->strength()  > e2->strength()); 

} 

Example 7:    Comparison operator for sorting edgels according to strength. 

// 2)  For each active edgel,   compute and store 
II potential neighbors as  a dynamic attribute of edgel 
edgSETitr = ActiveEdgels.begin(); 
edgSETend = ActiveEdgels.end(); 
IUE_FOR_EACH_ELEMENT(edgSETitr,edgSETend) 

{ 
edgelO = *edgSETitr; 
// get  a reference  to  this set  and fill  it 
IUE_image-feature-collection<IUE4)oint-edgel-2d*>& 

Neighborsl = DAtype< 
IUE_image-feature-collection< 

IUE-point-edgel-2d*> >::ref( 
*edgelO,   "neighbors"); 

IUEi_initial_neiglibors(edgelO,ActiveEdgels,Neighborsl); 

} 
IUE_END_FOR_EACH_ELEMENT 

Example 8:     Initialize set of neighbors for each edgel. 
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// 3) Now process edgels in descending order of strength 
edgSEQitr = SortedEdgels.beginO; 

edgSEQend = SortedEdgels.endO; 
IUE_FOR_EACH_ELEMENT(edgSEQitr,edgSEQend) 

{ 
edgelO = *edgSEqitr; 
if(!ActiveEdgels.is_in(edgelO)) // if already member of a chain 

continue; 

// create initial one-element chain from this edgel 
IUE_edgel-chain-2d current_chain(*edgelO,IUE_FALSE,lUE.FALSE); 

// remove this edgel from the active set 
ActiveEdgels.remove(edgelO); 

// grow chain in both directions 
IUEi_extend_chain(current_chain,ActiveEdgels); 

// throw away short  chains 
if(current_chain.size() < MinChainPts) continue; 

// add good chains  to  the  chain collection 
ChainSet.insert((new IUE-edgel-chain-2d(current_chain))); 

} 
IUE_END_FOR_EACH_ELEMENT 

Example 9:     Create chains from seed edgels. 

typedef  IUE_digraph_vas_node<IUE_point_edgel_2d*,IUE_DOUBLE> EdgelNode; 
typedef  IUE_digraph_vas_node_abs<IUE_point_edgel_2d*,IUE_DOUBLE> EdgelNodeAbs; 
typedef  IUE_digraph_vas_edge<IUE_point_edgel_2d*,IUE_DOUBLE> EdgelEdge; 
typedef  IUE_digraph_vas_edge_abs<IUE_point_edgel_2d*,IUE_DOUBLE> EdgelEdgeAbs; 
typedef  IUE_digraph_via_adj_set<IUE_point_edgel_2d*,IUE_DOUBLE, 

EdgelNode,EdgelEdge> EdgelGraph; 
typedef  IUE_digraph_via_adj _set_abs<IUE_point_edgel_2d*,IUE_DOUBLE> EdgelGraphAbs; 

Example 10:     Typdefs for graph classes. 
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defs shown in Example 10. 

The key change to step 1 involves forming a 
node for each edgel and inserting it into the 
graph. This operation replaces the creation of 
the empty neighbors set in the previous exam- 
ple. The code fragment in Example 11 illus- 
trates how this is realized. 

As in the previous version, construction 
of the binary candidate neighbor graph is 
accomplished by computing the neighbors 
of each token by means of the function 
lUEi-initial-iieighbors. However, instead of 
inserting candidate neighbors into sets attached 
to each token, the explicit graph version inserts 
arcs into the graph between a node and its can- 
didate neighbors. The code fragment in Exam- 
ple 12 shows the relevant changes. 

The code at the end of the explicit graph frag- 
ment obtains references to the nodes that cor- 
respond to the two edgels, and constructs a di- 
rected arc from ndl to nd2. Since this code is 
executed for every candidate edgel, every arc in 
one direction will have a symmetric arc in the 
reverse direction. This symmetry allows subse- 
quent processing to be uniform from any node 
(without the necessity to special case in-arcs 
and out-arcs). 

The function IUEi_best_neighbor determines 
which, if any, of the candidate neighbors are 
suitable for continuing a chain. This func- 
tion computes a compatibility measure based 
on the information shown in Figure 7. In 
the first version, some of this information 
(L2, betal, beta2) was already computed in 
lUEi-initialJieighbors to initialize the ad- 
jacency sets. But, because these terms were 
not stored, they must be recomputed each 
time. With an explicit graph, however, we 
can save this information on the arcs between 
the candidates, and avoid recomputing it. The 
code fragment from IUEi_initialJieighbors 
shown in Example 12 records this information 
as link_strength in the call to create.edge. 

The code fragment in Example 13 shows 
the body of the original version of 
IUEi_best Jtieighbor. 

The differences between the two versions of this 

function are most apparent by comparing their 
bodies. Using an explicit graph, the first step 
in computing the best neighbor of an edgel is to 
retrieve the set of graph edges incident on the 
node associated with edgel el as displayed in 
Example 14. 

Now in iterating over the out edges of this node, 
it is first necessary to check whether the edgel 
associated with each neighboring node is still 
active. We use the label of the node to get to the 
edgel and see if the edgel is still in the Active 
set, as shown in Example 15. 

With an explicit graph, the link strengths are 
stored as labels on the graph edges so it is not 
necessary to recompute them each time. Ex- 
ample 16 fragment shows that the turn angle 
is measured in the same way as in the previous 
version but that link strength is simply retriev- 
able as a stored attribute. 

The code fragment in Example 17 shows 
the complete body of the new version of 
IUEi_best_neighbor. 

Solution (3): Fragment Formation 
using a spatial-index 

Finally, we examine an improved version of the 
edgel chaining algorithm, which uses a spatial 
index to locate candidate edgels rather than 
computing a graph. Much of the implementa- 
tion is the same as the previous versions. How- 
ever, we move all compatibility computation 
into the IUE_best_neighbor function and re- 
move the use of IUE_initial-iieighbors. 

The first step in this version is to "paint" the 
candidate edgels into a spatial index. The code 
fragment in Example 18 constructs the spatial 
index and associates it with the collection of 
active edgels. It is unnecessary to expHcitly 
"paint" the edgels into the spatial index since 
the image feature collection class takes care of 
painting the features into its associated spatial 
index as they are added to the collection. Thus, 
once we associate the index with the collection, 
the code to add edgels to the collection is un- 
changed. 

The min and max values are computed either 
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IUE_FOR_EACH_ELEMENT(edgSETitr,edgSETend){ 

edgelO = *edgSETitr; 

if(edgelO->strength() >= MinSeedMag){ 

SortedEdgels.append(edgelO); 

ActiveEdgels.insert(edgelO); 

// create a graph node for this  edgel 
theEdgelGraph.create_node(edgelO); 

} 
} 
IUE_END_FOR_EACH_ELEMENT; 

Example 11:    Constructing a graph node for each token. 

With implicit graph  (version 1) 

IUE_FOR_EACH_ELEMENT(edgiter,edgend){ 
e2 = *edgiter; 
//  determine if  link  length and angle  is  appropriate.     If not,   try next  token.. 

II  if compatibility satisfied,   insert  e2 into  the  el's  collection of neighbors 

Neighbors.insert(e2); 

} 
IUE_END_FOR_EACH_ELEMENT 

With explicit graph (version 2) 

IUE_FOR_EACH_ELEMENT(edgiter,edgend){ 

e2 = *edgiter; 
// determine if  link  length and angle  is  appropriate.     If not,   try next  token.. 

II  if compatibility satisfied,   insert  arc between el  and e2 
II  and  label  it  with  link-Strength 
II  get nodes associated with the edgels 
ndl = theEdgelGraph.assoc_node(el); 

nd2 = theEdgelGraph.assoc_node(e2); 

// insert edge between el  and e2 
theEdgelGraph.create_edge(link_strength, *ndl, *nd2); 

} 
lUE END_FOR_EACH_ELEMENT 

Example 12:     Constructing the candidate neighbors graph: imphcit (top) and explicit 

(bottom). 
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// get neighbors of seed edgel:  el 
IUE_image-feature_collection<IUE4)oint_edgel-2d*>& 
Candidates = DAtype< IUE_iinageJeature_collection<IUE4)oint_edgel_2d*> >: 

ref(*el, "neighbors"); 

edgiter = Candidates.begin(); 

edgend = Candidates.end(); 

IUE_FOR_EACH_ELEMENT(edgiter,edgend){ 

e2 = *edgiter; 
if(!Active.is_in(*e2)) continue;    // consider only Active edgels 

II measure  link strength with each candidate... 

alpha = IUEi_compute_turn_angle(el,e2,chainO,forward); 

if(alpha >= MaxTurnAngle) continue; 

// candidates satisfy conditions on next 2 measures 
II  but must recompute anyway because  link_strength is not stored 
L2 = IUEi_compute_link_length(el,e2); 
IUEi_compute_edgel_to_link_angles(el,e2,betal,beta2); 

gamma = IUEi_compute_edgel_to_edgel_angle(el,e2); 

link_strength = L2 * LinkLengthWeight + 
(betal + beta2) * EdgelToLinkAngleWeight + 

gamma * EdgelToEdgelAngleWeight; 

// save  best  one 
if(link_strength > max_strength){ 

best_edgel = e2; 
max_strength = link_strength; 

found = IUE_TRUE; 

} 
} 
IUE_END_FOR_EACH_ELEMENT 

return(found); 

Example 13:     Original chaining function (implicit graph). 

//  get  edges from the seed edgel:   el 
EdgelNode *ndl = theEdgelGraph.assoc_node(el); 

//  now construct iterators on  the set  of out  edges 
edgiter = ndl->edges().beginO; 
edgend = ndl->edges().end(); 

// finally iterate over edges  to find  the  best... 

Example 14:     Retrieve arcs incident on a node in the graph. 
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// iterate over edges to find the strongest 
IUE_FOR_EACH_ELEMENT(CandEdgeIter,CandEdgeEnd){ 

edgeO = *CandEdgeIter; 

// get  the neighboring edgel 
e2 = edgeO->to_node()->label(); 
if(!Active.is_in(e2))  continue; //  consider only Active edgels 

II measure turn angle and retrieve link strength... 

II as before,  record strongest edgel 

IUE_END_FOR_EACH_ELEMENT 

Example 15:     Obtaining candidate edgel from graph. 

//   turn angle with this  edgel must not  be  too great 
alpha = compute_turn_angle(el,e2,chain0,forward); 
if(alpha >= MaxTurnAngle)  continue; 

//   test   link strength to find the strongest neighboring edgel 
link_strength = edgeO->label(); 

Example 16:     Obtaining link_strength value from label of arc. 
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// get neighbors of seed edgel:   el 
EdgelNode *ndl = theEdgelGraph.assoc_node(el); 

edgiter = ndl->edges() .beginO ; 

edgend = ndl->edges().end(); 

HJE_FOR_EACH_ELEMENT(edgiter,edgend){ 

// get the neighboring edgel 
e2 = edgeO->to_node()->label(); 
if(!Active.is_in(e2)) continue;    // consider only Active edgels 

II  turn angle with this edgel must not be  too great 
alpha = IUEi_compute_turn_angle(el,e2,chainO,forward); 

if(alpha >= MaxTurnAngle) continue; 

// retrieve  link strength 
link.strength = edgeO->label(); 

// save best one 
if(link_strength > inax_strength){ 

best_edgel = e2; 
max_strength = link_strength; 

found = IUE_TRUE; 

} 
} 
IUE_END_FOR_EACH_ELEMENT 

return(found); 

Example 17:     Chaining function using an explicit graph. 

// Create the spatial index 
IUE_INT x_low = (IUE_INT)min_x - 1; 
IUE_INT x_high = (IUE_INT)max_x + 2; 
IUE_INT y_low = (IUE_INT)min_y - 1; 
lUE.INT y.high = (IUE_INT)max_y + 2; 
IUE_array_spatial_index_2d *ArraySI = 

new IUE_array_spatial_index_2d(x_low, y_low,  x_high,  y_high,   10,   10) 

// Associate  the spatial  index with the  image feature collection 
ActiveEdgels.put_index(ArraySI); 

Example 18:     Adding a spatial index to an image feature collection. 
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by inspecting the edgels or from knowledge of 
the image coordinates. The final two arguments 
to the constructor call specify the resolution of 
the index. 

The payoff for using the spatial index occurs 
when computing the set of candidate token 
pairs. In the previous versions, the function 
IUEi_initial_neighbors performed this com- 
putation by considering every possible neighbor, 
using an 0{n^) algorithm. For each pair of to- 
kens the function would measure the distance 
between tokens el and e2 and the compute 
the link angles formed by these tokens (Fig- 
ure 7(a) and (b)). If these measures are less 
than the given thresholds MaxLinkLength and 
MaxEdgelToLinkAngle, token e2 is added to the 
adjacency set of token el. 

In the new version, we instead use a spatial in- 
dex to locate candidate neighbors instead of an 
adjacency set. Such an index allows tokens to 
be prehashed and retrieved based on their spa- 
tial locations. The spatial index allows the user 
to retrieve only those tokens within a certain 
distance of a given point (in this case, within 
MaxLinkLength of token el) by means of the 
method radiaUetch. This is useful as one of 
the criteria of the compatibility relation is dis- 
tance and the resulting set of Candidates is, in 
general, much smaller than the active set used 
in the first version. 

Since the spatial index provides a efficient 
means to locate these candidates, we can use the 
index directly in the IUEi_best_neighbor func- 
tion and avoid IUEi_initial_neighbors alto- 
gether. 

The code fragment in Example 19 shows the 
new version of IUEi_best_neighbor. 

Comparing this version with 
IUEi_best_neighbors shown in Example 13 
we see that the new version iterates over the 
tokens in Active that are within a radius of 
MaxLinkLength of the current token, rather 
than all of the tokens in the adjacency set. 
This is immediately beneficial, since the spatial 
index contains only active elements. Thus, 
the new version computes the compatibility 
measure only for tokens that have not already 

been linked, whereas in the previous version, 
this measure was computed for all nearby 
candidates. 

5.3    Performance 

Figure 9 shows the relative performance of the 
three grouping algorithms we discussed in this 
section. The righthand columns show the time 
spent in the various stages of the algorithm. 
Note that the first two algorithms spend most 
of their time computing the adjacency sets. The 
spatial index algorithm spends more time com- 
puting the best neighbor for each edgel in a 
chain than the other two, since all of the com- 
patibility computation occurs there. However, 
this extra work per comparison is offset by re- 
quiring many fewer comparisons, since it only 
compares tokens that are not already linked into 
chains. The difference in the number of compar- 
isons is shown in Figure 10. The far left column 
in the graph depicts the total execution time for 
the grouping tasks. 

6    Application program 

The end result of programming with the lUE 
is either a task or an application. A task is 
basically an algorithm implementation that is 
packaged into a single function. To be an lUE 
task, it must conform to lUE specifications so 
that the lUE's task-related tools can properly 
handle the task. These specifications currently 
consist of three components: 

1. A function interface that meets the follow- 
ing requirements: 

• All output must occur through pass- 
by-reference arguments, rather than 
by return type. 

• All arguments must be pass-by-value 
or pass-by-reference. 

• Templated types must be replaced 
with typedefs. 

2. An interface description file (an fdf or func- 
tion description file) that describes the in- 
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// get candidates nearby seed edgel:  el 
IUE_set_abs<IUE_spatial_object*> 

*Candidates = Active.index()->radial_fetch(*el, MaxLinkLength); 

// construct  iterators on  the  candidate set 
HJE_set_abs<IUE_spatial_object*>::iterator edgiter, edgend; 

edgiter = Candidates->begin(); 

edgend = Candidates->end(); 

IUE_FOR_EACH_ELEMENT(edgiter,edgend){ 

e2 = (IUE_point_edgel_2d*)*edgiter; 

// turn angle with  this  edgel must not  be  too great 
alpha = IUEi_compute_turn_angle(el,e2,chainO,forward); 

if(alpha >= MaxTurnAngle) continue; 

// determine if link length and angle is appropriate 
L2 = IUEi_compute_link_length(el,e2); 

if(L2 >= MaxLinkLength) continue; 

IUEi_compute_edgel_to_link_angles(el,e2,betal,beta2); 

if(betal >= MaxEdgelToLinkAngle 
I I beta2 >= MaxEdgelToLinkAngle) continue; 

gamma = IUEi_compute_edgel_to_edgel_angle(el,e2); 

link_strength = L2 * LinkLengthWeight + 
(betal + beta2) * EdgelToLinkAngleWeight + 

gamma * EdgelToEdgelAngleWeight; 

// save  best  one 
if(link_strength > max_strength){ 

best_edgel = e2; 
max_strength = link_strength; 

found = IUE_TRUE; 

} 
} 
IUE_END_FOR_EACH_ELEMENT 
delete Candidates; 
return(found); 

Example 19:     IUEi_best-neighbor using a spatial index. 
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Grouping Execution Times 

^^ 

Grouping 
Total Create 

Active & -"" Initial 
Sorted ^^9^'s      M.inhhnr.       Create 
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Dw/Graph 
@ Original 
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Neighbors 
chains 

Figure 9: Execution times for the three grouping tasks. 

Original With graph With spatial index 

Calls to Initial Neighbor 3515 3515 0 
Calls to Best Neighbor 3732 3732 3732 

Initial Neighbor Comparisons 12M 12M 0 
Best Neighbor Comparisons lOOK lOOK 58K 

Figure 10: Number of comparisons performed by the three grouping tasks. 
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terface to the lUE tools^. 

3. Documentation in the form of an lUE task 
specification document. 

The lUE currently provides tools to generate 
task documentation from the specification files, 
and to generate a Khoros glyph wrapper. The 
documentation tools generate documentation 
that has the same look-and-feel as the existing 
task documentation, including automatic gener- 
ation of HTML versions of the documentation. 
The Khoros wrapping tool, gen_kroutine, pro- 
vides the means to place the task in a Khoros 
toolbox which enables users to drop the task 
onto a Cantata desktop and hnk it to other 
Khoros and lUE task glyphs. 

An application is simply a C++ program that 
invokes the task functions defined in some li- 
brary, or a Cantata desktop that links tasks to 
perform some function. 

6.1 Fiber extraction tasks 

The previous sections described three tasks: an 
image processing task from the lUE library 
(gaussian-filter), a feature extraction task, 
and a grouping task. The code fragment in Ex- 
ample 20 shows how these tasks can be linked 
together into a simple application. 

The IUE_image_pointer class allows images to 
be passed as a reference to pointer, and allows 
the Khoros tools to provide special handUng of 
image arguments. 

6.2 Visualization 

Image Understanding algorithms are rather dif- 
ficult to develop without effective tools to 
graphically visualize results. The lUE addresses 
this problem by providing both a visualization 
Ubrary and stand-alone tools. The library al- 
lows algorithm developers to integrate visual- 
ization into their applications. The stand-alone 
tools allow users to display and manipulate data 
written out to lUE Data Exchange (DEX) files. 

*We expect to generate the fdf automatically or im- 
plicitly in a future lUE release. 

The lUE currently provides two visualization 
tools: an X-based tool, built upon the Fresco 
and MesaGraphics user interface libraries, and 
a Java-based tool that can access data over a 
network and act as a client to an lUE server 
program. 

For the former, the C-l-t- visualization library, 
called Parmesan, implements a display as a set 
of overlaid planes containing spatially registered 
data. A DataManager window allows users to 
select the data sets to display, alter their stack- 
ing order, and access their properties. Parme- 
san currently provides a very simple interface 
that allows developers to write code to bring up 
a display and add data sets. The code fragment 
in Example 21 shows the Parmesan calls neces- 
sary to display the intermediate and final results 
of the fiber application. Future improvements 
should allow Parmesan to access pre-loaded im- 
age data, rather than requiring files, and pro- 
vide a separate thread of control so users can 
interact with the display while the application 
is running, rather than waiting until the end. 

Figure 11 shows the final fiber application dis- 
play. The righthand view shows both the edgels 
and chains. Once the application has complete, 
the user can select which overlays to view, and 
create new views, as shown in Figure 12. 

7    Conclusions 

The lUE provides an expressive representation 
hierarchy that covers most low and intermediate 
level image understanding concepts. We have 
demonstrated and discussed, using a fiber ex- 
traction program, a number of areas of the lUE 
and its class hierarchy, including: 

• base classes: sets, matrices, graphs, and 
spatial indices 

• image-features and spatial-objects: points, 
edgels, image-feature-collections, edgel- 
chains, and curves 

• lUE tasks: image processing (gaussian- 
filter), feature extraction (Extremal- 
curvature, valley-ridges), and grouping 
(GlazerChains) 
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// Obtain inputs and parameters... 

II Read an  image from a file and create an  image pointer 
IUE_scalar_image_2d* im_in = read_image( input_iinage ); 

IUE_image_pointer im_ptr_in, im_ptr_out; 

im_ptr_in.put_image_ptr(im_in); 

// Apply a filter to smooth the input  image 
AAI_gaussian_smooth(iin_ptr_in, order_x, order_y, im_ptr_out); 

// Extract  edgels from the smoothed image 
IUE_image_feature_collection<IUE_edgel_2d+> edgels; 

IUEt_valley_ridges(im_ptr_out, area_of.interest, 

ininimuin_curvature, curvature_ratio, 

feature_type,  1,  edgels); 

// Link the edgels into chains 
IUE_image_feature_collection<IUE_edgel_chain_2d*> chainSet; 
IUEt_chain_edgels(edgels, MinSeedMag,  MinChainPts, MaxLinkLen, 

MaxEdgel2LinkAng, MaxTurnAng,  LinkLenWt, 
Edgel2LinkAngWt,  Edgel2EdgelAngWt,   chainSet); 

Example 20:     Fiber extraction application code 

• visualization: Parmesan library, stand- 
alone C++ display, Java display 

Additional papers[Dolan et al, 1996, Kohl et 
al, 1995, Kohl et al, 1994] discuss other im- 
portant parts of the lUE, including: 

• additional base classes: arrays and se- 
quences 

• coordinate systems and transforms: carte- 
sian, geographic, color 

• image classes: scalar, RGB, tuple, support 
for very large images, image accessors and 
filters 

• sensors and sensor models 

• statistics: histograms 

pre-compiled libraries are available for our sup- 
ported architectures: SunOS4, Solaris, and 
Linux2. The lUE is available via anonymous 
FTP from Amerinex and a number of mirror 
sites in the US, Canada, Europe, and Japan. 
To get full information on ftp and web ac- 
cess to the lUE, send email to iue-info@aai.com 
with the subject "HELP", or visit Amerinex's 
web site at http://www.aai.com. To join the 
iue-users mailing list, send email to iue-users- 
request@aai.com. 
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7.1    Obtaining the IUE 

The IUE Core consists of the IUE class li- 
brary, including complete specification and 
sources, HTML and PostScript documentation, 
a primer, and support libraries.   In addition. 
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// Obtain inputs and parameters... 

II  Initialize Parmesan 
lUE.parmesan::init(argc,argv); 

// Read an image from a file and create an image pointer 
IUE_scalar_image_2d* im_iii = read_image( input_image ); 

IUE_image_pointer iin_ptr_in, im_ptr_out; 

im_ptr_in.put_image_ptr(im_in); 
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IUE_parmesan::newWindow("Grouping"); 
lUE.parmesan::appendlmage(input_image, "Input image"); 

IUE_parmesan::run_one_event(); 
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Example 21:  Parmesan visualization code added to fiber extraction application 
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Figure 11: Display generated by fiber application. The top left pane shows the input image. The 
top right pane shows the smoothed image with overlays of edgels and chains. 
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Figure 12: Fiber display after user interactively created additional views of the data. 
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